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ABSTRACT

The statistics of S, estimates derived from orthogonal-component measurements are examined. Based on
results of Goodman, the probability density function (pdf) for S,,(f) estimates is derived, and a closed-form
solution for arbitrary moments of the distribution is obtained. Characteristic functions are used to derive the
exact pdf of $¥. In practice, a simple Gaussian approximation is found to be highly accurate even for relatively
few degrees of freedom. Implications for experiment design are discussed, and 2 maximum likelihood estimator

for a posteriori estimation is outlined.

1. Introduction

Wave-induced fluxes of momentum (Longuet-Hig-
gins and Stewart, 1964) play a crucial role in many
nearshore processes. In particular, the onshore flux of
longshore momentum has been related to both long-
shore currents in the surf zone (Bowen, 1969; Longuet-
Higgins, 1970a,b) and longshore transport of sediment
near the beach (e.g., Komar and Inman, 1970).

In order to test dynamical models, accurate mea-
surements of both the wave-induced fluxes and the
sediment transport or mean currents are necessary.
Equally necessary, however, is an understanding of the
statistical properties of quantities derived from the field
measurements. Such statistical knowledge is required
in order to design meaningful data acquisition strate-
gies, and to interpret properly the significance of cor-
relations between experimental data and model pre-
dictions.

It is the purpose of this paper to investigate the sta-
tistics of wave-induced onshore fluxes of longshore
momentum inferred from measurements of horizontal
currents or sea-surface slopes.

The onshore flux of longshore momentum, Sy, is
defined (Longuet-Higgins and Stewart, 1964) as

Sy = < f uh uvdz),

where »(z) is the sea-surface elevation, h(x) is the depth,
u(x, z, t) and v(x, z, f) are the onshore and longshore
components of velocity, z is the vertical coordinate

(1.1)

* Deceased.
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measured upward from the undisturbed sea surface,
and (- ) represents an average over all possible real-
izations of the wave field. If the wave field is nearly
linear, Eq. (1.1) can be rewritten, correct to second
order (Longuet-Higgins, 1970a), as

Spy= f_o h(uv)dz.

Further assumptions regarding the Gaussian nature
of the surface elevation field (Kinsman, 1965) yield the
well-known relation (e.g., Pawka et al., 1983)

(1.2)

© 2%
Sy = J; gn(f)J; (£, 0) sind cosfdbdf, (1.3)

where n(f) is the ratio between the group speed and
the phase speed for linear, irrotational waves, $(f, 6)
is the (one-sided) frequency-~directional spectrum of
sea-surface elevation, and the density of water has been
set equal to 1. , .
Consistent with the assumption of linearity, an S,,
density, Sq,(f), can be defined (Pawka et al., 1983);

2x
So(N)=gn(f) X &(f,0) sind cosdds, (1.4a)

- such that

o
8= fo SN (1.4b)
Knowledge of the full frequency-directional spec-
trum is not necessary for the calculation of Sg,(f). As
suggested by the form of (1.2), Pawka et al. (1983) show
that S,(f) can be calculated from simultaneous mea-
surements of horizontal current components:
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cosh(kh)
S = n(f)( Q[c—osh—(kz—)] Ay (15)

where k is the magnitude of the wavenumber, z’is the
distance from the bottom at which the measurements
were made, and A,,(f) is the cross-spectral density of
the cross-shore (1) and alongshore (v) velocity com-
ponents. Similarly, Higgins et al. (1981) give

Swy()= (g/kz)Anxny(f), (1.6)

where 7, and 7, are cross-shore and alongshore com-
ponents of surface slope. We note that although the
cross-spectrum A in general is complex, the linearity
of the wave field requires that

Im[Au ()] = Im[A’ﬂxﬂy(f)] =0.

If knowledge of the true values of (uv), ®(f, 0),

Aw(f), or A,,,, were available from measurements,
calculations of Sxy( f) would be trivial. In fact, how-
ever, the mean product, frequency-directional spectral
density, or cross-spectral densities can only be esti-
mated from finite sets of measurements. Pawka et al.
(1983) discuss various methods for combining sea-sur-
face elevation measurements from a linear array of
wave gages in order to estimate ®(f, 6) and the crucial
moment of (1.3). Seymour and Higgins (1977), Higgins
et al. (1981), and Pawka et al. (1983) utilize estimates
of orthogonal component cospectra for the calculation
of Sy, (/). However, there has been little discussion in
the literature of the statistics of the spectral or cospectral
estimates, and there has been no discussion of the sta-
tistics of estimates of Sy, (/) and Sy,. The present paper
addresses this issue for the case of estimates derived
from orthogonal-component measurements.

In section 2, we examine the joint statistics of auto-
and cross-spectral estimates, drawing on the pioneering
work of Goodman (1957, 1963). We discuss the im-
plications of the statistical variability of these estimates
on estimation of Sy,(f). Statistics of estimates of Sy,
are derived in section 3. Results from sections 2 and
3 are discussed, in the context of experimental design,
in section 4. Section 5 illustrates the use of maximum
likelihood techniques for estimating true S,, (/) values
(and their uncertainties) after data has been collected.
Conclusions are summarized in section 6.

