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ABSTRACT

A layer model that treats fronts as discontinuities is developed to study the steady state behavior of shallow
estuary plumes on the continental shelf. The complete range of earth rotation effect is evaluated from small-
scale or nonrotating plumes (Kelvin number equal zero) to large-scale, rotating plumes (Kelvin number equal
order one). Supercritical flow is assumed in the outlet channel and the method of characteristics is used to
compute the flow downstream. Nonrotating plumes have strong boundary fronts and concentrate their greatest
layer depth and mass transport offshore near the front, but form no coastal current. Rotating plumes have
boundary fronts that weaken soon after discharge, form a turning region where Coriolis action deflects the flow
toward shore, and subsequently set up a coastal current. Soon after its formation this coastal current is bounded
offshore by a strong front called the coastal front, across which the momentum balance changes from nearly
inertial in the turning region upstream to nearly geostrophic in the coastal current itself. In traversing this front
the flow loses total energy, but gains potential vorticity. Farther downstream the coastal front weakens, and
meanders of the coastal current begin. Their wavelengths are short, about two Rossby radii, and their amplitudes
grow, doubling after about 20 Rossby radii. The presence of supercritical speeds and fronts generates a plume
dynamics that is remote from any linear description but shows analogous behavior to supersonic, compressible
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gas flow with shock waves.

1. Introduction

Estuary plumes, produced by the persistent discharge
of brackish water, are primary mesoscale features of
continental shelves and shelf seas. The larger-scale
plumes react significantly to earth rotation. Boicourt
(1973) presents surface salinity maps of the Chesapeake
plume that show two principal flow regimes: a turning
region where the plume, typically of depth 5 m, exe-
cutes an anticyclonic turn beginning at the mouth and
continuing until the isohalines approach the adjacent
coast, and a coastal current of width roughly equal to
the internal Rossby radius running parallel to shore
with the coast on the right. Smaller-scale plumes lack
clear evidence of Coriolis effects. The Connecticut
River plume (Garvine 1974a) responds primarily to
the alongshore tidal currents, reversing its deflection
each tidal cycle almost symmetrically. Two length
scales strongly influence estuary plume structure and
dynamics: the length scale set by the geomorphology,
principally the estuary width at the mouth, and the
dynamical scale set by the internal Rossby radius. Their
ratio forms a Kelvin number. Plumes with order-one
Kelvin number may be expected to show strong Co-
riolis effects, such as the Chesapeake, while those with
small Kelvin number should show weak effects, such
as the Connecticut River.

Several model studies are relevant to estuary plumes
with Kelvin numbers of order one. Takano (1954)
published one of the earliest. His momentum balance
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included Coriolis acceleration, pressure gradient, and
lateral friction. Contrary to Takano’s claim that his
results showed an anticyclonic turn for the current,
however, Boicourt (1973) showed that Takano’s so-
lutions were symmetric about a straight line along the
outflow initial direction. Nof (1978) developed an an-
alytic model treating the steady, frictionless outflow of
a shallow buoyant layer from a channel into a wide
basin of unlimited length and containing deep, mo-
tionless, heavier water. The internal Froude number,
the ratio of the discharge speed to the linear, long in-
ternal wave speed, was assumed small and used as the
parameter in an asymptotic expansion. The model was
not constrained to be quasi-geostrophic and retained
nonlinear effects. Outflows with uniform velocity
showed initial anticyclonic turning and, for higher
Kelvin number, formation of a coastal current along
the right-hand shoreline of the basin. No frontal struc-
ture was present. Beardsley and Hart (1978) also de-
veloped an analytic, steady state model. Both layers
were active and simulated the action of the estuary on
the adjacent shelf circulation by a point source dis-
charge at the mouth for the upper layer and an equal
strength sink for the lower layer. They neglected non-
linear effects, but retained both bottom and interfacial
friction. They found that for the Northern Hemisphere
the upper layer flow concentrated toward the left, con-
trary to most observations, while the bottom flow con-
centrated on the right. Their work thus implies that
the tendency for the upper layer to turn right requires
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the action of the inertial or nonlinear terms in the mo-
mentum balance. Chao and Boicourt (1986) applied a
three-dimensional, primitive equation model to study
the establishment of an estuary plume by discharge of
fresh water into the upper reaches of a model estuary
adjacent to an enclosed ocean basin. They used six
layers in the vertical together with simple vertical dif-
fusion and bottom drag. The horizontal grid size pre-
cluded resolution of fronts. Model experiments sim-
ulated conditions typical of Chesapeake Bay. Ten days
of discharge were sufficient to establish a strong plume
in the upper layer over the shelf having many of the
observed features, including an anticyclonic turning
region and a subsequent coastal current.

Garvine (1982) and O’Donnell (1986) developed
layer models of the flow of a shallow, buoyant plume
that included fronts as discontinuities where they ap-
plied appropriate jump conditions. Garvine (1982,
hereafter called G82) treated the steady discharge of
light water into an open domain of ambient water hav-
ing uniform alongshore current. Earth rotation was
neglected (Kelvin number zero). A strong front formed
the offshore boundary of the plume. The results showed
similar structure to the Connecticut River plume at
slack tidal current. O’Donnell (1986) extended this
model formulation to include time dependence and
earth rotation. His results showed the complicated re-
sponse of a plume discharged into a tidal regime for
small Kelvin number. The frontal boundary, as for the
steady state model of G82, was a dominant feature of
both the plume structure and dynamics.

Observations of buoyant plumes nearly always reveal
frontal structure, that is, the horizontal variation of
plume properties such as density on a scale much
smaller than the plume as a whole. A summary of some
of these observations appears in an earlier paper (Gar-
vine, 1981). Figure 1, showing a vertical density section
across the Connecticut River plume, will serve here to
illustrate frontal structure associated with a buoyant
plume. The left-hand boundary of the plume labeled
“surface front” has clear frontal structure in that hor-
izontal density gradients there are much larger than
elsewhere. For plumes, these fronts have a horizontal
scale of the order 100 m (Garvine and Monk, 1974),
and so are unaffected by Coriolis acceleration.

Since a variety of frontal forms will appear in the
results of the present model, as well as in other models,
I offer the following method for classifying small-scale
oceanic fronts associated with buoyant surface layers.
Two properties require classification: the relative lo-
cation of a front and the degree of isopycnal (or layer
depth) change there. I will use the term boundary front
to denote one that forms all or part of the lateral
boundary of a buoyant structure such as a plume, while
I will use the term interior front for one having parts
of the buoyant structure on each side. Thus, the front
on the left of Fig. 1 is a boundary front, while the front
labeled “coastal front” in Fig. 8 is an interior front. [
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FIG. 1. Density (o,) section across the Connecticut River plume.
The structure on the left marked “Surface Front” is a front of the
depth discontinuity type, while the surface outcrop of the 19 isopycnal
on the right is a front of the degenerate type. From Garvine (1977,
Fig. 13). .

will use the term depth-discontinuity type to denote
fronts where buoyant layer isopycnals undergo finite
depth changes across the front, or where the layer depth
has finite change in layer models, while 1 will use the
term degenerate type to denote fronts where this depth
change is zero, as where the upper-layer depth vanishes
smoothly. Thus, the front on the left of Fig. | is of
depth-discontinuity type, while the front on the right
formed by the intersection of the o, = 19 isopycnal
with the free surface is of degenerate type. These two
types present profoundly different structures for detec-
tion by observations. Observed horizontal density gra-
dients will be much greater for the depth-discontinuity
type than gradients in the buoyant layer itself, while
gradients at the degenerate type will be of the same
order as in the buoyant layer. The depth-discontinuity
type will generate its own dynamic balance distinct
from the buoyant layer dynamics (Garvine, 1974b; Kao
et al., 1977), while the degenerate type will be mere
free streamlines. Note that only boundary fronts can
be degenerate types under the above definitions, be-
cause an interior front with the same layer depth on
both sides would be no front at all.

