
Multiplication and Squaring on Pairing-Friendly
Fields

Augusto Jun Devegili1?, Colm Ó hÉigeartaigh2, Michael Scott2, and Ricardo
Dahab1

1 Instituto de Computação, Universidade Estadual de Campinas
Caixa Postal 6176

13084-971 Campinas, SP, Brazil
{augusto,rdahab}@ic.unicamp.br

2 School of Computing, Dublin City University
Dublin 9, Ireland

{coheigeartaigh,mike}@computing.dcu.ie

Abstract. Pairing-friendly fields are finite fields that are suitable for
the implementation of cryptographic bilinear pairings. In this paper we
review multiplication and squaring methods for pairing-friendly fields
Fpk with k ∈ {2, 3, 4, 6}. For composite k, we consider every possible
towering construction. We compare the methods to determine which is
most efficient based on the number of basic Fp operations, as well as
the best constructions for these finite extension fields. We also present
experimental results for every method.

Keywords: Finite fields, pairings, efficient implementation.

1 Introduction

In recent years, bilinear pairings have been used to construct new cryptographic
schemes with many novel and exciting properties, such as the one-round, three-
party key agreement protocol of Joux [11] and the identity-based encryption
scheme of Boneh and Franklin [4]. Pairing computation is generally the most
intensive computational requirement in pairing-based schemes, and therefore it
is of paramount importance to implement pairings in an efficient manner.

Pairing-friendly fields were introduced by Koblitz and Menezes [14] as an
efficient way to implement the various finite fields extensions required for pairing-
based cryptography. There are two advantages to constructing finite fields in
this manner. Firstly, they provide for efficient arithmetic, as multiplication by
certain terms that define the field is trivial. Secondly, they allow for an easy
way to analyse the cost of multiplications, something which has been utilised
by various parties ([7, 8, 10]) to conduct a theoretical analysis of the cost of
computing pairings using these fields.
? Funded by the Brazilian Government/Coordination for the Improvement of Higher

Education Personnel (CAPES)

However, these analyses consider that squaring takes as much time or as many
ground field operations as multiplication. Let k = 2i3j be the extension degree of
a pairing-friendly field. Koblitz and Menezes [14] define the function ν(k) = 3i5j

to compute the number of ground field operations needed to multiply two ele-
ments in Fpk — multiplication in a quadratic extension can be computed with
three multiplications in the ground field using Karatsuba, and multiplication in
a cubic extension can be computed with five multiplications in the ground field
using Toom-Cook-3. However, there are situations where Karatsuba is more effi-
cient than Toom-Cook for cubic extensions. Furthermore, squaring in quadratic
extensions needs fewer ground field multiplications. As pairing-friendly fields
have an even extension degree in order to facilitate the denominator elimina-
tion optimisation, there is always at least one quadratic extension. Therefore,
the number of ground field operations for squaring is certainly less than that
provided by the function ν(k).

The contribution of this paper is as follows. In Section 2, we review the
definition of pairing-friendly fields and methods for multiplication and squaring.
In Sections 3, 4, 5, and 6, we analyse methods for multiplication and squaring in
quadratic, cubic, quartic and sextic extensions. In Section 7 and the appendix,
we present our experimental results on the implementation of every method for
multiplication and squaring in the various extension fields, as well as different
constructions for composite extension degrees. We conclude in Section 8, and
provide recommendations on the most efficient methods for each extension field.

2 Pairing-Friendly Fields

When computing pairings, one must construct a representation for the finite field
Fpk , where k is the embedding degree of the curve in question. The finite field
Fpk is implemented as Fp[X]/(f(X)), where f(X) is an irreducible polynomial
of degree k over Fp. Elements of Fpk are represented using the polynomial basis
(1, X,X2, . . . , Xk−1), where X is a root of the irreducible polynomial over Fpk .
Multiplication is computed as a multiplication of polynomials, followed by a
reduction modulo the irreducible polynomial f(X), which can be built into the
formulæ for multiplication.

Koblitz and Menezes [14] define a field Fpk as being pairing-friendly if the
prime characteristic p ≡ 1 (mod 12) and the embedding degree k = 2i3j , i > 0.
Let β be an element of Fp that is neither a square nor a cube in Fp. Then
the binomial Xk − β is irreducible over Fp[X] and hence defines the field Fpk .
Therefore, the field Fpk can be constructed as a series of quadratic and cubic
Kummer extensions by adjoining either the square root or cube root of β, and
successively the square root or cube root of that, until the field is constructed. If
Fpk can be constructed by towering quadratic extensions alone, i.e. if j = 0, then
the condition on the prime p simplifies to p ≡ 1 (mod 4), and β need only be
a non-square in Fp. Note that k = 2i3j supports almost all embedding degrees
used in practise, i.e. k = 2, 4, 6, 8, 12, 24, etc.

2

The advantage of constructing finite fields in this manner is that a small value
of β can be exploited to simplify arithmetic. Multiplication by β is achieved by a
simple reordering of terms and roughly |β| additions, which is far less expensive
than a general multiplication.

As this paper focuses on multiplication and squaring, we recall briefly vari-
ous techniques in the literature (see [2, 13] for an overview) for multiplying two
n-digit integers. The basic Schoolbook multiplication method for multiplying
two n-word integers has complexity O(n2). Karatsuba [12] presented the first
sub-quadratic time multiplication method, which has complexity O(nlg(3)) ≈
O(n1.585). Karatsuba’s method proceeds by splitting the integers into two parts,
and therefore it is natural to consider using it to implement multiplication in
quadratic field extensions. Toom [19] and later Cook [6] extended Karatsuba’s
method by splitting the integers into three parts. The resulting Toom-Cook al-
gorithm has complexity O(n1.46), and can be used to implement multiplication
in a cubic field extension.

Assume Fpk is a direct extension of Fp and an element a ∈ Fpk is represented
as a0 + a1X + · · ·+ ak−1X

k−1. We perform multiplication and squaring of ele-
ments in Fpk as the polynomial multiplication (resp. squaring) in Fp[X] and then
reduction by (Xk − β). The Schoolbook method for multiplying two elements
a, b ∈ Fpk is defined as

c = ab =

(
k−1∑
i=0

aiX
i

)(
k−1∑
i=0

biX
i

)
(mod (Xk − β)),

and the coefficients of c after the reduction by (Xk − β) are

ci =
i∑

j=0

ajbi−j + β

 k−1∑
j=i+1

ajbi−j+k

 (mod p).

The Karatsuba method for computing the product c = ab ∈ Fp2 proceeds by
precomputing v0 = a0b0, v1 = a1b1 and then

c0 = v0 + βv1

c1 = (a0 + a1)(b0 + b1)− v0 − v1.

To compute the product c = ab ∈ Fp3 , the Karatsuba method precomputes
v0 = a0b0, v1 = a1b1, v2 = a2b2 and then

c0 = v0 + β ((a1 + a2)(b1 + b2)− v1 − v2)
c1 = (a0 + a1)(b0 + b1)− v0 − v1 + βv2

c2 = (a0 + a2)(b0 + b2)− v0 + v1 − v2.

Weimerskirch and Paar discuss in [20] the Karatsuba method and its application
to arbitrary degree polynomials.

The Toom-Cook method is based on interpolation: given the evaluation of a
degree-n polynomial at n+1 distinct points, it is possible to uniquely determine

3

it. Before the reduction modulo (Xk−β), the product of two elements a, b ∈ Fpk

is a degree-(2k − 2) polynomial. The Toom-Cook method applied to multiplica-
tion of polynomials is essentially an interpolation: choose a family {xi}0≤i<2k−1

of distinct points in Fp, evaluate the product a(xi)b(xi) ∈ Fp on every point of
the family, and interpolate the evaluation points in order to (uniquely) obtain
the product ab ∈ Fp[X]. Then reduce it modulo (Xk−β) to obtain c = ab ∈ Fpk .