2. Statistics of S,,(f)

In this section we examine the probability density
function (pdf) for estimates of S, (f) calculated from
orthogonal component (slope arrays or horizontal cur-
rent meters) measurement systems, drawing heavily on
the results of Goodman (1957, 1963) and Pawka
(1982). Throughout this paper, a caret above a symbol
will denote an estimate of the quantity. Equations (1.5)
and (1.6) show that estimates Sxy( 1) are directly pro-
portional to estimates, C(f), of the frequency cospec-
trum between orthogonal components of surface slope
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or horizontal velocity. The statistics of S,,( f) are thus
intimately related to the statistics of cross-spectral es-
timates. Goodman (1957, 1963) was the first to derive
rigorously the relevant cross-spectrum statistics (see also
Borgman 1976); in the present article we use Good-
man’s major results without derivation.

We define w(?), v() 0 < ¢ < T) to be finite-length,
orthogonal-component time series as, for instance,
would be measured by a dual-axis current meter outside
the break zone. The time series have discrete, complex
Fourier transforms U(f) and V(f), f; = i/T. If it is
assumed that the wave field is linear with Gaussian
sea-surface elevations, then the real and imaginary parts
of U(f) and V() are four-variate normally distributed.

Given n independent realizations of the time series
u(f) and v(¢), sample auto- and cross-spectral quantities
can be defined as in Table 1 (note that unless specifi-
cally required, explicit references to the frequency index

f; are dropped in Table 1 and the following discussion).
Goodman derives the joint pdf of the auto- and
cross-spectral estimates A, B, C, D:

p(4,B,C,D)

— n2n -1 4B _ A2 _ P2

_[WI‘(n)F(n—l)][ABal [AB-C?— D4
2 2 A B .

Xexp{a[g—(%—l)—z————]], Q.1

where
s=1-a*—p*=0, 2.2)
and

p(A,B,C,D)=0 for 6<O.

In this section, we restrict our attention to the statistics
of the cospectrum estimate C. Thus, following Good-
man, standard techniques can be used to integrate (2.1)
with respect to 4, B and D to yield

p<c‘>=f:d,af:défdﬁp(/i,é,c‘,m

2 w12 .
) [V;I‘(n)][ﬁ”z(AB)"/"“/“(1 — Bz)n/2—1/4][|C| ]

2na 4 2n . 4
Xexpi——=CH K,_ 1ol ——=1C| V1 —ﬁz)], 2.3)
p{am ][ "Z(avA—B
where K,_;/( +) is the modified Bessel function of the
third kind (Abramowitz and Stegun, 1970).
In terms of the normalized variable C = C/C, (2.3)
can be written

. n+1/2 2' |n+1/2 M
P [vn;r(n)][am(l ilﬁ%"“‘”"]!d "

2

2}’;01 é][ n——1/2< |04| Vl—ﬁleI )] (2.4)

In all of the following, we set 8 = 0, corresponding

X exp{
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TABLE 1. Definitions of sample estimates and true auto- and cross-spectral values.

Throughout the paper, carets over quantities represent sample estimates.

Symbol Definition Comments
(1), v (1) Finite-length time series from orthogonal component measurements
7 % Udf) - LT (O 2ein . . :
Ui(), Vi) { () ()] € | dt Complex Fourier coefficients
P A 1 2 {GU* .
A, B { B " ma ? {V P } Auto-spectral densities
N Complex cross-spectral density
A Z urv;
2nA f i
¢ Re[A] Co-spectral density
D Im[A] Quad-spectral density
& CVAR Normalized co-spectral density
8 D/VAB Normalized quad-spectral density
A B True autospectral densities
A True cross-spectral density
C RefA] True co-spectral density
D Im[A]} True quad-spectral density
o e VAR True normalized co-spectral density
[} D/V/Tl} True normalized quad-spectral density

to the assumption of a linear wave field. Plots of p(C)
for various values of 7 and « are shown in Fig. 1.

For purposes of comparison, we also present the (chi-
squared) pdf for normalized autospectral estimates A
= A/A:

n"4" exp{~nd}

I'(n) ’
0 otherwise.

for A=0,

pd)= (2.5)

Comparison of (2.4) with (2.5) reveals several im-
portant differences. First, while p(4) > 0 only for A
> 0 (reflecting the fact that auto-spectral estimates are
always non-negative), p(C) > 0 for both positive and
negative values of C. There is thus a nonzero_proba-
bility that the sign of the cospectrum estimate C differs
from the sign of the true cospectral value C. In terms
of Sy,(f) estimates derived from C, there is a nonzero
probability that the direction of the momentum flux
as estimated from measurements will be opposite to
that of the true momentum flux. Figure 2 shows the
probability, as a function of # and «, of estimating an
incorrect sign for the momentum flux. For large values
of |a| (ie., C > V4B, corresponding to a near-
plane wave), the integrated probability for C < 0 is
very small for all n. This is in consequence of the fact
that, for a plane wave, the orthogonal components are
perfectly coherent and p(C; a = 1) reduces to a distri-

bution proportional to a x;,, distribution. The inte-,

grated probability of C < 0 is largest for small la| and
small n.