To develop plume models that include fronts one
must either resolve their structure properly or treat
them as discontinuities. The former method requires
the use of governing equations that are valid within as
well as beyond the fronts. Kao et al. (1977) gave a clear
example of this method for a nonrotating plume gen-
erated by a uniform line source of light fluid at a coast.
The latter method requires use of suitable jump con-
ditions that relate plume properties such as velocity on
each side of a front; these conditions have close analogs
in the Rankine-Hugoniot conditions for a shock wave
in compressible gas flow and in the conditions for a
hydraulic jump in open channel flow. In Garvine
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(1981) I derived a set of such jump conditions for use
with layer models. These accounted for conservation
of mass and momentum in the direction locally normal
to the front and, in particular, included the effects of
mass entrainment, interfacial friction, and entrainment
of momentum produced by exchange of mass and mo-
mentum between the buoyant and heavier layers. If
the effects of this exchange are neglected, the jump
relations simplify to the classical forms found for an
internal hydraulic jump (Stoker, 1957, p. 318) provided
the buoyant layer has finite depth on both sides of the
front. Where the upper layer vanishes at a depth dis-
continuity type, however, as in the boundary front on
the left in Fig. 1, the exchange effects must be included
to obtain physically meaningful results. These jump
relations, including the exchange effects, were subse-
quently employed in a series of buoyant layer models
including G82, O’Donnell and Garvine (1983), Gar-
vine (1984), and O’Donnell (1986).

Nof (1986) developed a model closely related to these
but for application to rotating flow in a channel. His
jump conditions were extensions of those used for hy-
draulic jumps in channel flow and similar to those ap-
plied to shock waves in a compressible gas flow. These
neglected exchange of mass and momentum between
layers for two-layer flows or exchange of momentum
with the bottom (bottom friction) for single-layer flows;
thus, they cannot be used to treat depth discontinuity
types where the upper layer vanishes, as at the boundary
front of Fig. 1, but will produce similar effects to those
of Garvine (1981) when finite-layer depths exist on both
sides. Nof explored the consequences of such a front
when it acted as the transition in steady, rotating chan-
nel flow between two geostrophic, paralle! flows, an
upstream supercritical one and a downstream subcrit-
ical one. Most significantly, he found that such a front
produced an increase in potential vorticity as the flow
crossed it. Pratt (1983) found a small, but significant,
increase across the front which formed in his numerical
solutions of time-dependent flow over topography in
a rotating channel and was able to derive jump relations
for the increase. In this paper I find similar increases
in potential vorticity as the plume water traverses an
interior front. Such interior fronts thus may well serve
to amplify potential vorticity in a variety of geophysical
flows.

My major goal is to develop a layer model that in-
cludes fronts as discontinuities and that is applicable
to steady state estuary plumes for the complete range
of earth rotation effect from small-scale or nonrotating
plumes with small or zero Kelvin number to large-
scale, rotating plumes with order one Kelvin number.
The model is essentially an extension of G82 to include
earth rotation.

2. Governing equations

Figure 2 shows the essential model geometry. A
shallow, upper layer of buoyant plume water flows from
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FI1G. 2. Schematic of the model geometry. (a) Map showing the
outlet channel and open coastal domain with ambient current u,.
(b) Vertical section through the plume.

an outlet channel of width w at the coast into an open
domain at angle ... The coastline is straight and coin-
cident with the x-axis except at the righthand channel
corner where it has a radius of r,. Distance y is mea-
sured offshore from the lefthand channel corner and z
1s vertical, positive upward. The flow is steady in these
coordinates with velocity q at angle 6 to the x-axis and
with horizontal components # and v. The plume depth
d is small everywhere compared to total water depth
h. The ambient water, representing inner-shelf water
in most applications, has uniform density p, and
alongshore current u,. For simplicity, the plume water
is taken to have uniform density p, — Ap with Ap/p,
< 1, so that the Boussinesq approximation is valid.
Because the plume is shallow, the pressure field is iso-
static and free surface elevation is given by 7 = (Ap/
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p.)d; consequently, the horizontal pressure gradient in
the upper layer is simply Vp = p,g'Vd where g’ is the
reduced gravity, gAp/p,. Wind stress is neglected, while
interfacial friction, mixing, and mass entrainment be-
tween plume and ambient water are neglected every-
where but at fronts. Thus, except at fronts, the plume
horizontal velocity q is vertically uniform. I treat fronts
here as discontinuities whose structures are not resolved
but across which I maintain mass and momentum bal-
ance through use of approximate jump conditions;
these are simple extensions of those derived in Garvine
(1981).

The continuity and horizontal momentum equa-
tions consistent with the above and applicable to the
plume away from the fronts may be written in vector
form as

V. (dg)=0, (1)

(q-V)q+/kXq+V=0, (2)

where c¢ 1s the long, linear internal wave phase speed
given by ¢ = g'd, f the Coriolis parameter taken as
constant, and k the vertical unit vector. These equa-
tions are the same as the shallow water equations used
to describe the flow of a single layer of depth ¢ under
gravity and earth rotation (Gill, 1982) with g’ here re-
placing g. They are strongly nonlinear for the present
application because the Froude number F = |q|/c will
be of order one, in general.

I now introduce scaled variables for later conve-
nience:

O=ldl/co, U=ujcy, V=v]co,
C=c/cyg, D=dldy=C?,
X=x/w, Y=y/w.

Here dy denotes the depth of the upper layer in the
reservoir upstream of the outlet channel where it orig-
inates and cg = (g'dp)'/, the reference phase speed. The
only externally imposed horizontal length scale is w,
the channel width. For nonrotating flow (f' = 0), this
is the only length scale, as in G82. Now, in contrast,
the baroclinic Rossby radius 7y = ¢,/ becomes an in-
trinsic length scale for /'# 0. The ratio of these two
scales defines the principal parameter of the model, the
Kelvin number

K=w/ro= fw/co.

Thus, nonrotating flows, as in G82, will correspond to
the limit K — 0, while earth rotation will be significant
when K = O(1). R

Equation (1) permits use of a transport function ¥
given by ‘
o¥/ox=—-DV, 8¥/oY=DU.

Furthermore, the system (1)-(2) may be manipulated
to show (Gill, 1982) that the Bernoulli function B (or
mechanical energy) of the plume layer and the potential
vorticity P are both conserved along streamlines, or
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lines of constant ¥. In scaled variables, these statements
may be written
2

BED+7:B(\1/), 3)
_[9V_dU _ i
P=(6X ay+K)/D P(Y). (4a)

Equation (3) is simply Bernoulli’s equation. For the
special case when rotation is absent (K — 0) and the
outlet channel has uniform depth and speed, as in G82,
P = 0 everywhere (irrotational flow) and B = 1 every-
where up to the boundary front. For K > 0, however,
P and B will, in general, vary across streamlines. In
addition, those streamlines that cross an interior front
will suffer discontinuous changes there in P and B as
a result of concentrated interfacial friction.

One may further manipulate (2), (3) and (4a) to find

P=—dB/d¥, (4b)

valid for regions of frictionless flow. This convenient
result is generally attributed to Charney (1955) in the
geophysical literature, but has been much longer known
in analogous form in compressible gas dynamics as
Crocco’s theorem (Crocco, 1937). It provides the most
convenient expression for calculating P.

Following the evidence cited in G82, I will stipulate
that the outlet channel flow is supercritical, that is, F
= Q/C > 1 there. The method of solution I will use
will then be based on the method of characteristics, as
in G82, since the system (1)-(2) is then hyperbolic.
Standard methods (Courant and Friedrichs, 1976) yield
the three characteristic directions:

(dy/dx). =tan(f + ¢), (5a)
(dy/dx)y =tan. (5b)

Here ¢ is the Froude angle, analogous to the Mach
angle in supersonic compressible flow, given by

¢ =sin"(F1)<90°. (5¢)

Thus, the characteristic directions are given by the local
streamline (5b) and a pair of lines (5a) inclined to either
side of the local streamline at the Froude angle. The
same methods also yield the following three indepen-
dent ordinary differential equations that apply along a
particular characteristic direction:

Qdf 2 ac= —K[cosﬂ + (_d_y) sinﬂ]dX, (6a)

Ftanf dx

dg=— %dC. (6b)

Here (6a) is applied along the corresponding direction
given by (5a) while (6b) applies along (5b). Thus, (6b)

is merely Eq. (3), Bernoulli’s equation, differentiated
along a streamline. The characteristics form of (1)~(2)
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for the three dependent variables C, Q and 4 is then
(3) and (6a), together with (5). The right-hand side of
(6a), indexed by K, shows the action of Coriolis force
on the flow. For K — 0 with P = 0, (6b) is valid along
any direction, corresponding to B = 1 in (3), and (6a)
then reduces to Eq. (7) of G82.

I implemented this characteristic formulation using
the first-order numerical finite-difference scheme de-
scribed in G82. I began integration in the outlet channel
and marched downstream. Typically, 100 grid points
were used in the cross-stream direction. Provided the
flow remains supercritical, the integration can be con-
tinued as far downstream as desired. Where critical
flow (F = 1) was encountered at some point down-
stream, the solution domain was limited to points up-
stream. An independent estimate of the solution ac-
curacy was provided by calculating P using (4b) in re-
gions where the flow had not yet traversed a front and
checking it against the original value in the outlet
channel. Agreement was nearly always better than two
percent.