The efficiency of the Toom-Cook method depends on the choice of the points
xi and the method for interpolation, and it is still not clear which yields the most
efficient Toom-Cook implementation. See [3, 5] for a recent discussion on these
issues. In this text, we use the points 0 < xi < k− 2 and their additive inverses,
k − 2, 0, and ∞ for computing the evaluation points: these are the values that
give the least absolute value integers in the formula, and we use the Lagrange
method for interpolation.

The Toom-Cook method needs to compute divisions by integers 2, 3, . . . ,
2(k − 1) [2, 5]. Division by two can be efficiently implemented using bit shifts,
but division by integers greater than two is more costly. Notice that in the context
of pairing computation the pairing value may be freely multiplied by any integer
(in fact, by any element of a proper subfield of Fpk) without affecting the value of
the pairing — the final exponentiation wipes out these factors [1, Corollary 1].
Multiplying the product ab ∈ Fpk by the least common multiple of all the divisors
that appear in the Toom-Cook formulæ avoids all divisions and may be used as
a replacement for the original Toom-Cook in the context of pairing computation.
We call this method Toom-Cook-x.

Other methods for multiplication and squaring in finite extension fields in-
clude the asymmetric squaring formulæ by Chung and Hasan [5], and Mont-
gomery’s improved Karatsuba-like formulæ [17].

Our analysis of the cost for multiplying and squaring elements in finite exten-
sion fields is based on the following operations on the ground field: multiplication
(M), squaring (S), addition or subtraction (A), division by 2 (D2), multiplica-
tion by β (B), and multiplication by small (word-size) integers (MZ). Note that
A, D2, B, MZ are linear on the extension degree, while M and S are super-linear.

Note that it is possible to implement Fpk operations using lazy reduction (or
accumulation and reduction) [9, 15, 18]. In this technique, instead of computing
a modular reduction at every ground field operation, the operands are computed
as integers, accumulated during various operations and later reduced modulo p.
This saves reduction operations at the expense of greater memory requirements,
poor interaction with Montgomery reduction and more additions. We leave lazy
reduction outside the scope of the present work, but it might be worthwhile to
further research this matter.

A remark on multiplication by β: throughout this text, x + βy is costed as
A+B (one addition and one multiplication by β). If β = −2, then x+βy = x−2y,
so the actual cost is 2A. Another example: 2x+βy is costed as 2A+B. Again, if
β = −2, then 2x+βy = 2(x−y), and the actual cost is 2A. Yet another example:
x + βx is costed as A + B. If β = −1, then the actual cost is 0; if β = −2, the
actual cost is A. Depending on the value of β, the actual cost of a formula varies.

4

It is important to bear this is mind while reading the next sections. For the sake
of simplicity, it is possible to assume that B = (|β| − 1) as an approximation.

3 Quadratic extensions

We construct a quadratic extension as Fp2 = Fp[X]/(X2 − β), where β is a
quadratic non-residue in Fp. An element α ∈ Fp2 is represented as α0 + α1X,
where αi ∈ Fp.

The Schoolbook method computes the product c = ab as

c0 = a0b0 + βa1b1

c1 = a0b1 + a1b0,

which costs 4M + 2A + B, and the square c = a2 as

c0 = a2
0 + βa2

1

c1 = 2a0a1,

which takes M + 2S + 2A + B. The Karatsuba method computes c = ab by
first precomputing the values v0 = a0b0, v1 = a1b1. Then the multiplication is
performed as

c0 = v0 + βv1

c1 = (a0 + a1)(b0 + b1)− v0 − v1,

which costs 3M +5A+B in total. Adapting the Karatsuba formula for squaring,
we first precompute v0 = a2

0, v1 = a2
1 and then compute the square c = a2 as

c0 = v0 + βv1

c1 = (a0 + a1)2 − v0 − v1,

which costs 3S + 4A + B. There is a well-known squaring formula for complex
arithmetic3 that computes the square c0 + c1i = (a0 + a1i)2 as

c0 = (a0 + a1)(a0 − a1)
c1 = 2a0a1.

This is actually a special case of a squaring formula that we refer to as complex
squaring. We precompute v0 = a0a1, and then the square c = a2 is computed as

c0 = (a0 + a1)(a0 + βa1)− v0 − βv0

c1 = 2v0,

which takes 2M + 4A + 2B.
3 The arithmetic of complex numbers a + bi where a, b are real numbers and i is the

imaginary square root of −1.

5

Tables 1 and 2 list the multiplication and squaring costs of the methods
above, and the conditions where one method is faster than the others. For suf-
ficiently large moduli, Karatsuba is the most efficient multiplication method.
Under the assumption that a modular squaring in Fp takes approximately the
same time as modular multiplication in Fp, complex squaring is the most efficient
method.

Table 1. Summary of multiplication costs for Fp2

Fp2 Method > Linear Linear

Schoolbook 4M 2A + B

Karatsuba 3M 5A + B

Table 2. Summary of squaring costs for Fp2

Fp2 Method > Linear Linear

Schoolbook M + 2S 2A + B

Karatsuba 3S 4A + 2B

Complex 2M 4A + 2B

4 Cubic extensions

We construct a cubic extension as Fp3 = Fp[X]/(X3 − β), where β is a cubic
non-residue in Fp. An element α ∈ Fp3 is represented as α0+α1X +α2X

2, where
αi ∈ Fp.

The Schoolbook method computes the product c = ab as

c0 = a0b0 + β(a1b2 + a2b1)
c1 = a0b1 + a1b0 + βa2b2

c2 = a0b2 + a1b1 + a2b0,

which takes 9M + 6A + 2B, and the square c = a2 as

c0 = a2
0 + 2βa1a2

c1 = 2a0a1 + βa2
2

c2 = a2
1 + 2a0a2,

which costs 3M + 3S + 6A + 2B. The Karatsuba method for computing the
product c = ab starts by precomputing the values v0 = a0b0, v1 = a1b1, v2 =

6

a2b2, which costs 3M . Then the multiplication is performed as

c0 = v0 + β((a1 + a2)(b1 + b2)− v1 − v2)
c1 = (a0 + a1)(b0 + b1)− v0 − v1 + βv2

c2 = (a0 + a2)(b0 + b2)− v0 + v1 − v2,

which takes 3M + 15A + 2B, for a total of 6M + 13A + 2B. Adapting the
Karatsuba formula to compute the square c = a2, we precompute the values
v0 = a2

0, v1 = a2
1, v2 = a2

2, which costs 3S. Then the squaring is performed as

c0 = v0 + β((a1 + a2)2 − v1 − v2)
c1 = (a0 + a1)2 − v0 − v1 + βv2

c2 = (a0 + a2)2 − v0 + v1 − v2,

which takes 3S + 12A + 2B, for a total of 6S + 13A + 2B. The Toom-Cook-3
method starts by computing five interpolation points – these are evaluations of
the product a(X)b(X) with X ∈ {0,±1, 2,∞}:

v0 = a(0)b(0) = a0b0

v1 = a(1)b(1) = (a0 + a1 + a2)(b0 + b1 + b2)
v2 = a(−1)b(−1) = (a0 − a1 + a2)(b0 − b1 + b2)
v3 = a(2)b(2) = (a0 + 2a1 + 4a2)(b0 + 2b1 + 4b2)
v4 = a(∞)b(∞) = a2b2,

which costs 5M + 14A. Notice that for squaring the interpolation points are
computed as

v0 = a(0)2 = a2
0

v1 = a(1)2 = (a0 + a1 + a2)2

v2 = a(−1)2 = (a0 − a1 + a2)2

v3 = a(2)2 = (a0 + 2a1 + 4a2)2

v4 = a(∞)2 = a2
2,

which takes 5S + 7A. Then the interpolation is performed as

c0 = v0 + β((1/2)v0 − (1/2)v1 − (1/6)v2 + (1/6)v3 − 2v4)
c1 = −(1/2)v0 + v1 − (1/3)v2 − (1/6)v3 + 2v4 + βv4

c2 = −v0 + (1/2)v1 + (1/2)v2 − v4.