Second, knowledge of the true value, o, is necessary -
in order to define the distribution of the normalized
cospectrum C, while such is not the case for normalized
autospectral values. As 2nA is x3, distributed, the dis-
tribution of 4 is completely specified by knowledge of
2n, the equlvalent degrees of freedom of the estimate
A. That this is not true for the case of C is evident by
the explicit appearance of « in (2.4). Thus, the distri-
bution of sample normalized cospectrum estimates is
a function not only of the sampling parameter n (which
can be controlled by the experimenter), but also of the
true cospectrum. (For a related discussion regarding
coherence and phase, see Jenkins and Watts, 1968.)

Finally, as can be seen in Fig. 1 , p(€C)is broader than
p(A) for all values of lal Since as lal approaches 1 (2.4)
approaches (2.5), it is clear that for fixed n, the vari-
ability of normalized cospectral estimates (and hence,
momentum flux density estimates) is always larger than
the variability of auto-spectral estimates. This is es-
pecially true for small values of |a].

The variability of normalized cospectral [and S;,( /)]

, estimates can be examined more quantitatively by in-

vestigating the low-order moments of distributions
similar to (2.3), as suggested by Pawka (1982). Since
S.y(f) is directly proportional to C(f),

IS (NISu(NM=p(C/C)=p(C).  (2.6)

We define the mth moment of the distribution in
the usual fashion as

L(C:n,a)= f_ i C"p(C)dC. Q.7
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FIG. 1. Probability density function of € for |a| = 0.1, 0.3, 0.5,
0.7 and 0.9. (a) n = 4; (b) n = 100. In each plot, curves are normalized
such that the maximum value for |a| = 0.9 is 1.

Substitution of (2.4) and the series definition of the
modified Bessel function of the third kind (Abramowitz
and Stegun, 1970) into (2.7), followed by straightfor-
ward (and rather tedious) integration yields

I{C;n,a)

__ . =1+ ke L —k+m)
(n)™(n— 1), 5| 2"k(n—1- k)

X[(1—a)* "™+ (—1)"(1+ a)""”"”’]} , (2.8)
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valid for 0 < |a| < 1 and for integer values of n. Equa-
tion (2.8) is thus an exact, closed-form solution for the
moments of the normalized cospectrum and is easily
evaluated numerically. It can be shown (by induction)
that for the special case m = 2, (2.8) reduces to the
well-known form given, for example, by Borgman et
al. (1982).
_ Simple manipulations of (2.7) and the definition of
Cyield . )
I,,=E[C™ = E[C™]/C™. 2.9)

Physically, I, corresponds to the normalized mean
of the cospectral estimate C, which is also the mean of
the normahzed estlmate So(NISe(N = C/C. Likewise,
var[C] = I, — I? corresponds to the normalized vari-
ance of C Wthh is also the variance of the quantity
(S (NS (N

From the definition of C (Table 1) and the fact that
the real and imaginary parts of the Fourier coefficients
U(f) and V(f) are four-variate normally distributed,
Goodman (1957) shows that

L(Cin,a)=1. (2.10)

[This result can also be obtained by evaluating (2.8)
directly.] The variable C is thus an unbiased estimator
of the true cospectrum C.

Figure 3 shows the normalized variance of Casa
function of the parameters n and o. For fixed n,
var[C; n, a] decreases with increasing «, while for fixed
a, var[C n, ] decreases with increasing ». Although
var[C n, a] decreases rapidly with n for » small, it is
much less sensitive to n for » large. In fact, for n > 20,

100 . T T l ]
90 |- -
sof -
70 -
60| .

| I

IQO 1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7
la
FG. 2. Contour plot of fo . PISu(f )]dS,y( f) as a function of |«

and ». Contours represent probablhty (in percent) that an estxmate
of S,(f) will have an incorrect sign.
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FIG. 3. Variance of € [or S,,(/)] as a function of |a| and n.

var[C; n, o] is nearly independent of n for a« = 0.9,
while for a = 0.1, var[C; n, o] is nearly insensitive to
n for n > 40. Pawka (1982) gives examples (for selected
values of &) of the dependence of normalized skewness
and kurtosis on the degrees of freedom 2n.