3. Boundary conditions

At the solid boundaries given by the shoreline, in-
cluding the outlet channel, the flow must parallel the
boundary, since friction is neglected. This boundary
condition is equivalent to specifying that the flow angle
6 match that at the shoreline, 8,(X).

At a point on the boundary front only two of the
characteristic lines given by (5), (dy/dx), and (dy/dx)y,
connect the point with the known plume interior up-
stream. Thus, only (6b) and one of Egs. (6a) are ap-
plicable, while four variables must be found at the front:
C;, Qrand 6, as at interior points, and «, the angle of
the front with the x-direction. The two additional con-
straints needed to close the system there are the two
jump conditions, as used in G82, which represent the
frontal-scale bulk conservation of mass and momen-
tum locally normal to the front:

—Qrsin(fy— o) = S,8U, sina, (7a)
Cr= U, sina/fF,, (7b)

where U, = u,/¢,, the scaled alongshore current ve-
locity, and
Fa=[2B(S.+d~S28)]7", (70)

a Froude number for frontal propagation. Here S, de-
notes the sign of the entrainment velocity, 8 the frac-
tional extent of the frontal zone over which friction is
important (Garvine, 1981), and d is a parameter giving
the relative strength of friction. Simpson (1982) reviews
laboratory results on density currents which indicate
that the best values for the parameters are S, = —1
(downward entrainment or mass loss from the plume

to the ambient water), 8 = 0.15, and F, = 1, or from
(7c), d = 4.48. Consequently, these are the values used
here.
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Where interior fronts developed, a more complicated
set of jump conditions was required because the plume
layer was present on both sides. I followed the scheme
given in Garvine (1981), which accounts for mass con-
tinuity and momentum balance normal to the front,
supplemented by a jump condition which accounts for
momentum balance parallel to the front. I first found
the layer depth D, just downstream of the front (in the
sense of the local flow) and local normal velocity U,
(positive toward the downstream side) from

D;=[(a®+4bD,)'?—b)/2, (8a)
_ D, D,
U,=0, “D, <+ Seﬂ(l - B;)U sing;. (8b)

Here o; is the local angle of the interior front to the x-
direction, U, is the normal velocity just upstream of
the front and D, the depth there, and @ and b are given
by

a=D,— (U, sina;/F,)*

b=20,—-S.8U, sina;)*
Then 1 used the following jump condition to find the
local paraliel velocity just downstream of the front v,
in terms of that just upstream V,,,

U,D(Vy— U, cosa;) = U,D,(V,— U, cosa;)

+(S,—d )g U, sinay(Dg— D,)(V;— U, cosa;).  (8¢)
This equation expresses the momentum balance locally
parallel to the front as affected by interfacial friction
and entrainment of momentum.,

4. Outlet channel flow

The outlet flow state I used corresponded to the re-
lease of a thin, buoyant upper layer from an upstream
reservoir, the upper estuary in applications, where the
reduced gravity is g’ and the depth dy, or D = 1. The
dimensional potential vorticity there is thus f/d,, or P
= K from (4). The flow moves from the reservoir to
the coast in the outlet channel wherein the flow is nearly
parallel and in geostrophic balance with P = K on all
streamlines. Gill (1977) treated the single layer equiv-
alent of this flow in detail, so I simply adapted his re-
sults. As Gill demonstrated, if the channel narrows suf-
ficiently the flow will make a transition from a sub-
critical (F < 1) to a supercritical (F > 1) state in terms
of across-channel averaged properties as at a control
section for classical hydraulic channel flow. Subsequent
channel widening downstream generates higher super-
critical speeds, not a return to the upstream subcritical
state. This corresponds to outlet channel layer depths
D, which decrease as the channel widens.

The primary parameter that defines the outlet chan-
nel flow is the transport parameter given by
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where T is the dimensional upper-layer total volume
transport. This parameter thus may also be written as

_K T
2 Codow

T=

and so is proportional to the Kelvin number and the
scaled transport T/(codyw). Consequently, for fixed
transport 7 — 0 as K — 0, the nonrotating limit. For
the Chesapeake plume 7 is typically 0.2 and K about
unity, while for the Connecticut River plume each is
about a factor of ten smaller, reflecting the observed
weakness of rotation.

The transport streamfunction clearly will depend on
T. Hereafter I will use the convenient dimensionless
form given by

whwy Xy,

¥=
T 27

with ¥ as in section 2. Setting ¥ at zero at the right
bank of the outlet channel (and, consequently, along
the coast downstream) then dictates that ¥ = 1 along
the left bank. For Southern Hemisphere applications

(f< 0), one need only interchange right and left bank’

here.

The secondary parameter is ¥, the value of ¥ in
the interior of the reservoir, or equivalently, as Gill
(1977) notes, the transport fraction exiting the reservoir
along the right bank. The expression ¥, = 0, for ex-
ample, corresponds to exit on the left bank only, while
¥, = 1 corresponds to exit on the right bank only. I
will use ¥, = 1, as observations tend to show lighter
water concentrated on the right bank of the wider parts
of estuaries such as Chesapeake Bay (Schubel et al.,
1976).

For fixed 7 and ¥, Gill’s (1977) Eq. (5.13) relates
the channel width to D,, the average of the right and
left bank layer depths in the channel, in the form of a
quadratic equation. Selecting the appropriate branch
here and using present variables, we have

—_ 2_b2 172
T ®

where
a=1—7+27¥,—-

b=+(1-D.)/D.,

WL
=tanh{—]).
t=tan (2"0)

Here w;, represents the local unscaled channel width.
For the present model I fixed D, at 0.4 and then found
w; using (9). Since at the outlet w, = w, (9) determines
the Kelvin number, as K = w/ry. The above expression
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for ¢ may be inverted to one for K using an identity.

for tanh:
1+¢
K=1
o1 7)

Once the channel flow has become supercritical,
continued widening of the channel will ultimately cause
the layer depth at the left bank to vanish. For yet greater
widths the flow separates from the left bank and is
guided only by the right bank. Consequently, in the
present model channel widths at the outlet greater than
w;, the width corresponding to separation, have no ef-
fect on either the outlet flow or the subsequent plume.
Instead, the only effective length scale for the flow will
be ro. As Gill notes, separatlon first occurs when D,

7'72, Therefore, for given D,, the limiting, upper
bound for 7 is 7, = D2 Since I used D, = 0.4, the
limiting value 7, was 0.16 and the corresponding value
for Kelvin number [using (9) with ¥, = 1] was K|
= (0.683. The plume flow for greater 7 is no different
because the left bank at the outlet has no effect and
could just as well be absent, the flow being totally right
bounded. Thus, this limit may be used to describe the
effect on a right-bounded coastal current of a turn in
the coastline through the angle 6., the entire wedge of
land shown in the upper left of Fig. 2a being absent.

With 7, ¥,, and D, given and K computed from (9),
the outlet channel flow state is now fully determined
and given, following Gill (1977), by

Dem1- oy h(K/c;) cosh[K(Y. — 1/2)]
_ _giSinh:ﬁf;(;Z;/Z)], (10a)
0= (1~ Dyl e
D
6=9., (10c)

where Y, is the scaled cross-channel distance rangjng
from zero at the right bank to one at the left. The as-
sociated scaled Bernoulli function, transport stream-
function, and potential vorticity are given by

B.=D, +-Q7c= 1+27(¥y— V), (10d)
.= (Des’ — DA/(41), (10¢)
P.=K. (10f)

Because the channel flow is geostrophic, ¥, given by
(10e), is also the geostrophic transport with D.; the
layer depth at the right bank.

Figure 3 shows the outlet channel variables for what
I will term the standard case: ¥, = 1 and D, = 0.4, as
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F1G. 3. Outlet channel flow state for the standard case. Y. is the
scaled distance across-channel from the right bank.

for all cases, and = = 0.1 corresponding to K = 0.432.
The layer depth shows the flow “leaning’” against the
right bank (here shown on the left at Y, = 0) with D¢
= 0.65 and thinning almost linearly with ¥, toward
the left bank where D = D, = 0.15. The flow speed
Q. increases only slightly from 1.049 on the right bank.
The Bernoulli function drops slowly across the channel
from 1.2 to 1.0 with gradient in ¥, consistent with
uniform P, = K = 0.432. The Froude number F, = Q,/
D' is supercritical with a lowest value of 1.30 on the
right bank.