If we compute the product c = 6ab, we remove all the divisions needed by
Toom-Cook-3. Precomputation is the same as in Toom-Cook-3, and the inter-
polation is performed as

c0 = 6v0 + β(3v0 − 3v1 − v2 + v3 − 12v4)
c1 = −3v0 + 6v1 − 2v2 − v3 + 12v4 + 6βv4

c2 = −6v0 + 3v1 + 3v2 − 6v4.

7

Considering that additions chains are faster than multiplication by the coeffi-
cients in the formula, we can compute the product c = 6ab using Toom-Cook-3x
with cost 5M + 40A + 2B. If β = −2, then the cost is reduced to 5M + 35A.

Chung and Hasan [5] have recently derived three asymmetric squaring for-
mulæ for degree-2 polynomials. For the first formula (CH-SQR1), we first pre-
compute the values

s0 = a2
0

s1 = 2a0a1

s2 = (a0 + a1 − a2)(a0 − a1 − a2)
s3 = 2a1a2

s4 = a2
2,

which costs 3M + 2S + 5A. Then the squaring is computed as

c0 = s0 + βs3

c1 = s1 + βs4

c2 = s1 + s2 + s3 − s0 − s4,

which costs 6A+2B, giving a total cost of 3M +2S +11A+2B. For the second
formula (CH-SQR2), we first precompute the values

s0 = a2
0

s1 = 2a0a1

s2 = (a0 − a1 + a2)2

s3 = 2a1a2

s4 = a2
2,

which costs 2M + 3S + 4A. Then the squaring is computed as

c0 = s0 + βs3

c1 = s1 + βs4

c2 = s1 + s2 + s3 − s0 − s4,

which costs 6A + 2B, giving a total cost of 2M + 3S + 10A + 2B. For the third
formula (CH-SQR3), we first precompute the values

s0 = a2
0

s1 = (a0 + a1 + a2)2

s2 = (a0 − a1 + a2)2

s3 = 2a1a2

s4 = a2
2

t1 = (s1 + s2)/2,

8

which costs 1M + 4S + 5A + 1D2, where D2 denotes a division by 2. Then the
squaring is computed as

c0 = s0 + βs3

c1 = s1 − s3 − t1 + βs4

c2 = t1 − s0 − s4,

which costs 6A + 2B, giving a total cost of 1M + 4S + 11A + 2B + 1D2. As
with Toom-Cook, we can compute the square c = 2a2 to avoid divisions in the
CH-SQR3 formula. We precompute s0, s1, s2, s3, s4 as in CH-SQR3, which costs
1M + 4S + 4A. Then the square is computed as

c0 = 2s0 + 2βs3

c1 = s1 − s2 − 2s3 + 2βs4

c2 = −2s0 + s1 + s2 − 2s4,

which costs 10A + 2B, for a total cost of 1M + 4S + 14A + 2B.
Table 3 lists the multiplicative costs of each of these methods, and the con-

ditions where each method is faster than the others. With five multiplications,
Toom-Cook-3x is the most efficient method for multiplication in cubic extensions
for sufficiently large moduli.

Table 3. Summary of multiplicative costs for cubic extensions

Method > Linear Linear

Schoolbook 9M 6A + 2B

Karatsuba 6M 13A + 2B

Toom-Cook-3x 5M 33A + 2B

Table 4. Summary of squaring costs for cubic extensions

Method > Linear Linear

Schoolbook 3M + 3S 6A + 2B

Karatsuba 6S 13A + 2B

Toom-Cook-3x 5S 33A + 2B

CH-SQR1 3M + 2S 11A + 2B

CH-SQR2 2M + 3S 10A + 2B

CH-SQR3 1M + 4S 11A + 2B + 1D2

CH-SQR3x 1M + 4S 14A + 2B

9

5 Quartic extensions

We consider two possibilities for building a quartic extension: quadratic over
quadratic and direct quartic.

5.1 Quadratic over quadratic

We construct a quartic extension as Fp4 = Fp2 [Y]/(Y 2 − γ), where γ =
√

β is a
quadratic non-residue in Fp2 . An element α ∈ Fp4 is represented as α0 + α1Y ,
where αi ∈ Fp2 .

Multiplication and squaring can be computed with the same methods for
quadratic extensions described in Section 3, replacing multiplication by β with
multiplication by γ. Notice that β ∈ Fp and γ ∈ Fp2 . In fact, γ is represented by
0 + 1X = X, and the product b = γa, with a = a0 + a1Y and ai = ai,0 + ai,1X,
is computed as

bi = γai

= X(ai,0 + ai,1X)
= βai,1 + ai,0X,

amounting to four permutations and two multiplications by β.
The corresponding costs based on Fp operations depend on the choice of

multiplication methods for the (bottom) quadratic extension field. Table 5 shows
the multiplicative costs for Fp4 as a quadratic over quadratic, and Table 6 shows
the squaring costs.

Table 5. Summary of multiplicative costs for quartic extensions as quadratic over
quadratic

Fp4 method Schoolbook Karatsuba

Fp2 method > Linear Linear > Linear Linear

Schoolbook 16M 12A + 5B 12M 16A + 4B

Karatsuba 12M 24A + 5B 9M 25A + 4B

Table 6. Summary of squaring costs for quartic extensions as quadratic over quadratic

Fp4 method Schoolbook Karatsuba Complex

Fp2 method > Linear Linear > Linear Linear > Linear Linear

Schoolbook 6M + 4S 10A + 4B 3M + 6S 14A + 5B 8M 12A + 4B

Karatsuba 3M + 6S 17A + 6B 9S 20A + 8B 6M 18A + 4B

Karatsuba/Complex 7M 17A + 6B 6M 20A + 8B

10

5.2 Direct quartic

We construct a quartic extension as Fp4 = Fp[X]/(X4−β), where β is a quartic
non-residue in Fp. An element α ∈ Fp4 is represented as α0+α1X+α2X

2+α3X
3,

where αi ∈ Fp.
The Schoolbook method computes the product c = ab as

c0 = a0b0 + β(a1b3 + a2b2 + a3b1)
c1 = a0b1 + a1b0 + β(a2b3 + a3b2)
c2 = a0b2 + a1b1 + a2b0 + βa3b3

c3 = a0b3 + a1b2 + a2b1 + a3b0,

which costs 16M + 12A + 3B, and the square c = a2 as

c0 = a2
0 + β(2a1a3 + a2

2)
c1 = 2(a0a1 + βa2a3)
c2 = 2a0a2 + a2

1 + βa2
3

c3 = 2(a0a3 + a1a2),

which costs 6M + 4S + 10A + 3B.
For the Toom-Cook-4 method, we define the set of points P = {0,±1,±2, 3,∞}

and we precompute the following evaluation points for multiplication:

v0 = a(0)b(0) = a0b0

v1 = a(1)b(1) = (a0 + a1 + a2 + a3)(b0 + b1 + b2 + b3)
v2 = a(−1)b(−1) = (a0 − a1 + a2 − a3)(b0 − b1 + b2 − b3)
v3 = a(2)b(2) = (a0 + 2a1 + 4a2 + 8a3)(b0 + 2b1 + 4b2 + 8b3)
v4 = a(−2)b(−2) = (a0 − 2a1 + 4a2 − 8a3)(b0 − 2b1 + 4b2 − 8b3)
v5 = a(3)b(3) = (a0 + 3a1 + 9a2 + 27a3)(b0 + 3b1 + 9b2 + 27b3)
v6 = a(∞)b(∞) = a3b3,

which costs 7M + 44A, and the following evaluation points for squaring:

v0 = a(0)2 = a2
0

v1 = a(1)2 = (a0 + a1 + a2 + a3)2

v2 = a(−1)2 = (a0 − a1 + a2 − a3)2

v3 = a(2)2 = (a0 + 2a1 + 4a2 + 8a3)2

v4 = a(−2)2 = (a0 − 2a1 + 4a2 − 8a3)2

v5 = a(3)2 = (a0 + 3a1 + 9a2 + 27a3)2

v6 = a(∞)2 = a2
3,

11

which costs 7S + 22A. The interpolation is performed as

c0 = v0 + β((1/4)v0 − (1/6)(v1 + v2) + (1/24)(v3 + v4)− 5v6)
c1 = −(1/3)v0 + v1 − (1/2)v2 − (1/4)v3 + (1/20)v4 + (1/30)v5 − 12v6

+ β(−(1/12)(v0 − v1) + (1/24)(v2 − v3)− (1/120)(v4 − v5)− 3v6)
c2 = −(5/4)v0 + (2/3)(v1 + v2)− (1/24)(v3 + v4) + 4v6 + βv6

c3 = (1/12)(5v0 − 7v1)− (1/24)(v2 − 7v3 + v4 + v5) + 15v6.