3. Statistics of S

The total onshore flux of longshore momentum,
S, is obtained by integrating Sxy( /) over frequency
as in (1.4b). In the previous section, we examined the
statistics of the density estimator S,(f) defined in
Table 1. In this section, we present both exact and
approximate methods for evaluating the statistics
of $%. A

The estimator $% is defined as the sum of the esti-
mates S,,(f) over the frequency range of interest -

S =(aN Z S (). 3.1)
J

As the estimators Sxy( f) are themselves random vari-
ables, S is a random variable composed of the sum
of other random variables. One can derive the pdf of
St given the pdf of the variables S,y (f) through the
. use of characteristic functions. If the random variable
Syy(f) can take values x (-0 < x < o0), its charac-
teristic function is defined as

¢S}y(j,)(u) = Elexp{ iquy(fj)}]

= [* ewiinSo SN, 62
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where p[S,, (/)] is the pdf of Sx,(f). The characteristic
function is thus the Fourier transform of the pdf. Using
3.1),

b5 (W) = D5, 1) * D3, (W)« * * D 0(td)

=TT ¢s,0p(w), (3.3)
Jj

where the product over j spans the same range as the

sum in (3.1). Since products of Fourier transforms are

equivalent to convolutions of the original (untrans-

formed) variables, (3.3) may be inverse transformed to

yield )

PSS = PISsy ()] *PIS (/)] + * * *DSo(f)), (3.4)

where * indicates convolution. Goodman (1957) gives
the characteristic function for the normalized cospec-
trum C as

2na
in terms of Sy, (f) (sétting 8 =0),
b5, pl0s,0p] = "{1 — [+ inbs,pI’} " (3.5b)
where the proportionality constant p(f) is given by

_884(H)
o(f)= 2nae(f)’

Equations (1.5) and (1.6) can likewise be used to relate
(3.5b) directly to a characteristic function for S,( 5
based on the Fourier transform pair of the measured
cospectrum from an orthogonal component measuring
system.

Substitution of (3.5b) into (3.3), followed by direct
Fourier transformation, yields the pdf of S3. While
in principle the result could probably be derived ana-
lytically, in practice (3.3) and the resulting (discrete)
Fourier transform are evaluated numerically when high
accuracy is needed.

Analysis of the pdf given by (2.4), however, indicates
that an accurate simplification of the exact formulae
can be made. Specifically, as shown in section 2,
plSx(f)]is proportional to p(C) given by (2.4). If p(C),
and hence p[Sxy(f)], could be accurately approximated
by a normal distribution function, then the individual
characteristic functions (3.5b) would be Gaussian (since
the Fourier transform of a Gaussian is itself a Gaus-
sian). Furthermore, the product, (3.3) would also be
Gaussian, and hence its transform, p(S%), would be
Gaussian. o

Table 1 shows that € [and S,,(f)] is a sum of in-
dependent (and like-distributed) random variables.
Thus, for large n, the central limit theorem assures that
p(C) must be a normal distribution (Jenkins and Watts,
1968; Long, 1980). However, examination of Fig. 1a
suggests that the normal approximation may be valid,
even for small 7, over a wide range of lal. We quan-
titatively tested the limits of validity of the normal as-
sumption by using the nonparametric x? test (Haub-

2%—n
¢c~(ac-)=a"[1—ﬂ2—(a+i—5—ec)] . (3.59)

(3.5¢)
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rich, 1965; Bendat and Piersoll, 1971). For 0 < |a| <
and 4 < n < 25 (for n > 25, the central limit theorem
holds for all |a]), p(C) was calculated using (2.4), and
fit to a Gaussian in a least-squares manner. Normalized
square deviations between p(C) and the best-fit Gaus-
sian were calculated for 400 equally spaced values of
¢ [chosen such that P(Ciow) = p(Cmgh) 1075p(Crna)
where Cipax corresponds to the maximum of the pdf]
at each value of n, ). The sum of the normalized
square deviations is the x? statistic. Figure 4, con-
structed from the field of x? statistics in (#, |a|) space,
shows the contour corresponding to the 95% signifi-
cance level for the validity of the normal approxima-
tion. Except for the hatched region in Fig. 4 corre-
sponding to n small and || near 1, the approximation
is highly accurate.

Using the normal approximation, (3.3) can be re-
written as

b3 (0) = exp{—2mi 2 So} exp{—"2[ 2 (So,07)°6°1},
j j

(3.6)
where Sy, = S,,(f), and o7 = I,(C; n, a) — [,AC; n, a)
as given 6y (2.8). Doing the inverse transformation an-
alytically, (3.4) becomes

PSS
Sﬁg}_ ESOJ ’
= . 21-1/2 ——-— _....—.-L_..
[21r JZ.(SOjUj) ] exp 2 [z (Sojo_j)2]l/2
J

G7)

The expected value of the estimator S§g} is thus the
sum of the true densities Sy, and the variance of S'S!