In addition to this local Froude number, another
may be defined for this rotating channel flow where
the relevant phase speed is that of a time dependent,
small-amplitude, long wave rather than the local, long
internal gravity wave speed. Gill (1977) gives such a
Froude number in his Eq. (6.9). For the standard case
its value is 1.88, or supercritical. Such organized long
waves then also could not propagate upstream in the
channel.

In contrast to the standard case, the nonrotating limit
has an elementary flow state. Then, 7 = 0 = K, and D,
=D.=04,0 = 1095 F,=1732,B.=1,and P,
=0, while ¥, = Y. :
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As the flow exits the channel a discharge boundary
front will form immediately at the left channel corner.
For D, > 0, as for the standard case (Fig. 3), this front
will be of the depth discontinuity type. Then, the jump
conditions of (7a) and (7b) provide a link between
channel angle 6, and the ambient current U, which
ensures frontal properties consistent with steady flow.
If we regard 6, as given, then «., the initial frontal angle
with the X-axis, and U, are found by combining (7a)
and (7b) to give

a.=0.+ sin"(S—eﬁ—li) s
F, cL

(11a)

U,=F,C,/sina,. (11b)

The above implies that for D.; > 0 the discharge front
intersects the coast only at the left channel corner (X
=0, Y = 0), not, for example, at some point upstream
(X < 0). Indeed, one may show that the intersection
at the corner is the only possibility for a steady state.
Time dependent flows would, however, remove this
restriction.

For D, = 0 (separation) Egs. (11) formally give o,
= §,and U, = 0. The discharge front then, however,
is of the degenerate type, not the depth discontinuity
type, so that no exchange of momentum or mass with
the ambient flow there will occur; consequently, a
steady state for this discharge front then imposes no
constraint on U,. (I outline the treatment of the de-
generate type in the Appendix.) As noted above, the
left channel bank need not even be present for this
limit, and thus the question of where the front intersects
the coast becomes moot, since the initial flow may be
regarded as a coastal current directed along 8 = 4., not
necessarily as flow in a channel.

5. The nonrotating limit

The limiting case for K — 0 is applicable to small-
scale estuary plumes (K = w/ry < 1) or to flows lacking
earth rotation. Such plumes were the main subject in
G82; in this section I treat an example in order to
provide contrasting structure to that for plumes with
rotation.

Figure 4 shows a map of a plume for K = 0. Here,
as for the standard case of section 6, 8, = 40°, the
radius of curvature of the right bank corner is R, = 1,
and the frontal parameters are S, = —1 (downward
entrainment), F, = 1, and 8 = 0.15. The ambient cur-
rent speed is then U, = 1.114, nearly the same as Q,.
The discharge front gradually turns toward the along-
shore direction from its initial angle of &, =~ 35°, The
paths of six streamlines are shown as dashed lines at
uniform intervals of A¥ = %. In the outlet channel
these are distributed uniformly, because O, and D, are
constants, but beyond the mouth the outer three in-
tersect the discharge front, a consequence of the down-
ward entrainment there, while the inshore three are
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FIG. 4. Map of the plume for the nonrotating limit K = 0 = ~ when 8. = 40° and R, = 1. Dashed lines
show streamlines as lines of constant transport streamfunction at uniform intervals of A¥ = ', Distances
X and Y are scaled by outlet channel width w.

shifted offshore relative to their position in the channel.
This shift toward the discharge front is a typical feature
of nonrotating plumes. By X = 20 about % of the total
buoyant layer transport has been lost from the plume
to downward entrainment at the discharge front to un-
dergo subsequent mixing there with the ambient water,
a testimony to the strength of the discharge front in
nonrotating plumes,

Figure 5 shows an isometric projection of the layer-
depth field D(X, Y). The section at the far right shows
a transect across the outlet channel passing through
the left channel corner. Here the layer (or pycnocline)
depth is greatest and uniform at D, = 0.4. Downstream
the depth falls gradually as one would expect during
gravitational spreading of a buoyant layer, but remains
greatest at the front in any cross-shore transect. The
plume is thus concentrated offshore, consistent with
the offshore shift of streamlines shown in Fig. 4. As
noted in G82, this feature is a direct consequence of
nonrotating plume dynamics. The plume flow must
adjust from its initial streamline angle of 40° to zero,
i.e., it must turn right to become parallel to shore far
downstream. Because both Coriolis force and interfa-

FI1G. 5. Isometric view of layer depth D plotted upward for 0 < X
< 8 of nonrotating plume shown in Fig. 4. The right-most transect
passes through the left-hand channel corner.

cial friction are lacking, only cross-streamline pressure
gradient can turn the flow. This, in turn, requires that
the pressure or plume-free surface elevation n be great-
est at the front. Consequently, because 7 = (Ap/p,)D
from isostatic balance in the vertical, D also must be
greatest there.

Hallmarks of nonrotating plume structure, then, are
the strength of their discharge fronts with attendant
mass flux loss there to entrainment and the concen-
tration of the plume offshore toward the front with the
deepest pycnocline there along any cross-shore section.
The only length scale is that imposed by the channel
width.

6. The standard case

Figure 6 shows a map of the plume for the standard
case with 7 = 0.1 (K = 0.432), U, = 0.637, and the
same channel and shoreline geometry as for the non-
rotating plume of Fig. 4. (The same map will serve for
Southern Hemisphere applications, K < 0, if the plot
is simply inverted in X about the Y-axis.) Significant
differences from the nonrotating plume are clear. While
the discharge front and streamlines begin turning an-
ticyclonically (to the right in the Northern Hemi-
sphere), as for the nonrotating plume, they continue
to turn and, unlike the nonrotating plume, all begin
to approach the coast (# < 0). This turning region, as
1 will show subsequently, is one of nearly inertial bal-
ance with little horizontal pressure gradient acting, in
sharp contrast to the nonrotating dynamics. The tra-
jectories, including that of the discharge front, closely
approximate the arcs of inertia circles, the outer
streamlines having greater radii of curvature as a con-
sequence of the greater flow speed there. This turning
region has been identified in field observations of the
Chesapeake plume (Boicourt, 1973) and appears in
clear form as well in the fully three-dimensional nu-
merical model results of Chao and Boicourt (1986).



NOVEMBER 1987

RICHARD W,

GARVINE 1885

COAsTA,
NS

—_———
——

¢rONT

FIG. 6. Plume map for the standard case. Dash—dot line indicates where AF = 4,
solid circle where coastal front is first fitted computationally.

As the plume water approaches the shore after the
turn, it encounters the locally high pressure near shore
needed to force it to turn cyclonically (left) toward par-
allel to shore. Again, because of the isostatic nature of
the pressure field, high pressure (or high 5) coincides
with greater D, and thus the relatively deep shore-par-
allel flow begins to form on the right of the plume. At
first this turning occurs gradually, but as more plume
water approaches shore an interior front forms of the
depth discontinuity type.

Details of the interior front formation are best seen
in Fig. 7 for a similar plume (but with K = 0.627).
There not only the streamlines but also the two families
of characteristic lines or wavefront envelopes appear,
the latter traced using Eq. (5a) from a selected point
on each streamline near the mouth. The left-running
characteristics merely coalesce with the discharge front
after it becomes weak, but the initially right-running
ones approach and reflect off the shore as waves of the

left-running family. Note how several of these coalesce
just offshore near X = 3. Superposition of character-
istics of the same family leads to formation of a dis-
continuity (Courant and Friedrichs, 1976), in this flow
an interior front which I call the coastal front, as it
serves to bound the developing coastal current inshore.
The solid circle in Fig. 7 shows where jump conditions
were first used to represent the discontinuity. Down-
stream from there the front strengthens as more plume
water sweeps across it into the progressively deeper and
wider coastal current. Now streamlines change direc-
tion discontinuously at the front from onshore to nearly
shore-parallel. Left-running characteristics are trapped
in the coastal current, unable to escape the front sea-
ward because of the high-speed, onshore-moving flow
there.