If we compute c = 120ab we eliminate all the divisions needed by the Toom-
Cook-4 method:

c0 = 120v0 + β(30v0 − 20(v1 + v2) + 5(v3 + v4)− 600v6)
c1 = −40v0 + 120v1 − 60v2 − 30v3 + 6v4 + 4v5 − 1440v6

+ β(−10(v0 − v1) + 5(v2 − v3)− v4 + v5 − 360v6)
c2 = −150v0 + 80(v1 + v2)− 5(v3 + v4) + 480v6 + 120βv6

c3 = 10(5v0 − 7v1)− 5(v2 − 7v3 + v4 + v5) + 1800v6,

which costs 23MZ + 32A + 3B. Then the total cost for Toom-Cook-4x multipli-
cation is 7M +23MZ +76A+3B, and the total cost for Toom-Cook-4x squaring
is 7S + 23MZ + 54A + 3B.

Table 7 shows the multiplicative costs for direct quartic extensions, and Ta-
ble 8 shows the squaring costs for direct quartic extensions.

Table 7. Summary of multiplicative costs for quartic extensions as direct quartic

> Linear Linear

Schoolbook 16M 12A + 3B

Toom-Cook-4x 7M 23MZ + 76A + 3B

Table 8. Summary of squaring costs for quartic extensions as direct quartic

> Linear Linear

Schoolbook 6M + 4S 10A + 3B

Toom-Cook-4x 7S 23MZ + 54A + 3B

5.3 Isomorphism between the representations

Let a ∈ Fp4 be an element in the representation of the field as a quadratic over
quadratic, and let b ∈ Fp4 be an element in the representation of the field as a

12

direct quartic extension. We can write a, b as

a = (a0,0 + a0,1

√
β) + (a1,0 + a1,1

√
β) 4
√

β

= a0,0 + a0,1

√
β + a1,0

4
√

β + a1,1
4
√

β3

b = b0 + b1
4
√

β + b2

√
β + b3

4
√

β3,

so the isomorphism between the representations is efficiently computed by the
permutation [

a0,0 a0,1 a1,0 a1,1

b0 b2 b1 b3

]
.

6 Sextic extensions

We consider three possibilities for building a sextic extension: quadratic over
cubic, cubic over quadratic and direct sextic.

6.1 Quadratic over cubic

We build Fp6 as Fp3 [Y]/(Y 2 − γ), where Fp3 = Fp[X]/(X3 − β), β is a cubic
non-residue in Fp and γ = 3

√
β is a quadratic non-residue in Fp3 . An element

α ∈ Fp6 is represented as α0 + α1Y , where αi ∈ Fp3 .
Multiplication and squaring can be computed with the same methods for

quadratic extensions described in Section 3, replacing multiplication by β with
multiplication by γ. Notice that β ∈ Fp and γ ∈ Fp3 . In fact, γ is represented
by 0 + 1X + 0X2 = X, and the product b = γa, with a = a0 + a1Y and
ai = ai,0 + ai,1X + ai,2X

2, is computed as

bi = γai

= X(ai,0 + ai,1X + ai,2X
2)

= βai,2 + ai,0X + ai,1X
2,

amounting to six permutations and two multiplications by β. The corresponding
costs based on Fp operations depend on the choice of multiplication methods
for the cubic extension field. Table 9 shows the multiplicative costs for Fp6 as a
quadratic over cubic, and Table 10 shows the squaring costs for Fp6 as a quadratic
over cubic.

6.2 Cubic over quadratic

We construct Fp2 = Fp[X]/(X2 − β) and Fp6 = Fp2 [Y]/(Y 3 − γ), where β is
a quadratic non-residue in Fp and γ =

√
β is a cubic non-residue in Fp2 . An

element α ∈ Fp6 is represented as α0 + α1Y + α2Y
2, where αi ∈ Fp2 .

13

Table 9. Summary of multiplicative costs for sextic extensions as quadratic over cubic

Fp6 method Schoolbook Karatsuba

Fp3 method > Linear Linear > Linear Linear

Schoolbook 36M 30A + 9B 27M 33A + 7B

Karatsuba 24M 58A + 9B 18M 54A + 7B

Toom-Cook-3x 20M 138A + 9B 15M 114A + 7B

Table 10. Summary of squaring costs for sextic extensions as quadratic over cubic

Fp6 method Schoolbook Karatsuba

Fp3 method > Linear Linear > Linear Linear

Schoolbook 15M + 6S 24A + 7B 9M + 9S 30A + 8B

Karatsuba 6M + 12S 45A + 7B 18S 51A + 8B

Karatsuba/CH-SQR1 12M + 4S 41A + 7B 9M + 6S 45A + 8B

Karatsuba/CH-SQR2 10M + 6S 39A + 7B 6M + 9S 42A + 8B

Karatsuba/CH-SQR3 8M + 8S 41A + 7B + 2D2 3M + 12S 45A + 8B + 3D2

Karatsuba/CH-SQR3x 8M + 8S 47A + 7B 3M + 12S 54A + 8B

Toom-Cook-3x 5M + 10S 105A + 7B 15S 111A + 8B

Complex

> Linear Linear

Schoolbook 18M 24A + 6B

Karatsuba 12M 38A + 6B

Toom-Cook-3x 10M 78A + 6B

Multiplication and squaring can be computed with the same methods for
cubic extensions described in Section 4, replacing multiplication by β with mul-
tiplication by γ. Notice that β ∈ Fp and γ ∈ Fp2 . In fact, γ is represented
by 0 + 1X = X, and the product b = γa, with a = a0 + a1Y + a2Y

2 and
ai = ai,0 + ai,1X, is computed as

bi = γai

= X(ai,0 + ai,1X)
= βai,1 + ai,0X,

amounting to permutations and three multiplications by β.

The corresponding costs based on Fp operations depend on the choice of
multiplication and squaring methods for the quadratic extension field. Table 11
shows the multiplicative costs for Fp6 as a cubic over quadratic, and Table 12
shows the squaring costs for Fp6 as a cubic over quadratic.