T T T T T
10f-
c gl
61

0.0 0.2 0.4 0.6

lal

0.8 L0

FIG. 4. Plot of the x? statlstm vs |a and 7 for the differences between
p(C) and a Gaussian. The x? statistic is used as a measure of the
normalized deviation between the two density functions. The hatched
area denotes the region of (n, |a|) space for which the hypothesis that
p(C) is a Gaussian would be violated at the 95% significance level.
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is the sum of the variances of the density estima-
tors Sy ( f)-

4. Implications for experiment design

This section incorporates the statistical results de-
rived above into a strategy for the design, from the
standpoint of sampling, of S, measurement systems.
The design of a system to measure Sy, (f) or S%, re-
quires compromises between a host of competing re-
quirements and capabilities. We do not discuss the im-
portant issues related to the accuracies of the direct
measurements themselves or the accuracies of sea-sur-
face slopes estimated using finite-difference techniques
(e.g., see the discussion in appendix B of Higgins et al.,
1981). Instead, we use field data to illustrate the sen-
sitivities of flux and flux density estimates to both
sampling parameters and the shape of the true spec-
trum S,,(f).

The true cospectrum, C(f), plays a central role in
determining the accuracies of Sy, (f) and S't. The fre-
quency resolution (and hence the basic record length
T) of the data must be chosen so that the true cospec-
trum is approximately constant within each frequency
band. Failure to achieve the required resolution results
in biased estimates of the cospectrum (Jenkins and
Watts, 1968) and violates assumptions fundamental to
Goodman’s derivation of (2.1).

Once the elementary bandwidth is established, the
remaining choice is the total record length or, equiv-
alently, the degrees of freedom 2. Criteria for choosing
n depend strongly on the applications intended for the
measurements. In all cases, however, knowledge of the
spectrum Sy, (f) is helpful in determining required #.

Consider, as a first example, the case where it is nec-
essary to measure S,,(f) at a single frequency or at
each of several frequencies, with an accuracy R defined
such that

R =sd[Sx,(N)/Sxy (NI = {var[Su( N} (4.1)

The standard deviation (sd) of the measurements S, ()
is a monotonically decreasing function of |«| for fixed
n, as shown by Fig. 3. The critical bands, therefore, are
those for which |a| will be a minimum. Figure 5a, de-
rived from Fig. 3, shows the required » as a function
of |a| for several values of the parameter R. Small values -
of R, corresponding to measurements with little (nor-
malized) statistical variability, obviously require large
values of # (i.e., long total record lengths). For flux
density measurements to have a normalized standard
deviation of 25%, one must have # = 200 for |a| = 0.2,
corresponding to a record length of 7.1 hours (assuming
Af = 0.0078 Hz). Figure 5a shows that the required
total record length drops off rapidly as |a| increases.
In the absence of any information regarding the true
spectrum Sy, (f), the best that can be achieved is to
pick a sampling period arbitrarily that is as long as
possible. If this is done, the experimenter can still es-
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FIG. 5. (a) Plot of n vs |of for four values of the normalized standard
deviation. In order to estimate S,,(f) with high relative accuracy, n
must be large (corresponding to long total record lengths). (b) R as
a function of |a| for n = 8, 16, 56 and 338.

timate a priori the accuracy of the system as a function
of conditions, using (2.8). The results of such a cal-
culation are shown in Fig. 5b for sampling periods of
17.1 min, 34.2 min, 2 h, and 12 h (again, assuming A f°
= (0.0078 Hz). Not surprisingly, for bands with small
le|, even very long total record lengths result in rela-
tively inaccurate estimates of .S, (f).

Estimation of S5} is of great importance to coastal
engineers, who use it for predicting accumulation of
sediment in harbors and depletion of sand from
beaches. Seymour and Castel (1985) and Coastal Data
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Information Program (1975) describe attempts to
compile S35 climatologies at selected sites, using arrays
that measure sea-surface elevation slopes. Using the
results of section 3, the accuracy of individual estimates
St can be assessed, and rational sampling parameters
for such long-term measurement systems can be de-
rived. In the prev1ous example of Sy,(f) estimation,
the value of |} in the frequency band of interest was
seen to play a pivotal role in the accuracy of the
estimator S,,(f). The situation becomes even more
complex for estimation of S%). As shown by (3.7), the
statistics of S}"y' depend both on the normalized vari-

ability of each density estimator Sxy( ) in the whole
wind-wave frequency band, and on the actual shape
of the Sy, (f) spectrum across the wind-wave band. In
other words, the statistics of S}"y‘ are the result of delicate
interactions between normalized quantities [i.e., |a(f)]]
and unnormalized quantities [i.e., Sy, (f)]. It is not suf-
ficient to know merely the approximate expected value

'of S', nor is knowledge of either the spectrum o(f)-

or the spectrum S,,(f) sufficient. Furthermore, since
wave conditions at most sites vary significantly over
time scales of days to months, the design of S% mea-
surement systems to meet a priori accuracy require-
ments is practically impossible.

Nonetheless, (3.7) can be used to predict the per-
formance of a given sampling scheme for various hy-
pothesized wave conditions. In addition, the depen-
dence of the accuracy of the system on the sampling
parameter n can be evaluated for an ensemble of hy-
pothesized conditions, thus facilitating trade-off studies
at the design stage.