The coastal front grows in the same way for the stan-
dard case (Fig. 6). As more of the total plume volume
flux builds behind it in the coastal current, the front

FI(;.. 7. Map of plume showing details of coastal current and coastal front formation. Same
conditions as standard case of Fig. 6, except K = 0.627. Dashed lines are streamlines, dash-
dot lines are characteristic lines radiating from a selected point on each streamline.
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migrates seaward, intersecting the now degenerate dis-
charge front at about X = 8. Subsequently, it becomes
the boundary front and continues as a depth-discon-
tinuity type until about X = 10 where it too becomes
degenerate, a mere free streamline. At about this dis-
tance still another plume property emerges that was
lacking in the nonrotating case. Wavelike meanders of
the coastal current appear with apparent wavelengths
of about AX = 4.7 (or, multiplying by K = w/r,, about
2.0 Rossby radii) and amplitudes of about AY = 0.35.
The mean current width is about 1.3 or 0.56 Rossby
radii. Both the front and all streamlines oscillate in
phase, so that only a “lowest mode” behavior is evident.
As 1 will show later, these oscillations grow slowly
downstream and the coastal current becomes unstable.

While the model results formally predict the weak-
ening of depth discontinuity fronts to form degenerate
types, in nature vertical shear flow instability would
intervene before degeneracy could happen. Near de-
generate fronts the fluid speed in the plume remains
finite while the layer depth vanishes so that the vertical
shear grows without limit. To estimate where vertical
shear instability would first occur along a trajectory in
the plume I computed the bulk shear Froude number
AF = |(U — Uyi + Vjl/C, i.e., the local bulk shear
velocity between plume and ambient water divided by
the local phase speed. Thus, AF is the inverse square
root of the corresponding local bulk Richardson num-.

" ber. While stable flow is guaranteed for AF < 2, cor-
responding to Richardson number > Y%, sufficiently
large A F will trigger instability, usually in the form of
Kelvin-Helmholtz billows. I chose AF = 4 as an in-
dicator of the locus for instability and local, rapid ver-
tical mixing based on O’Donnell’s (1986) results. Along
streamlines downstream of this locus one would expect
the plume to disappear in nature, even though the
model may still show plume structure.

The dash-dot line in Fig. 6 shows the locus for AF
= 4, It indicates that the plume in the triangular region
bounded by the discharge front, the coastal front, and
the locus would suffer vertical mixing and likely be
unobservable there. Most of the original streamlines
avoid this region, however, and reach the coastal cur-
rent. Inside the coastal current the flow remains stable
vertically because it is slower and much deeper, until
further downstream near X = 10 where the coastal front

.itself approaches the degenerate type. Then the out-
ermost parts of the coastal current likewise would suffer
instability. Thus, despite their occurrence in the model,
degenerate plume fronts are not likely to exist in nature.

Figure 8 shows a projection of the layer depth field
for the standard case downstream to X = 8. It presents
a strong contrast to the nonrotating structure of Fig.
5. In the exit channel the buoyant layer clearly “leans”
against the right-hand channel until it reaches the cor-
ner. The discharge front initially has modest strength
(D= 0.15) but its decline to degeneracy is swift leading
to its near invisibility downstream of where it is drawn.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 17

FIG. 8. Isometric view of layer depth D for 0 < X <: 8 for
the standard case (Fig. 6).

In this figure the turning region appears as a broad,
shallow plateau where only feeble depth gradients, and
hence pressure gradients, prevail, unlike Fig. 5. Near
the right channel corner D falls shoreward, as in the
nonrotating plume, assisting the flow in its sharp turn
there. The coastal current arises soon after, deepens,
spreads, and then acquires its coastal front boundary.
The front gains strength as a depth discontinuity front,
then begins to weaken as the coastal current roughly
acquires the structure of the outlet flow. As shown be-
low, the flow here is nearly geostrophic again.

Figures 9 and 10 show transects of the major plume
properties along two cross-shore sections. At X = 4 the
transect of D shows four primary features: the discharge
front in a state of great weakness, the shallow plateau
of the turning region, the coastal front with moderate
strength, and the nearly geostrophic coastal current.
Near the discharge front A F exceeds 4, but elsewhere
the flow should be vertically stable, especially in the
coastal current where A F falls to about unity. The flow
speed drops abruptly as the flow crossés the coastal
front because of intense friction there. Note the cor-
responding drop in total energy B behind the coastal
front, a result of the frictional dissipation of energy
there or “head loss™ in hydraulic terms. At the coast,
however, B = 1.2 still, as along the right bank of the
outlet channel, since the streamline passing along the
shore never traverses the coastal front. Consequently,
within the coastal current B drops seaward more rapidly
than it would have without frontal dissipation. This
drop, in turn, generates higher potential vorticity P
= —(K/21)dB/d¥, peaking at about P = 2 here behind
the front. These elevated values contrast with the orig-
inal value P = K = 0.432 of the outlet channel. Nof
(1986) likewise found that the interior front that de-
veloped in his steady rotating channel flow produced
significant increase in P, while Pratt (1983) found a
small, but significant, increase for time dependent ro-
tating channel flow crossing a similar front. In the
turning region beyond the coastal front P is conserved
and thus P = K there still. Thus, the coastal front itself
by its dissipation of energy produces both enhanced
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FIG. 9. Plume properties vs Y for the standard case at X = 4. The
discharge front is near Y = 2.4 while the coastal front is near Y = 0.2.

potential vorticity and a potential vorticity gradient
within the coastal current. In this way the flow state of
the coastal current differs markedly from that in the
outlet channel, despite the common geostrophic and
layer depth structure. Most linear stability analyses of
nearly geostrophic currents show cross-stream gradients
in potential vorticity as the key stability determinant.

Figure 10 shows another transect, this one well
downstream at the meander crest at X = 14.3. The
coastal front itself has become degenerate but just be-
hind it the flow would be vertically unstable as AF
rises steeply there. Elsewhere A F is about unity. After
passage through the upstream coastal front, the various
streamlines now in the coastal current have conserved
the values of B and P they acquired then. Note the
strong decline now in B from 1.2 at the coast to only
about 0.4 behind the present front, consistent with the
decreased Q there. The strong gradient in B produces
a strong gradient in P with a peak value of about 9
near the front, about 20 times the initial, uniform value
K upstream. Consistent with heightened P is the change
in sign and increase in magnitude of the relative vor-
ticity, now roughly equal to —9U/dY ~ —94Q/dY > 0.
Unlike the cross-channel transect (Fig. 3) ¥ = 0.86 < 1
now at its outer edge, reflecting modest upstream mass
flux losses at both the discharge and coastal fronts to
downward entrainment.
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Figure 11 shows layer depth contours together with
the value of terms in the across-stream momentum
balance for X < 8. The layer depth contours in Fig.
11a provide a companion view to the isometric pro-
jection of Fig. 8. Note that the peak values of D at the
coast, about 0.65, are the same as at the right bank in
the outlet channel.

The momentum balance of Eq. (2) may be rewritten
in terms of local streamline coordinates. With S the
scaled distance along a streamline (positive down-
stream) and N the same across it (positive leftward) we
have

9

Q2%+KQ+51%=0, (12a)
30 oD

Q5%+5§=o. (12b)

Equation (12b), the streamwise momentum equa-
tion, is merely the equivalent of (3), Bernoulli’s equa-
tion, and necessarily lacks the Coriolis term. However,
(12a), the across-stream momentum balance, provides
a compact assessment of the local competition between
the relative acceleration Q2?36/4S, resulting from local
streamline curvature, Coriolis acceleration KQ, and

—
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FIG. 10. As in Fig. 9, but at X = 14.3, the location of
a coastal current meander crest.
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FIG. 11. Contour lines for layer depth and across-streamline momentum balance terms of Eq.
(12a) for the standard case; (a) layer depth, (b) relative acceleration Q236/85, (c) Coriolis acceleration
KQ, (d) pressure gradient dD/dN. :
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across-stream pressure gradient dD/dN. For nonrotat-
ing flow K = 0 and (12a) reduces to a balance between
relative acceleration and pressure gradient. Then, as
Fig. 5 showed, the plume will always deepen offshore
in cross-shore transects to balance the relative accel-
eration. Two other simple (two-term) balances are pos-
sible: inertial turning, when relative and Coriolis ac-
celerations balance in the absence of pressure gradient,
and geostrophic balance, when relative acceleration is
absent. :

Figures 11b, ¢ and d show maps of the terms in (12a)
in the order written. In the outlet channel the flow is
specified as geostrophic and the three maps merely re-
flect this balance. Immediately as the flow reaches the
beginning of the right channel corner strong wave fronts
radiate along left-running characteristic lines producing
a rapid increase (algebraically) in pressure gradient and
corresponding negative relative acceleration with little
change in Coriolis acceleration. The initial adjustment
to flow expansion is essentially irrotational, because
Coriolis effects require significant particle displacement
to affect change. Near the curving shoreline locally large
relative accelerations build, balanced in part by the
pressure gradient generated by the layer depth dipping
toward shore. Beyond here the flow quickly enters the
turning region where the layer depth thins and becomes
nearly uniform at about D = 0.1 (Fig. 11a). The pres-
sure gradient vanishes along the middie of this region
and, as Figs. 11b and ¢ show, near inertial balance is
achieved with each term about 0.6 in magnitude. This
balance nearly holds now throughout the entire region
offshore of the coastal front and inshore of the discharge
front. Nonetheless, as the flow crosses the coastal front
the momentum balance switches again, this time dis-
continuously, to near geostrophic balance in the coastal
current. Only in the formation region is there signifi-
cant relative acceleration in the current, just those pos-
itive values associated with the gradual cyclonic turn
there. Further downstream the flow turns discontin-
uously in the coastal front instead (Fig. 6). Finally, in
the meander region (not shown) the relative accelera-
tion once again becomes moderate, up to 20% of the
Coriolis acceleration.