14

Table 11. Summary of multiplicative costs for sextic extensions as cubic over quadratic

Fp2 method Schoolbook Karatsuba

Fp6 method > Linear Linear > Linear Linear

Schoolbook 36M 30A + 11B 27M 57A + 11B

Karatsuba 24M 38A + 8B 18M 56A + 8B

Toom-Cook-3x 20M 76A + 7B 15M 91A + 7B

Table 12. Summary of squaring costs for sextic extensions as cubic over quadratic

Fp2 method Schoolbook Karatsuba

Fp6 method > Linear Linear > Linear Linear

Schoolbook 15M + 6S 24A + 8B 9M + 9S 39A + 11B

Karatsuba 6M + 12S 38A + 8B 18S 50A + 14B

Toom-Cook-3x 5M + 10S 76A + 7B 15S 86A + 12B

CH-SQR1 14M + 4S 32A + 7B 9M + 6S 45A + 9B

CH-SQR2 11M + 6S 30A + 7B 6M + 9S 42A + 10B

CH-SQR3 8M + 8S 32A + 7B + 2D2 3M + 12S 43A + 11B + 2D2

CH-SQR3x 8M + 8S 38A + 7B 3M + 12S 49A + 11B

Karatsuba/Complex

> Linear Linear

Schoolbook 15M 39A + 11B

Karatsuba 12M 50A + 14B

Toom-Cook-3x 10M 86A + 12B

CH-SQR1 13M 45A + 9B

CH-SQR2 12M 42A + 10B

CH-SQR3 11M 43A + 11B + 2D2

CH-SQR3x 11M 49A + 11B

6.3 Direct sextic

We construct Fp6 as Fp[X]/(X6 − β), where β is both a quadratic and cubic
non-residue in Fp. An element α ∈ Fp6 is represented as α0 + α1X + α2X

2 +
α3X

3 + α4X
4 + α5X

5, where αi ∈ Fp.
The Schoolbook method computes the product c = ab as

c0 = a0b0 + β(a1b5 + a2b4 + a3b3 + a4b2 + a5b1)
c1 = a0b1 + a1b0 + β(a2b5 + a3b4 + a4b3 + a5b2)
c2 = a0b2 + a1b1 + a2b0 + β(a3b5 + a4b4 + a5b3)
c3 = a0b3 + a1b2 + a2b1 + a3b0 + β(a4b5 + a5b4)
c4 = a0b4 + a1b3 + a2b2 + a3b1 + a4b0 + βa5b5

c5 = a0b5 + a1b4 + a2b3 + a3b2 + a4b1 + a5b0,

15

thus requiring 36M + 30A + 5B, and the square c = a2 as

c0 = a2
0 + β(2(a1a5 + a2a4) + a2

3)
c1 = 2(a0a1 + β(a2a5 + a3a4))
c2 = 2a0a2 + a2

1 + β(2a3a5 + a2
4)

c3 = 2(a0a3 + a1a2 + βa4a5)
c4 = 2(a0a4 + a1a3) + a2

2 + βa2
5

c5 = 2(a0a5 + a1a4 + a2a3),

which costs 15M + 6S + 22A + 5B.
Montgomery in [17] presented a formula for multiplying quintic polynomials

that needs one less multiplication than Karatsuba. The formula depends on the
choice of a polynomial C; we have arbitrarily chosen C = X6. For the sake
of space, the detailed formula is presented in the appendix. The total cost for
multiplication is 17M + 143A + 5B, and the total cost for squaring is 17S +
123A + 5B.

We proceed to analyse the Toom-Cook method for sextic extensions. The
xi points for evaluation are {0,±1,±2,±3,±4, 5,∞}. The first step is to pre-
compute the interpolation points vi = a(Pi)b(Pi), 0 ≤ i ≤ 10. Notice that, in
absolute value, 5 is the biggest evaluation point. As a, b are quintic polynomials,
the biggest coefficient is 55 = 3125. If we use addition chains to compute the
coefficients of a(Pi), b(Pi) except for 81, 243, 625 and 3125, where we use mul-
tiplication by (small) integers, the cost of computing the interpolation points is
11M + 8MZ + 146A for multiplication, and 11S + 4MZ + 73A for squaring. The
interpolation formula is listed in the appendix. As in the case of cubic exten-
sions, we compute the product c = 362880ab (or the square c = 362880a2) in
order to completely avoid divisions, and the formula is listed in the appendix.
Because the vast majority of the coefficients in the formula are too big to be
considered for addition chains, we compute them as multiplication by small in-
tegers. The cost for the interpolation is 75MZ + 90A + 5B. The total cost for
multiplication is 11M + 93MZ + 236A + 5B, and the total cost for squaring is
11S + 79MZ + 163A + 5B.

Tables 13 and 14 summarise the costs of multiplication and squaring in Fp6

as direct sextic extensions.

Table 13. Summary of multiplicative costs for direct sextic extensions

> Linear Linear

Schoolbook 36M 30A + 5B

Montgomery 17M 143A + 5B

Toom-Cook-6x 11M 93MZ + 236A + 5B

16

Table 14. Summary of squaring costs for direct sextic extensions

> Linear Linear

Schoolbook 15M + 6S 22A + 5B

Montgomery 17S 123A + 5B

Toom-Cook-6x 11S 79MZ + 163A + 5B

6.4 Isomorphisms among the representations

Let a ∈ Fp6 be an element in the representation of the field as a quadratic over
cubic, let b ∈ Fp6 be an element in the representation of the field as a cubic over
quadratic, and let c ∈ Fp6 be an element in the representation of the field as a
direct sextic extension. We can write a, b, c as

a = (a0,0 + a0,1
3
√

β + a0,2
3
√

β2) + (a1,0 + a1,1
3
√

β + a1,2
3
√

β2) 6
√

β

= a0,0 + a0,1
3
√

β + a0,2
3
√

β2 + a1,0
6
√

β + a1,1

√
β + a1,2

6
√

β5,

b = (b0,0 + b0,1

√
β) + (b1,0 + b1,1

√
β) 6
√

β + (b2,0 + b2,1

√
β) 3
√

β

= b0,0 + b0,1

√
β + b1,0

6
√

β + b1,1
3
√

β2 + b2,0
3
√

β + b2,1
6
√

β5,

c = c0 + c1
6
√

β + c2
3
√

β + c3

√
β + c4

3
√

β2 + c5
6
√

β5,

so the isomorphisms among the representations are efficiently computed by the
following permutations a0,0 a0,1 a0,2 a1,0 a1,1 a1,2

b0,0 b2,0 b1,1 b1,0 b0,1 b2,1

c0 c2 c4 c1 c3 c5

 .

7 Timings

The performance of multiplication and squaring was measured on a Pentium IV
2.8 GHz with 512 MB of RAM and a 512 KB cache, running GNU/Linux 2.6.15.
We have used the MIRACL library for big number and modular arithmetic. Pro-
grams were coded in C and compiled with the GNU C Compiler version 4.1.2
(prerelease). Standard compiler (-O2) and IA-32/Intel SSE2 (-msse2) optimisa-
tions were used.

The MIRACL library implements multi-precision number arithmetic, and
supports a number of powerful optional optimizations. In particular it supports
completely unrolled assembly language support for fixed-size big number multi-
plication and modular reduction. Internally, prime field elements are in Mont-
gomery representation [16], which allows for fast reduction without divisions.
The memory for big numbers can be allocated from the heap, or more efficiently
from the stack, which is the case for our experiments. When required to multiply

17

big numbers by a small integer, multiplications by numbers less than or equal
to 6 are instead carried out by up to 3 modular additions.

The pairing-friendly fields were constructed as follows. We generated five
random primes pi where β = −2 is both a quadratic and cubic non-residue in
Fpi , and dlog2 pie ∈ {160, 192, 224, 256, 512}.

We constructed the extensions with degree k ∈ {2, 3, 4, 6} as:

Fp2 = Fp[X]/(X2 + 2) (quadratic)
Fp3 = Fp[X]/(X3 + 2) (cubic)

Fp4 = Fp2 [Y]/(Y 2 −
√
−2) (quadratic over quadratic)

Fp4 = Fp[X]/(X4 + 2) (direct quartic)

Fp6 = Fp3 [Y]/(Y 2 − 3
√
−2) (quadratic over cubic)

Fp6 = Fp2 [Y]/(Y 3 −
√
−2) (cubic over quadratic)

Fp6 = Fp[X]/(X6 + 2) (direct sextic).

We implemented all the methods described in this paper; for extension towers,
we implemented all the possible combinations. Methods that use divisions, such
as CH-SQR3 and Toom-Cook-3, were implemented without divisions; instead,
we multiplied the result by the least common multiple of the denominators as
described in Section 2.