Field data acquired by a slope array are used here
to illustrate these points. Details of the array design
and data reduction can be found in Gable (1981). The
array was located in about 10 meters of water off Santa
Barbara, California. Data presented here were acquired
on 4 February, 14 February, and 15 February 1980,
during the National Sediment Transport Study field
experiment (Gable, 1981). For the purposes of this il-
lustration, all data are assumed to be exact; that is, we
take the mean measured values a(f) and S,,(f) to be
the “true” values a(f) and S,,(f) in order to define
our realistic (but hypothetical) wave conditions. In all
three datasets, the waves had approximately the same
significant height (total variance of sea-surface elevation
was about 475 cm? in 10 m depth for each dataset),
although Fig. 6a shows that the spectral distribution of
wave energy varies somewhat from dataset to dataset.
More striking variations between datasets are seen in
the spectra of « (Fig. 6b) and S, (Fig. 6¢). All waves
in the frequency band 0.05-0.3 Hz were approaching
the beach from the same quadrant on 4 February,
leadlng to positive values of a( /) and S,,(f) at all fre-
quencies. S5y is relatively large for this dataset, at 53
X 103 g s™2.

Values of of ) and S,,(f) are similarly positive for
frequencies less than about 0.125 Hz on 15 February.
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At higher frequencies, the waves were approaching
from the opposite quadrant, leading to negative values
of o f) and S,,( /). The small magnitudes of a(f) and
S,(f) at these frequencies contributed little to the total
momentum flux, which was 23 X 10° g s On 14
February, low-frequency waves (<0.10 Hz) contributed
positive Sy,(f), while large, higher-frequency waves
contributed negative S,,(f), leading to a nearly bal-
anced situation with small (5 X 10 g s72) total flux of
longshore momentum.

We use the (/) and Sy, (f) data in Figs. 6b and 6c
to calculate the performance of the S%, estimator as a
function of # (20 < n < 300) for these conditions. Since
we take n > 11, the Gaussian approximation to the
true statistics is valid (see section 3), and (3.7) can be
used. Absolute estimates of

sd[S3] = (var[S3D)" 4.2)

are shown in Fig. 7a as functions of n. With a fixed
bandwidth of 0.0078 Hz, n = 20 corresponds to a total
data record length of about 42 min, while n = 300
corresponds a length of about 10.6 h. Standard devia-
tions fall rapidly with increasing » for n < 100. For
larger n, the curves flatten considerably. For all n, stan-
dard deviations are largest for the 4 February data, and
smallest for the 15 February data.

It is instructive to examine normalized standard de-
viations

sd(S'5/S') = sd(S'3) = (varlSFD?  (4.3)

because of the large variations in S} between datasets.
Figure 7b presents such data as a function of n for each
dataset. Although the 4 February data have the largest
absolute standard deviation (Fig. 7a), Fig. 7b shows
that they have the smallest normalized deviation (i.e.,
the greatest relative accuracy). This is a direct conse-
quence of the fact that the true S,,(f) values all have
the same sign, and thus the true S5 [in the denomi-
nator in Eq. (4.3)] takes its maximum value. The 14
February data, on the other hand, have S,,(f) values
that are both positive and negative, leading to a small
magnitude for S%,. Thus, the normalized standard de-
viations are large for this dataset. The 15 February data
are similar to 4 February, in that S, (f) values with
large magnitudes all have the same sign. Typically, ex-
isting S, measurement systems acquire data for about
68 min day™' (four measurement periods of about 17
min each). Assuming stationary wave conditions so
that all four measurement periods can be combined to
form a daily average, the resulting S35 estimates would
have a relative accuracy of about 7.5% (1¢) for 4 Feb-
ruary, 9% (1o) for 15 February, and 51% (lo) for 14
February.

FIG. 6. (a) Spectra of sea-surface elevation for the Santa Barbara
field data. (b) Spectra of a (normalized cospectrum) for the field
measurements. (€) S, (f) for the field data.
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5. Maximum likelihood estimation of S.,(f)

Previous sections have considered the statistics of
momentum flux estimates, given some a priori knowl-
edge of the true values. The population statistics can
be used to design and evaluate sampling schemes, as
illustrated in section 4. In this section we briefly de-
scribe an a posteriori method for estimating true values
(and uncertainties) based on a limited set of data. Our
method is a straightforward application of maximum
likelihood inference as described, for example, in Jen-
kins and Watts (1968).

Knowledge of the functional form of the sampling
pdf is central to the method of maximum likelihood
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inference. Briefly, the method involves substitution of
the measured values into the sampling pdf, resulting
in a “likelihood function” in which the unknowns are
the “true” values (i.e., the “parameters” in the sampling
distribution). Those values of the true parameters that
maximize the likelihood function are the “maximum
likelihood” estimates. The ratio of likelihoods (for two
different sets of parameter values) quantitatively cor-
responds to the relative probability of one set of pa-
rameters being correct (as opposed to the other set).
Integrals of the likelihood function about the maximum
likelihood values can thus be used to estimate confi-
dence intervals for the maximum likelihood estimates.