Over the bulk of the plume, then, the momentum
balance for X = O(1) is either nearly geostrophic, in
the outlet channel and coastal current, or nearly in-
ertial, in the turning region. The transition regions be-
tween are small. Such rapid switching is remote from
any linear behavior; indeed, the momentum balance
itself involves the nonlinear relative acceleration term
in the turning region. Such strong nonlinearity is a
direct consequence of the supercritical flow speeds in
the plume. The complexity of the flow compared to
the nonrotating limit is a consequence of the action of
a second length scale, the Rossby radius 7.

The present results show strong similarity to the nu-
merical model results of Chao and Boicourt (1986),
especially for their first experiment where vertical mix-
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ing was limited. Ten days after flow initiation their
uppermost layer showed a distinct anticyclonic turning
region that they termed the “bulge,” followed down-
stream by a sharp transition region of cyclonic turning
into a coastal current. Their model did not include
fronts as discontinuities nor could fronts be resolved
by the coarse computational grid, but the sharp tran-
sition region they found closely resembles the coastal
front of the present model where it is of the depth dis-
continuity type. The vertical velocity fields at the bot-
tom of the buoyant layer of the two models are also
highly similar. Here the vertical velocity at the pyc-
nocline (scaled by codp/w) may be written as W
= —QaD/dS. Since Q > 0, W here always has the op-
posite sign of 3D/3S. Thus, W = 0 in the outlet channel,
becomes strongly positive (upwelling) where the plume
turning is initiated (Fig. 11a), then weak in the inertial
turning region, and finally nearly zero in the coastal
current where near geostrophy is reached. At both the
discharge and coastal fronts intense sinking occurs,
consistent with the downward entrainment active there,
except where they have become degenerate. Especially
if one interprets the field of vertical velocity Chao and
Boicourt present as including regions where fronts are
smeared out, the qualitative agreement in vertical ve-
locity is strong.

7. Other cases

Once the outlet channel state reaches separation
from the left bank (D, = 0), only one plume length
scale exists, the Rossby radius ro. As noted in section
4, this occurs when 7, = D2 = 0.16 (K, = 0.683). Figure
12 presents the plume map for separation when the
channel angle is . = 30° and Fig. 13 is the correspond-
ing layer depth field. While the left bank appears in
Fig. 12, it has no effect on the plume. Its removal leaves
a map showing the consequences of the turn of a coastal
current with uniform P imposed by a bend in the coast
of 30°. At first U, has no effect either, because the
discharge front is degenerate so that no coupling be-
tween the plume and ambient flow exists for the entire
region beyond the coastal front. I was thus free in that
respect to select a value and chose U, = 1.

The flow pattern for this limiting case is qualitatively
similar to the standard case. The degeneracy of the
discharge front is clear in the isometric view of Fig. 13.
Note the presence in Fig. 12 of the line marking where
AF = 4 just inshore of the front and outlining a more
likely offshore edge for the plume in nature. Because
the front has zero strength, D,= 0, it lacks entrainment
power; consequently, streamlines run paraliel to it and
no plume mass is lost there. The turning region, coastal
current, and downstream meanders are all qualitatively
the same as for the standard case. The mean coastal
current width is ¥ = 1.1 or 0.75 Rossby radii. The
meanders likewise become unstable well downstream.
Their properties are summarized in this section.
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FI1G. 12. Plume map for the limiting case of separated flow at the left bank of the outlet channel
when 7 = 0.16, K = 0.683 and 6, = 30° with U, = 1.

The particular value of U, selected has a modest
effect on the coastal front upstream of its junction with
the discharge front and a crucial effect on it downstream
where it becomes a boundary front of the depth dis-
continuity type whose behavior is governed by (7). Such
fronts must propagate or spread relative to the ambient
current in the direction locally normal to the front.
Thus, to remain stationary in space, as required in this
steady state model, the ambient current must have a
local normal component toward the front, or U, sina.r
> 0, where a.r is the angle of the coastal front. Here
sina.r > 0 everywhere downstream until the front be-
comes degenerate (roughly where the AF = 4 line in-
tersects it in Fig. 12). Once the coastal front is degen-
erate, the value of U, is immaterial again, but before
that the frontal dynamics requires U, > 0 for a steady
state to exist.

Guided by these properties of a steady state plume
with separated channel flow, we may anticipate the
time-dependent response for a case when the ambient
current changes sign following a steady period during
which U, > 0. Such a current change on the inner shelf
could result, for example, from a change in direction
of the alongshore wind toward negative X. The model
results indicate that the turning region and meander

FiG. 13. Isometric view of layer depth D for 0 < X < 10
for plume shown in Fig. 12.

region would not be much affected, but in the region
between them where the coastal front is a nondegener-
ate boundary front, we may expect the front to turn
left and propagate offshore and toward negative X so
as to overtake the current and maintain a flow of am-
bient water relative to it still. The plume layer behind
it would be forced by pressure gradient to follow, thin-
ning in the process. O’Donnell’s (1986) numerical re-
sults for such a time-dependent plume with a small
Kelvin number show similar qualitative features.

The results presented thus far have been for channel
angles . =< 40°. Figures 14 and 15 show plume maps
for 8, = 90° and R, = 0.05, i.e., for outflow perpen-
dicular to the coast and a sharp right-hand channel
corner. In Fig. 14 the outlet channel flow is again in
the nonrotating limit + = 0 = K and, except for 8,
= 90° and U, = 0.635, is identical to that of Fig. 4
where 6, = 40°. In Fig. 15 I use the same channel ge-
ometry but small, nonzero Kelvin number with 7 -
=0.02 or K = 0.09 and U, = 0.593.

When compared to Fig. 4, the main feature of the
nonrotating plume of Fig. 14 is the additional rotation
of the plume by about 50°. More careful examination,
however, shows two new physical properties.. '

First, the right bank streamline separates from the
shore before it can complete the 90° turn following
discharge. As noted in G82, the maximum angle
through which such a streamline may be turned upon

- discharge is about 66° for nonrotating flow; greater

channel angles 6. cause surfacing of the plume inshore
along a straight line. In Fig. 14 this streamline is labeled
“D =07, It is, of course, also a degenerate front. Once
again, however, local vertical mixing would obliterate
it. The line is straight because Coriolis effects are absent.
Along it plume water reaches its highest speed, Onax
= [2(B — D)]'? = 2!72 since B = 1 everywhere.
Second, the plume takes on a “ring” structure

-downstream. Note the geometry of the characteristic

lines illustrated as in Fig. 7. Now those that are initially
right-running cannot reflect off the coast, as there is
no plume water there, but merely diverge slowly while
trending in the general flow direction on the shallow,
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FIG. 14. Plume map for the nonrotating limit K = 0 = 7 when 6. = 90° and R, = 1. Compare
to Fig. 4. Characteristic lines as in Fig. 7. Line labeled D = 0 marks streamline or degenerate
- front that separates from shore at right channel corner.

inshore side of the plume. The initially left-running
characteristics, however, reflect off the strong discharge
front and travel downstream as a converging beam.
They coalesce at about X = 7 to form a trailing front.
Between this front and the discharge front nearly all
the mass flux that has escaped loss to frontal zone en-
trainment is concentrated, giving the layer depth there
a roughly “top hat” shape locally and a ring shape
globally. Such ring structure is ubiquitous for the non-
rotating, radially symmetric discharge of buoyant fluid
in time-dependent flows (Garvine, 1984) and occurs
frequently in O’Donnell’s (1986) results for two-di-
mensional, time-dependent plumes at small or zero
Kelvin number.