The timing method for multiplication starts by generating two random field
elements a, b ∈ Fq and then computes a ← ab repeatedly. For squaring, the
method generates random a ∈ Fq and then computes a ← a2 repeatedly. Each
timing program was run several times in order to ensure randomness.

Timings are presented in the Appendix. Tables 15, 16, 17, 18, 19, 21, 22,
23 show the absolute timings for each method and field. The fastest method is
highlighted with a star symbol, and other methods that are not more than 10%
slower than the fastest method are highlighted with an equal sign. Tables 20, 24
summarise the methods that have the best performance for k = 4, 6 among the
different construction possibilities.

8 Conclusion

We analysed different multiplication and squaring methods for finite extension
fields Fpk with k ∈ {2, 3, 4, 6}, detailing the cost of each method with regard to
operations in Fp. We also timed every method using the MIRACL library and
primes p with bitlengths 160, 192, 224, 256, and 512.

Our first observation is a comparison about the time to compute a product
and the time to compute a square. If we consider only the super-linear operations
on the ground field, squaring costs 1M less than multiplication in Fp2 , 3M less
in Fp4 , and 5M less in Fp6 . Our experimental results show that multiplication in
these fields is about 40% slower than squaring. In Miller’s algorithm to compute
the Tate pairing, the accumulating variable that is defined over Fpk is normally
squared each iteration of the loop, leading to a large amount of squarings in

18

total. It is therefore important, when analysing the cost of pairing computation,
to make a clear distinction between multiplication and squaring, a distinction
that has been neglected in some analyses [7, 8, 10, 14].

A second observation is that, for composite k, constructing Fpk as a high
tower of extensions seems to yield the most efficient implementations for multi-
plication and squaring. There are very efficient formulæ for quadratic and cubic
extensions, but not for higher degrees. Our best multiplication and squaring
timings for Fp6 were obtained in the quadratic over cubic construction.

Another observation is that Toom-Cook is the method that asymptotically
requires the least number of multiplication or squarings in the underlying field.
However, both the computation of the evaluation points and the interpolation
incur a number of additions and multiplications by word-size integers, as well as
divisions, that result in an inefficient method. Toom-Cook-3 is an exception: its
formula is simple and requires only one division by 3. Montgomery has presented
formulæ that use less multiplication operations than a recursive application of
Karatsuba, but the overhead of his method when applied to finite extension
fields make it less efficient.

We also point out the recent development of efficient formulæ for squaring
by Chung and Hasan [5], Montgomery’s work on improving the number of mul-
tiplications required by Karatsuba [17], and the investigation of Bodrato and
Zanoni on efficient ways to compute Toom-Cook [3]. They have used computer-
assisted techniques to improve standard multiplication and squaring formulæ,
and it is quite possible that there will be further improvements on methods for
multiplication and squaring in the future.

Our final observation is a set of recommendations on the most efficient meth-
ods for each extension degree. For quadratic extensions, use Karatsuba for mul-
tiplication and Complex for squaring. For cubic extensions, if M < 26A then use
Karatsuba for multiplication; otherwise, use Toom-Cook-3x. For squaring, either
Chung-Hasan SQR1 or SQR2. For quartic extensions, construct the extension as
quadratic over quadratic, and use Karatsuba over Karatsuba for multiplication
and Complex over Karatsuba for squaring. For sextic extensions, if M < 20A,
construct the extension as quadratic over cubic, use Karatsuba over Karatsuba
for multiplication, and use Complex over Karatsuba for squaring. If M ≥ 20A,
construct the extension as cubic over quadratic, use Toom-Cook-3x over Karat-
suba for multiplication and either Complex, Chung-Hasan SQR3 or SQR3x over
Karatsuba/Complex for squaring. Whenever it is necessary to map between dif-
ferent finite extension field constructions, there are very efficient isomorphisms
available.

References

1. P. S. L. M. Barreto, B. Lynn, and M. Scott. Efficient Implementation of Pairing-
Based Cryptosystems. Journal of Cryptology, 17(4):321–334, 2004.

2. Daniel J. Bernstein. Multidigit Multiplication for Mathematicians, 2001. Available
from http://cr.yp.to/arith.html#m3.

19

3. Marco Bodrato and Alberto Zanoni. What About Toom-Cook Matrices Optimal-
ity? Technical Report 605, Centro Interdipartimentale Vito Volterra - Univer-
sità di Roma “Tor Vergata”, 2006. Available from http://bodrato.it/papers/

#CIVV2006.
4. D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing.

SIAM Journal of Computing, 32(3):586–615, 2003.
5. Jaewook Chung and M. Anwar Hasan. Asymmetric squaring formulae. Technical

Report CACR 2006-24, CACR, Univ. of Waterloo, 2006. http://www.cacr.math.
uwaterloo.ca/techreports/2006/cacr2006-24.pdf.

6. S. A. Cook. On the Minimum Computation Time of Functions. PhD Thesis,
Harvard University Department of Mathematics, 1966.

7. R. Granger, D. Page, and N. P. Smart. High Security Pairing-Based Cryptography
Revisited. In Algorithmic Number Theory Symposium – ANTS VII, volume 4076
of Lecture Notes in Computer Science, pages 480–494. Springer-Verlag, 2006.

8. R. Granger and N. P. Smart. On Computing Products of Pairings. Cryptology
ePrint Archive, Report 2006/172, 2006. http://eprint.iacr.org/2006/172.

9. Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to Elliptic Curve
Cryptography. Springer, New York, 2004.

10. F. Hess, N. P. Smart, and F. Vercauteren. The Eta Pairing Revisited. IEEE
Transactions on Information Theory, 52(10):4595–4602, 2006.

11. A. Joux. A One-Round Protocol for Tripartite Diffie-Hellman. In Algorithmic
Number Theory Symposium – ANTS IV, volume 1838 of Lecture Notes in Computer
Science, pages 385–394. Springer-Verlag, 2000.

12. A. A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers on Au-
tomata. Soviet Physics Doklady, 7:595–596, 1963.

13. D. E. Knuth. The Art of Computer Programming, volume 2, Seminumerical Algo-
rithms, 3rd edition. Addision-Wesley, 1998.

14. N. Koblitz and A. Menezes. Pairing-Based Cryptography at High Security Lev-
els. In Cryptography and Coding – IMA 2005, volume 3796 of Lecture Notes in
Computer Science, pages 13–36. Springer-Verlag, 2005.

15. Chae Hoon Lim and Hyo Sun Hwang. Fast Implementation of Elliptic Curve
Arithmetic in GF (pn). In PKC 2000, number 1751 in LNCS, pages 405–421,
Berlin Heidelberg, 2000. Springer-Verlag.

16. Peter L. Montgomery. Modular Multiplication Without Trial Division. Mathemat-
ics of Computation, 44(170):519–521, April 1985.

17. Peter L. Montgomery. Five, six, and seven-term Karatsuba-like formulae. IEEE
Transactions on Computers, 54(3):362–369, 2005.

18. Michael Scott. Implementing Cryptographic Pairings. preprint, 2006. ftp://ftp.
computing.dcu.ie/pub/resources/crypto/pairings.pdf.

19. A. L. Toom. The Complexity of a Scheme of Functional Elements realizing the
Multiplication of Integers. Soviet Mathematics, 4(3):714–716, 1963.

20. André Weimerskirch and Christof Paar. Generalizations of the Karatsuba Algo-
rithm for Efficient Implementations. Cryptology ePrint Archive, Report 2006/224,
2006. Available from http://eprint.iacr.org/.