In principle, therefore, estimates of the spectral and
cospectral values 4, B, C and D can be substituted into
the full joint pdf (2.1), resulting in a likelihood function
for the true values 4, B, C and D (or, alternatively, A,
B, a and ). We will report the results of such analyses,
using data from orthogonal-component measuring
systems, in Freilich and Guza (in preparation).

In the present paper, however, we examine the sim-
pler (albeit somewhat artificial} problem of estimating’
true cospectral [or Sy, (/)] values, assuming that the
true autospectral values 4 and B are known, and that
the true quadrature spectrum, D, is identically zero.
The appropriate sampling pdf is thus given by (2.3),
with the measured value C (or & = C‘/VZI—?) known,

and the true cospectrum C (or a = C/ VZE} as the un-
known parameter. Note that « appears in (2.3) im-
plicitly though the term ¢ [see (2.2)].

Recasting (2.3) as a likelihood function for «, and

assuming VAB = VAB, one obtains

n+1/24 A n—1/2 2 A 2 ~
L(a)= FT/JI‘%T] exp{ ”;‘“}Kn-, ,2(—-’16@) . (5.1

Since likelihood values are unknown to within a mul-
tiplicative constant (i.e., only relative likelihoods

have meaning), a term 2/VwAB has been dropped
from (5.1).

Figure 8 presents L(a) for various values of & and
n. Note that all likelihoods in Fig. 8 have been nor-
malized so that the maximum likelihood value for a
given (&, n) combination is one. For small values of
|&l, the likelihood functions are nearly symmetric about
the maximum values. However, for |&| near 1, the
functions are somewhat asymmetric and skewed, with
long tails extending toward low values of |a|. This effect
is most notable for small n.

Table 2 quantitatively presents important parame-
ters corresponding to the likelihood functions of Fig.
8. Both the maximum likelihood estimates and the
mean likelihood estimates are shown for each likeli-
hood function. The mean likelihood estimate is given

by
a= f_ 11 aL(a)do / f_ll L(a)da. (5.2)
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In the case of a likelihood function that is symmetric
about its maximum value, the mean likelihood and
maximum likelihood estimates will of course be iden-
tical. The data of Table 2 shows that this is approxi-
mately the case for all |&| for n large, and for small and
moderate |&| even for # as small as 20. Mean and max-
imum likelihood estimates differ for large |&| and small
n, because of the somewhat asymmetrical shape of the
likelihood function in this region of parameter space.
Since the mean likelihood estimate takes account of
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the shape of the likelihood function over the full do-
main (while the maximum likelihood estimate does
not), it is recommended that the mean likelihood es-
timate be used (Jenkins and Watts, 1968). In most cases
of interest (moderate n and low-moderate |&|), however,
there is no appreciable difference between the two es-
timates. .

Maximum (or mean) likelihood estimates can differ
from the measured values &. For the problem of interest
here, this effect is most apparent for small » and large
|&|. For parameters in this range, maximum likelihood
estimates are lower (in magnitude) than the measured
l&|. The physical interpretation of this result is that the
measured |&| most probably came from the high-value
“tail” of a sampling distribution with lower |a|. This
is consistent with the sampling distributions shown in
Fig. 1, where broader distributions are associated with
smaller values of |a|.

On the basis of calculations such as those illustrated
in Fig. 8, it appears reasonable to approximate the like-
lihood function (5.1) by a Gaussian with the same mean
and variance (Jenkins and Watts, 1968). This assump-
tion allows approximate confidence limits (based on
the percentage points of the normal distribution) to be
calculated directly from the best-fit parameters. As the
number of degrees of freedom associated with the
measurements increases, the measured values a be-
come increasingly reliable (Table 2), and thus the like-
lihood functions become narrower for larger n (Fig. 8).
In addition, the widths of the normalized likelihood
functions, as approximated by the variance

i 1 2
var[a] =f o?L(a)do— I:f aL(a)da] , (5.3)
-1 -1
are nearly independent of a. Equivalently,
o’ = var[a]/a*=v/&?, (5.4)

TABLE 2. Parameters of the likelihood functions shown in Fig. 8.
& is measured normalized co-spectrum; «,, is maximum likelihood
value; « is the mean of the likelihood function; sd is the standard
deviation of the likelihood function; sd/& is normalized standard
deviation (given in %); (7.5:1) are the values of « corresponding to
likelihood values down by a factor of 7.5 from the maximum like-
lihood (if the likelihood function is Gaussian, these values correspond
to the 95% confidence limits).

n a [ o sd sd/a (7.5:1)

20 -09 -076 -—-0.72 0.14 19  (—0.98, -0.43)

20 -04 -03%9 -039 0.16 41  (-0.72, —0.06)

20 -0.1 -0.10 —0.10 0.15 153 (-042,0.22)

20 0.2 0.20 020 0.16 78  (—0.12,0.52)

20 0.5 0.48 048 0.16 34 (0.14,0.81)

20 0.8 0.71 068 0.15 21 (0.37,0.97)
100 -09 -0.85 -0.84 0.07 9  (—-0.98, —0.68)
100 -04 -0.40 -040 0.08 19 (—0.56, -0.24)
100 -01 -0.10 -0.10 0.07 71 (—0.25,0.05)
100 0.2 0.20 0.20 0.07 36 (0.05,0.35)
100 0.5 0.50 0.50 0.08 16 (0.34, 0.66)
100 0.8 0.77 077 0.08 10 (0.37,0.97)
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where, to first order, + is a function only of n. Figure
9 shows the approximate dependence of ¢° on n.