The results shown in Fig. 15 show the striking effects
of adding a small amount of rotation (small Kelvin

number) to the flow of Fig. 14, or, put differently, of
adding a second length scale, the Rossby radius. Near
the mouth the flow is quite similar, since Coriolis effects
require finite time or particle displacement to act, but
by about X = 11 (about 0.6r, downstream) significant
differences are clear. No ring is forming; instead, all
streamlines, including the inshore one where D = 0,
are turning right under Coriolis action. The plume
reattaches to the coast at about X = 19 (1.7r,) after
which the remaining streamlines come ashore to form
a coastal current. The discharge front weakens to a
degenerate front and turns shoreward, as well. All the
major plume subregions present for K = O(1) (Figs. 6
and 12) recur: the inertial turning region, the coastal
front, the coastal current, the meander region, and the
downstream instability; only the scale in X (channel

FIG. 15. Plume map for small rotation, r = 0.02, K = 0.09 with 8, = 90° and R, = 0.05.



1892

widths) is different. However, the scale in terms of
Rossby radius is similar. The discharge and coastal
current fronts intersect, for example, at x/ro ~ 3 for
the present case (K = 0.09) and at x/ry ~ 3.7 for the
standard case (K = 0.432). The mean coastal current
width is 2.7 or 0.25 Rossby radii.

While the similarity in structure for quite different
K is simplifying, an essential difference remains. In Fig.
6 the great bulk of the plume is turned back to the
coast and enters the coastal current without AF ex-
ceeding 4, but in Fig. 15 nearly all the flow reaches AF
> 4 in the turning region and so is unlikely to survive
vertical mixing before entering a coastal current where
AF =~ 1.

Discharges with 8, = 90°, ¥, = 1, and D, = 0.4, but
with 7 > 0.02 (K > 0.09) develop subcritical flow (¥
< 1) in their coastal currents downstream. Conse-
quently, the method of characteristics fails there and
a different solution method would be needed to com-
pute the flow state downstream of the critical point.
Such flows are fundamentally, not just computation-
ally, different because long internal wave disturbances
then may travel upstream as well as downstream in
the coastal current. Consequently, perturbations may
propagate upstream from some disturbance down-
stream, such as an outward bend in the coastline, and
be felt upstream everywhere that F < 1. The steady
flow problem then becomes a split boundary value
problem in x, not simply a downstream marching
problem from a given flow state near x = 0.

I investigated the conditions under which subcritical
flow developed downstream by using outlet channel
states with ¥, = 1, D, = 0.4, and R, = 0.05, as above,
and increasing 6, for fixed 7 (or K). Figure 16 shows
the results in the parameter space 6. vs 7. Below and
to the left of the solid curve flows were supercritical
everywhere, including in the coastal current. Above
and to the right of the dashed line all flows reached
subcritical speed somewhere downstream in the coastal
current. The separation of the two lines, about 2.5° in
6., represents the increment used in 6, for successive
integrations at fixed 7. For sufficiently small 7 < 0.02
or K < (.09 (as in Figs. 14 and 15), completely super-
critical flows result for all angles 0 < 6, < 90°, while
for 8, < 30° the same is true for all 7. The maximum
0. permitted at fixed = for uniformly supercritical flow
reaches the minimum level of about 30° at 7 ~ 0.14,
then increases slightly at + = 0.16, the limiting or sep-
aration value. The model results thus indicate that for
larger-scale plumes (K = O(1)) subcritical coastal cur-
rents will often be present permitting upstream influ-
ence, while for small-scale plumes (r <0.02 or K < 1),
only uniformly supercritical coastal currents exist. For
nonrotating plumes (r = 0 = K) no coastal current
develops and the plumes are necessarily supercritical
everywhere.

I carried the computation of three cases with super-
critical coastal currents far downstream to quantify
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FIG. 16. Division of 7, 8, parameter space into uniformly super-
critical and downstream subcritical plume coastal currents.

their unstable meander growth: the case for r = 0.02
of Fig. 15, for 7 = 0.10 (the standard case) of Fig. 6,
and for 7 = 7, = 0.16 (separation) of Fig. 12. Figure
17 shows the growing meanders for the standard case;
the other two cases are qualitatively the same. The first
four streamlines beyond the coast (¥ = Y%, %, % and
%) are plotted from X = 10 to 100 (x/r, from 4.3 to
43). The streamlines oscillate in phase, as in a first-
mode wave, and maintain a nearly constant wavelength
of A = 4.7w. The meanders are thus not long waves,
since the total mean current width (about Y = 1.3 from
Fig. 6) to wavelength ratio is about 0.28. The meander
amplitude grows slowly, doubling after a distance x;
= 48w or 20.7 Rossby radii. Table 1 summarizes prop-
erties of the meanders for the three cases. Both A/rg
and x;/ry increase with 7 reaching 2.3 and 25.4, re-
spectively, for 7 = 0.16.

Two theoretical linear stability analyses are indirectly
relevant to these meanders. Paldor (1983) used a re-
duced gravity model of a wall-bounded buoyant current
having uniform potential vorticity, no friction, and a
boundary front of degenerate type. Small perturbations
of all wavelength were stable. Killworth and Stern
(1982) studied a similar model but with small potential
vorticity gradient across the current. They found un-
stable long-wave fluctuations provided the potential
vorticity increased toward shore and the mean current
vanished at the shore. Here, in contrast, the meanders
are unstable but the potential vorticity increases
strongly toward offshore, the current is supercritical
everywhere, and the meanders have short wavelength.

Two laboratory studies of coastal current instability
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FIG. 17. Innermost four streamline shapes for the standard case in the coastal current
far downstream showing meander growth.

relate to the present results. McClimans (1986) studied
the dynamics of a coastal current produced in a rotating
basin by discharging a light water layer upstream along
a straight boundary simulating a coast. Subcritical
source flows produced large anticyclonic eddies down-
stream which transported nearly the entire coastal cur-
rent offshore. Supercritical source flows produced
growing waves similar to the present results which ul-
timately broke at the crests downstream. Griffiths and
Linden (1981) observed the growth of waves on the
upper layer of lighter fluid above heavier fluid in a
rotating annulus. After the fluid in the annulus had
achieved uniform rotation, the outer annulus wall was
withdrawn. The upper layer then adjusted from uni-
form depth and no current to a quasi-geostrophic
coastal current with a boundary front at the outer edge.
Apart from friction and mixing effects, the flow had
uniform potential vorticity. Amplifying waves formed
on this current for all flow conditions, ultimately pro-
ducing dipole vortices along the front. The experiment
with greatest correspondence to the present results had
a relatively thin upper layer (dy/h =~ 0.3), F > 1 ev-
erywhere, and an initial upper layer width of about
0.4ry. The linear analysis for baroclinic (two coupled
layers) instability applied to this flow predicted baro-
clinic stability. Thus, they interpreted the unstable
waves for this and related flows as likely the action of
barotropic (one layer) instability, as in the present re-

TABLE 1. Coastal current meander properties.

T K 0, ANw Mo Xa/w Xaf 1o
0.02 0.090 90° 14.6 1.3 73.5 6.6
0.10 0.432 40° 4.7 20 48.0 20.7
0.16 0.683 30° 33 2.3 37.2 254

sults. (Presumably the friction and mixing produced
sufficient gradient in potential vorticity to permit in-
stability and render Paldor’s (1983) results inapplica-
ble.) Their wave properties are best compared with
those for separation here (7 = 7, = 0.16). They found
amean current width of 1.0ry, compared to 0.75rp here,
and wavelength of A\ = 3ro, compared to 2.3r; here.
The relative closeness of these properties argues that
quite similar dynamics is active, despite the very dif-
ferent methods of wave production in the two studies.

8. Concluding remarks

I have developed a layer model that includes fronts
as discontinuities to study the steady state behavior of
estuary plumes on the continental shelf where the
plume depth is a small fraction of the total water depth.
The complete range from small-scale, nonrotating to
large-scale, rotating plumes was included. The two
length scales of the flow are the outlet channel width
wand the baroclinic Rossby radius rp; their ratio forms
the Kelvin number X with X = 0 representing the non-
rotating or small-scale plume limit, I used Gill’s (1977)
model of rotating channel flow to formulate the up-
stream flow state in the outlet channel. I assumed, fol-
lowing G82, supercritical flow in the outlet channel at
the estuary mouth and used the method of character-
istics to compute the flow state, including fronts,
downstream.