A Appendix

A.1 Montgomery-6

Montgomery in [17] presented a formula for multiplying quintic polynomials that
needs one less multiplication than Karatsuba. The formula depends on the choice

20

of a polynomial C; we have arbitrarily chosen C = X6. We start by computing
the 17 ground field products as follows (note that v1 is omitted because of our
choice of C):

v0 = (a0 + a1 + a2 + a3 + a4 + a5)(b0 + b1 + b2 + b3 + b4 + b5)
v2 = (a0 + a1 + a3 + a4)(b0 + b1 + b3 + b4)
v3 = (a0 − a2 − a3 + a5)(b0 − b2 − b3 + b5)
v4 = (a0 − a2 − a5)(b0 − b2 − b5)
v5 = (a0 + a3 − a5)(b0 + b3 − b5)
v6 = (a0 + a1 + a2)(b0 + b1 + b2)
v7 = (a3 + a4 + a5)(b3 + b4 + b5)
v8 = (a2 + a3)(b2 + b3)
v9 = (a1 − a4)(b1 − b4)

v10 = (a1 + a2)(b1 + b2)
v11 = (a3 + a4)(b3 + b4)
v12 = (a0 + a1)(b0 + b1)
v13 = (a4 + a5)(b4 + b5)
v14 = a0b0

v15 = a1b1

v16 = a4b4

v17 = a5b5,

21

which costs 17M + 40A. To compute the square c = a2, we compute vi as

v0 = (a0 + a1 + a2 + a3 + a4 + a5)2

v2 = (a0 + a1 + a3 + a4)2

v3 = (a0 − a2 − a3 + a5)2

v4 = (a0 − a2 − a5)2

v5 = (a0 + a3 − a5)2

v6 = (a0 + a1 + a2)2

v7 = (a3 + a4 + a5)2

v8 = (a2 + a3)2

v9 = (a1 − a4)2

v10 = (a1 + a2)2

v11 = (a3 + a4)2

v12 = (a0 + a1)2

v13 = (a4 + a5)2

v14 = a2
0

v15 = a2
1

v16 = a2
4

v17 = a2
5,

which costs 17S + 20A. The product (or squaring) is computed as

c0 = v14 + β(v0 − v2 + 2v3 + v4 + 2v5 + 2v6 + 3v7 − 3v8 − 3v10 − 3v11 − 2v12

− 4v13 − 5v14 + 3v15 + 4v16 − 5v17)
c1 = v12 − v14 − v15 + β(−v3 − v5 − v6 − 2v7 + v8 + v10 + 3v11 + v12 + 2v13

+ 2v14 − v15 − 3v16 + 2v17)
c2 = v6 − v10 − v12 + 2v15 + β(v7 − v11 − v13 + 2v16)
c3 = −v3 − v4 − 2v6 − v7 + v8 + 3v10 + v11 + 2v12 + v13 + 2v14 − 3v15 − v16

+ 2v17 + β(v13 − v16 − v17)
c4 = v2 + v3 + v4 + 2v6 + v7 − v8 + v9 − 2v10 − 2v11 − 3v12 − v13 − 2v14 + v15

− 2v17 + βv17

c5 = −v3 − v4 − v5 − 2v6 − 2v7 + 2v8 − v9 + 2v10 + 2v11 + 2v12 + 2v13 + 3v14

− v15 − v16 + 3v17,

which requires 103A+5B. Then the total cost for multiplication is 17M +143A+
5B, and the total cost for squaring is 17S + 123A + 5B.

A.2 Toom-Cook-6x

We proceed to analyse the Toom-Cook method for sextic extensions. The xi

points for evaluation are {0,±1,±2,±3,±4, 5,∞}. The first step is to precom-
pute the interpolation points vi = a(Pi)b(Pi), 0 ≤ i ≤ 10. Notice that, in

22

absolute value, 5 is the biggest evaluation point. As a, b are quintic polynomials,
the biggest coefficient is 55 = 3125. If we use addition chains to compute the
coefficients of a(Pi), b(Pi) except for 81, 243, 625 and 3125, where we use mul-
tiplication by (small) integers, the cost of computing the interpolation points is
11M + 8MZ + 146A for multiplication, and 11S + 4MZ + 73A for squaring. The
interpolation is computed as

c0 = v0 + β(−(5/96)v0 + (29/720)(v1 + v2)− (13/720)(v3 + v4)
+ (1/240)(v5 + v6)− (1/2880)(v7 + v8) + 273v10)

c1 = −(1/5)v0 + v1 − (2/3)v2 − (1/3)v3 + (1/7)v4 + (2/21)v5 − (1/42)v6

− (1/56)v7 + (1/504)v8 + (1/630)v9 − 2880v10 + β((1/96)v0 − (17/1440)v1

− (1/180)v2 + (1/120)v3 + (1/630)v4 − (1/280)v5 − (1/6720)v6

+ (17/20160)v7 − (1/60480)v8 − (1/12096)v9 + 150v10)
c2 = −(205/144)v0 + (4/5)(v1 + v2)− (1/10)(v3 + v4) + (4/315)(v5 + v6)

− (1/1120)(v7 + v8) + 576v10 + β((1/576)v0 − (1/720)(v1 + v2)
+ (1/1440)(v3 + v4)− (1/5040)(v5 + v6) + (1/40320)(v7 + v8)− 30v10)

c3 = (41/144)v0 − (449/720)v1 + (161/1080)v2 + (917/2160)v3

− (773/5040)v4 − (331/2520)v5 + (299/10080)v6 + (127/5040)v7

− (59/22680)v8 − (41/18144)v9 + 4100v10 + β(−(1/2880)(v0 + v1)
+ (1/4320)(v2 − v3)− (1/10080)(v4 + v5) + (1/40320)(v6 − v7)
− (1/362880)(v8 + v9)− 5v10)

c4 = (91/192)v0 − (61/180)(v1 + v2) + (169/1440)(v3 + v4)− (1/60)(v5 + v6)
+ (7/5760)(v7 + v8)− 820v10 + βv10

c5 = −(91/960)v0 + (389/2880)v1 + (1/480)(11v2 + 19v5)
− (1/1440)(143v3 + 13v4)− (11/1920)v6 − (47/5760)v7

+ (1/17280)(11v8 + 13v9)− 1365v10.

23

We compute the product c = 362880ab (or the square c = 362880a2 in order
to completely avoid divisions as follows:

c0 = 362880v0 + β(−18900v0 + 14616(v1 + v2)− 6552(v3 + v4) + 1512(v5 + v6)
− 126(v7 + v8) + 99066240v10)

c1 = −72576v0 + 362880v1 − 241920v2 − 120960v3 + 51840v4 + 34560v5

− 8640v6 − 6480v7 + 720v8 + 576v9 − 1045094400v10 + β(3780v0 − 4284v1

− 2016v2 + 3024v3 + 576v4 − 1296v5 − 54v6 + 306v7 − 6v8 − 30v9

+ 54432000v10)
c2 = −516600v0 + 290304(v1 + v2)− 36288(v3 + v4) + 4608(v5 + v6)

− 324(v7 + v8) + 209018880v10 + β(630v0 − 504(v1 + v2) + 252(v3 + v4)
− 72(v5 + v6) + 9(v7 + v8)− 10886400v10)

c3 = 103320v0 − 226296v1 + 54096v2 + 154056v3 − 55656v4 − 47664v5

+ 10764v6 + 9144v7 − 944v8 − 820v9 + 1487808000v10 + β(−126(v0 + v1)
+ 84(v2 − v3)− 36(v4 + v5) + 9(v6 − v7)− (v8 + v9)− 1814400v10)

c4 = 171990v0 − 122976(v1 + v2) + 42588(v3 + v4)− 6048(v5 + v6)
+ 63(v7 + v8)− 297561600v10 + β(362880v10)

c5 = −34398v0 + 49014v1 + 8316v2 + 14364v5 − 36036v3 + 3276v4 − 2079v6

− 2961v7 + 231v8 + 273v9 − 495331200v10.

Because the vast majority of the coefficients in the formula are too large to
be considered for addition chains, we compute them as multiplication by small
integers. The cost for the interpolation is 75MZ + 90A + 5B. The total cost for
multiplication is 11M + 93MZ + 236A + 5B, and the total cost for squaring is
11S + 79MZ + 163A + 5B.