6. Conclusions

We have examined the statistics of Sy,(f) and S
derived from orthogonal-component measurement
systems, using as a basis the statistics of cospectral es-
timates derived by Goodman (1957, 1963). The sta-
tistics of Sy, (f) and Sy (f) = Su(N/Sx(f) were
found to depend on both the true cospectral density
C(f) and_the true normalized cospectral density «
= C(/)/VA(/)B(f). Simple a priori estimates of the
accuracy of a measurement system or sampling scheme
are thus not possible, since the statistics of the measured
quantities depend on the true values (which are beyond
the control of the experimenter) as well as on the sam-
pling scheme (over which the experimenter does have
control). Physically, the normalized cospectral density
« is a measure of the directional spread of the waves
at the frequency of interest, with || = 1 corresponding
to a plane wave. The cospectral density itself, C(f), is
related both to the amplitudes of the waves and to the
mean angle at which they are approaching the beach.

A simple, closed-form solution for arbitrary mo-
ments of p[.Sy, (/)] was obtained. Not surprisingly, the

variance of Sxy( /) decreases for increasing degrees of
freedom 2n, and for increasing true values || (Fig. 3).
While the variance of S,,(f) decreases dramatically
with » for n small, little decrease with » was seen for
n = 40, for all values of |«.

Given the probability density function (pdf ) for flux
density estimates Sxy( /), an expression for p(S;‘;‘) was
obtained using characteristic functions. A very simple
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but accurate approximation to the exact pdf was de-
rived by noting that p[.S,,(f)] is very nearly Gaussian
for n = 11, independent of ||. The approximate pdf
for S thus is itself Gaussian, with its mean and vari-
ance dependent on the summed means and variances
of the density estimates S,(f) [cf. (3.7)].

Examples, based on actual field measurements, were
used to determine the performances of several sampling
schemes and to illustrate the difficulties facing the ex-
periment designer. In the examples, a fixed sampling
scheme in which data is obtained for 68 min day~! was
shown to allow estimation of S’ with a relative ac-
curacy of a few percent under conditions of nearly uni-
directionial waves approaching the beach from a large
angle. However, the same sampling scheme resulted in
only 51% (1) relative accuracy when the momentum
fluxes associated with waves from different frequencies
and directions nearly cancelled.

After measurements are taken, the sampling pdf’s
derived in sections 2 and 3 can be recast as likelihood
functions for the true auto- and cross-spectral values.
Although in practice the full joint pdf (2.1) should be
used, the technique was illustrated for the simpler

. problem of estimating C (or ) alone. Likelihood func-

tions were found to be nearly symmetric for all « and
all n, and thus could be accurately approximated as
Gaussian. This approximation allows quantitative un-
certainties (error bars) to be assigned directly to the
likelihood estimates. The uncertainties are functions
of the sampling distribution and the actual measure-
ments. To first order, the uncertainties depend only
onltllle sampling parameter #» and are independent
of |al.

Recognition of the statistical nature of Sy, estimates
is crucial for the proper design and interpretation of
field measurements. Variance of flux estimates due to
rather short (68 min day™') sampling periods may con-
tribute significantly to the apparent “episodicity” of
transport observed by Seymour and Castel (1985), al-
though true day-to-day variations in wave conditions
clearly also play an important role. Guza and Thornton
(1978) remark on the “noisiness” of Sy,(f) and S
measurements and corresponding (but apparently un-
correlated) variations in measured longshore currents
in the surfzone. The results of the present paper provide
a proper context for evaluating the “noisiness” of sim-
ilar field measurements, in order to determine quan-
titatively whether the cause of the measured variability
is strictly statistical, or whether the measurements im-
ply that the statistics of the wave field are varying on
some intermediate time scale (i.e., “‘nonstationarity”
over the measurement interval).

Finally, we note that our results are applicable to
measurements of many processes dependent on the
cross spectrum between two (basically Gaussian) time
series. Specifically, estimates of turbulent fluxes in the
atmospheric surface layer are often obtained by cal-
culating directly the mean product (u'w’), where u’
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and w' are the fluctuating components of horizontal
and vertical velocity (e.g., measured from aircraft using
gust probes or at fixed points in space using sonic an-
emometers). The maximum likelihood technique
briefly described in section 5 could be used to make
estimates of the statistical accuracy of the measured/
estimated fluxes.
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