In the nonrotating limit, K = 0, the model plume
structure is dominated by a strong boundary front,
called a discharge front, which serves as the offshore
plume boundary. Because of its relatively great strength,
as indexed by the large value of the plume layer depth
behind it, considerable downward entrainment occurs
there so that appreciable buoyant water is lost to the
plume by local vertical mixing with ambient water.
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These plumes reach their greatest depths offshore at
the discharge front because only cross-stream pressure
gradient is available to turn the plume water toward
alongshore, Coriolis force being absent. Especially in
the concentration of isopycnal depth and mass trans-
port offshore near the front, small-scale plumes are dis-
tinct from large-scale ones. At large outlet channel an-
gles this concentration ultimately forms a ring structure
quite similar to that found in time-dependent, radially
symmetric plumes released from a small source. At
these larger angles the right-hand channel streamline
separates from the shore, leaving ambient water be-
tween it and the coast at the surface.

Admission of rotation, even a relatively modest
amount, introduces the additional length scale of the
Rossby radius rg, and with it much richer structure
and dynamics. The plume streamlines turn anticy-
clonically after discharge because of Coriolis action and
move toward shore. This turning region is dominated
by nearly inertial momentum balance and so has
strongly nonlinear dynamics. The discharge front
weakens and becomes degenerate with corresponding
high levels behind it of shear Froude number; conse-
quently, the resultant local vertical mixing would likely
render it unobservable. For the larger outlet channel
angles the innermost streamline separates from the
shore, as in the nonrotating limit. Nevertheless, this

streamline now also bends back to shore and reattaches’

to the coast, leaving an isolated body of ambient water
at the surface upstream. As the plume streamlines near
the coast they are turned cyclonically to form a nearly
geostrophic coastal current. Near the estuary mouth
this turning is gradual and the coastal current weak,
but as more streamlines arrive near shore another front
forms, an interior front that I call the coastal front
because it bounds the developing coastal current. This
front strengthens as the coastal current builds behind
it. As plume water crosses it, intense local dissipation
" reduces its total energy, while the streamlines turn
abruptly toward alongshore, the cross-stream momen-
tum balance switches to nearly geostrophic, and the
potential vorticity amplifies, producing a large cross-
stream gradient of potential vorticity in the coastal
current. Further downstream the coastal front weakens
and becomes degenerate while meanders develop in
the coastal current of short wavelength, about two
Rossby radii. These meanders are unstable, growing
slowly downstream to double their amplitude after
about 20ry. While no mathematical models of which
I am aware address such coastal current instability,
quite similar unstable short waves were produced by
Griffiths and Linden (1981) in their laboratory study.
The model results show that low Kelvin numbers
or low outlet channel angles or both result in plumes
that remain supercritical everywhere, while high Kelvin
numbers and outlet angles result in subcritical flow
downstream in the coastal current, despite the initial
supercritical channel state. In the latter case flow con-
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ditions downstream will propagate upstream to where
the Froude number first reaches unity.

The model reveals interesting behavior by the dis-
charge front. Without rotation it remains of the depth
discontinuity type while slowly losing strength down-
stream. With rotation it begins as a depth discontinuity
type, but subsequently undergoes transition to the de-
generate type where no important local frontal dy-
namics is present, merely a free streamline. Most geo-
physical models that use a layer formulation assume
that all boundary fronts are of the degenerate type, but
here the transition from one type to the other is high-
lighted.

The model plume dynamics is remote from any lin-
ear model formulation. The supercritical flows and
nondegenerate fronts in such flows present formidable
challenges to construction of an analytic model. Not
only does the momentum balance itself frequently de-
mand inclusion of the nonlinear acceleration terms,
but the discontinuous switching across the coastal front
of the momentum balance from nearly inertial to
nearly geostrophic has strong nonlinear character.

An abundance of analogous structure to that found
here may be found in the large body of literature on
compressible gas flows. Figure 18, adapted from Liep-
mann and Roshko (1957), shows the formation of a
shock wave in steady, supersonic flow along a wall that
makes a gradual turn inward through angle 6. This
flow is directly analogous to the plume flow here in its
coastal front formation. The supersonic upstream flow
in Fig. 18 is analogous to that of the plume approaching
the coast at supercritical speeds in Fig. 7, while the
downstream flow, turned left through angle 4 in Fig.

. Shock Wave L
b »—

Envelope of
Mach Lines

FiG. 18. Analog in compressible gas flow to coastal front formation
(Fig. 7). A supersonic, steady flow encounters a bend in a wall, forcing
a total streamline angle change of 6. Streamline marked “‘a” traverses
region of Mach lines (characteristic lines) radiating from wall at curve

‘and gradually turns through angle 6. Streamline marked “b” traverses

the shock wave, analogous to the coastal front, and turns abruptly.
After Liepmann and Roshko (1957, Fig. 4.7).
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18, is analogous to that in Fig. 7 which has turned left
to parallel the coast. Left-running characteristic lines,
called Mach lines, radiate from the wall in Fig. 18 sig-
naling through pressure changes across them the ki-
nematic requirement for leftward streamline turning,
These lines coalesce to form a shock wave. Streamlines
turn gradually left in traversing the region below the
shock but abruptly left across the shock. Across the
shock flow properties change discontinuously, that is,
on a different scale, including density and vorticity,
analogous to layer depth and potential vorticity in the
shallow water model. In the frictionless region behind
the shock the gradient of vorticity across streamlines

. is given by Crocco’s vorticity theorem (Crocco, 1937;
Tsien, 1958), analogous to (4b) here. We may antici-
pate, then, that much useful guidance for solving other,
similar geophysical flows to the present one may also
be available in the well-established gas dynamics lit-
erature.
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APPENDIX
Solution Method for Degenerate Fronts

Plumes with rotation or finite X have boundary
fronts that become degenerate downstream: either the
discharge front, the coastal front, or both. By definition,
a degenerate front is one where the layer depth D and
phase speed C vanish behind the front on the horizontal
scale of the plume, not on the frontal scale associated
with depth discontinuity fronts for which D,> 0. Con-
sequently, at a degenerate front the method of char-
acteristics becomes unusable, because no characteristic
line can intersect the front as C, and therefore ¢ in
(5a), vanishes. Furthermore, the jump conditions (7)
become meaningless, because there is no jump. The
front, instead, is a mere free streamline.

To find the flow properties at a degenerate front and
the front’s trajectory one must combine its known
properties with (12a), the cross-stream momentum
equation. The known properties are

Df-_- 0= Cf,
¥ =¥, =const,

2
B =B;(¥;)=const=D,+ —Q-z—f—

Thus, O = (2B)'? = const.
The remaining flow variables are the frontal angle
o and streamline angle 6; however, since the front is
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a streamline, a(X) = §(X). One may then utilize (12a),
transformed to X, Y from S, N variables, to find

@ KL "

where
U, r= Qf COSBf.

When the criterion D; < 1076 was first satisfied in
marching downstream at X, [ began implementing
this method. I computed Y(X+ AX)= Y (X)
+ tanf,(X)A X and solved for the flow field at X + AX
for all interior points Y < Yy(X + AX) at uniform in-
tervals AY using the method of characteristics. Then I
computed the layer-depth slope (3D/dY)from the form

D(Y)=(Y;— Y)lao+a(Y;— Y)]. (A2)

Here gy and a, were constants found by imposing a
least-squares fit through the five nearest interior points
in Y where D was known. This form had the advantage
of coupling both the frontal position Yrand the interior
layer depth field to the computation of slope. From
(A2) one has (dD/dY)s= —~ay. I then used (A1) to com-
pute df;/dX, and thus found ,(X + AX). The same
cycle was then repeated downstream.

At the degenerate fronts formed by streamlines that
had separated from the shoreline, as for the streamline
in Fig. 15 labeled “D = 0, ay was zero in (A2) so that
the pressure gradient term in (Al) vanished, the mo-
mentum balance was inertial, and df;/dX corresponded
to motion along an inertia circle. At boundary fronts,
however, both terms on the right of (A1) were generally
important. As the discharge front became degenerate,
ao became small and the flow became nearly inertial,
but after the coastal front became the boundary front
downstream and subsequently weakened to become
degenerate, the pressure gradient term fluctuated in
the meander region. At meander crests the front was
most extended, the plume thinnest, and so (8D/8Y),
had a least negative value; consequently, the Coriolis
term was ascendant and df;/dX negative. The reverse
was true at meander troughs, so that df/dX was positive
there. Thus, the degenerate front participated in the
oscillations of the meander region.
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