A.3 Timings

Table 15. Timings of Fp operations with Montgomery representation (microseconds)

160-bit 192-bit 224-bit 256-bit 512-bit

Addition 0.04 0.04 0.04 0.05 0.08

Subtraction 0.04 0.04 0.05 0.05 0.09

Negation 0.03 0.03 0.03 0.04 0.06

Multiplication 0.29 0.37 0.42 0.54 1.41

Squaring 0.29 0.37 0.42 0.53 1.41

MUL/ADD ratio 7.81 8.90 9.36 10.92 16.73

24

Table 16. Timings of multiplication and squaring for Fp2 (microseconds)

160-bit 192-bit 224-bit 256-bit 512-bit

Multiplication

Schoolbook-2 1.33 1.64 1.87 2.32 5.86

Karatsuba-2 * 1.17 * 1.40 * 1.59 * 1.93 * 4.74

Squaring

Schoolbook-2 1.10 1.25 1.46 1.74 4.43

Karatsuba-2 1.16 1.31 1.52 1.81 4.58

Complex * 0.84 * 1.00 * 1.13 * 1.37 * 3.26

MUL/SQR ratio 1.39 1.40 1.41 1.41 1.45

Table 17. Timings of multiplication and squaring for Fp3 (microseconds)

160-bit 192-bit 224-bit 256-bit 512-bit

Multiplication

Schoolbook-3 3.01 3.66 4.26 5.53 13.45

Karatsuba-3 * 2.48 * 2.98 * 3.44 * 4.23 * 10.03

Toom-Cook-3x 2.99 3.47 3.95 4.72 = 10.28

Squaring

Schoolbook-3 3.03 3.67 4.27 5.40 13.38

Karatsuba-3 2.48 2.83 3.25 3.86 9.53

CH-SQR1 * 2.02 * 2.38 * 2.75 = 3.33 = 8.15

CH-SQR2 = 2.05 = 2.39 = 2.76 * 3.31 * 8.13

CH-SQR3 2.30 2.66 = 3.02 = 3.61 = 8.69

CH-SQR3x 2.27 = 2.62 = 3.01 = 3.58 = 8.54

Toom-Cook-3x 2.80 3.14 3.58 4.22 9.49

MUL/SQR ratio 1.23 1.25 1.25 1.28 1.23

25

Table 18. Timings of multiplication and squaring for Fp4 as a quadratic over quadratic
(microseconds). KA = Karatsuba

160-bit 192-bit 224-bit 256-bit 512-bit

Multiplication

Schoolbook over Schoolbook 5.67 7.04 7.94 9.80 24.31

Schoolbook over Karatsuba 5.19 6.09 6.88 8.28 19.75

Karatsuba over Schoolbook = 4.88 5.87 6.52 7.97 19.28

Karatsuba over Karatsuba * 4.47 * 5.17 * 5.75 * 6.90 * 15.90

Squaring

Karatsuba over KA/Complex = 3.15 * 3.60 * 4.03 * 4.82 = 10.96

Karatsuba over Karatsuba 4.08 4.55 5.24 6.24 14.90

Karatsuba over Schoolbook 3.86 4.37 5.01 5.97 14.50

Schoolbook over KA/Complex = 3.32 = 3.81 = 4.33 = 5.22 = 12.02

Schoolbook over Karatsuba 3.97 4.46 5.15 6.18 14.80

Schoolbook over Schoolbook 3.94 4.57 5.24 6.33 15.56

Complex over Karatsuba * 3.14 = 3.64 = 4.04 = 4.84 * 10.92

Complex over Schoolbook = 3.44 4.10 4.59 5.57 13.15

MUL/SQR ratio 1.42 1.44 1.43 1.43 1.46

Table 19. Timings of multiplication and squaring for Fp4 as a direct quartic extension
(microseconds)

160-bit 192-bit 224-bit 256-bit 512-bit

Multiplication

Schoolbook-4 * 5.40 * 6.52 * 7.58 * 9.23 * 23.84

Toom-Cook-4x 12.88 19.60 21.54 16.39 42.84

Squaring

Schoolbook-4 * 3.62 * 4.31 * 4.99 * 6.02 * 15.18

Toom-Cook-4x 11.23 15.64 17.03 13.57 33.53

MUL/SQR ratio 1.49 1.51 1.52 1.53 1.57

Table 20. Best performance of multiplication and squaring for Fp4 , all constructions
(microseconds)

Multiplication Squaring MUL/SQR

160-bit KA-2 over KA-2 4.47 Complex over KA-2 3.14 1.42

192-bit KA-2 over KA-2 5.17 KA-2 over KA-2/Complex 3.60 1.44

224-bit KA-2 over KA-2 5.75 KA-2 over KA-2/Complex 4.03 1.43

256-bit KA-2 over KA-2 6.90 KA-2 over KA-2/Complex 4.82 1.43

512-bit KA-2 over KA-2 15.90 Complex over KA-2 10.92 1.46

26

Table 21. Timings of multiplication and squaring for Fp6 as a quadratic over cubic
(microseconds)

160-bit 192-bit 224-bit 256-bit 512-bit

Multiplication

Schoolbook-2 over Schoolbook-3 12.64 15.42 17.97 22.88 54.95

Schoolbook-2 over Karatsuba-3 10.74 12.72 14.53 18.08 41.47

Schoolbook-2 over Toom-Cook-3x 12.74 14.74 16.69 19.95 42.51

Karatsuba-2 over Schoolbook-3 10.08 12.10 14.03 17.86 42.54

Karatsuba-2 over Karatsuba-3 * 8.58 * 10.17 * 11.55 * 14.44 * 32.11

Karatsuba-2 over Toom-Cook-3x 10.17 11.68 13.24 = 15.73 = 32.99

Squaring

Complex-2 over Schoolbook-3 7.18 8.55 9.94 12.59 29.19

Complex-2 over Karatsuba-3 = 6.21 = 7.25 = 8.28 = 10.21 = 22.44

Complex-2 over Toom-Cook-3x 7.30 8.35 9.41 = 11.19 = 22.92

Karatsuba-2 over Karatsuba-3 = 6.19 = 7.26 = 8.31 * 10.20 = 22.45

Karatsuba-2 over Karatsuba-3/CH-SQR1 = 6.23 = 7.26 = 8.25 = 10.23 = 22.38

Karatsuba-2 over Karatsuba-3/CH-SQR2 = 6.25 * 7.24 = 8.26 = 10.28 = 22.46

Karatsuba-2 over Karatsuba-3/CH-SQR3 = 6.22 = 7.25 * 8.24 = 10.42 = 22.42

Karatsuba-2 over Karatsuba-3/CH-SQR3x * 6.19 = 7.26 = 8.31 * 10.20 * 22.36

Schoolbook-2 over Schoolbook-3 9.81 11.80 13.72 17.09 41.48

Schoolbook-2 over Karatsuba-3 8.22 9.43 10.79 13.14 30.76

Schoolbook-2 over Karatsuba-3/CH-SQR1 7.30 8.59 9.82 12.13 27.97

Schoolbook-2 over Karatsuba-3/CH-SQR2 7.31 8.58 9.87 12.11 27.84

Schoolbook-2 over Karatsuba-3/CH-SQR3 7.93 9.18 10.42 12.78 29.57

Schoolbook-2 over Karatsuba-3/CH-SQR3x 7.88 9.07 10.35 12.62 28.91

Schoolbook-2 over Toom-Cook-3x 9.35 10.65 12.04 14.12 30.93

MUL/SQR ratio 1.39 1.40 1.40 1.42 1.44

27

Table 22. Timings of multiplication and squaring for Fp6 as a cubic over quadratic
(microseconds)

160-bit 192-bit 224-bit 256-bit 512-bit

Multiplication

Schoolbook-3 over Karatsuba-2 11.70 13.84 15.85 19.17 45.47

Schoolbook-3 over Schoolbook-2 13.16 15.84 18.36 22.63 55.82

Karatsuba-3 over Karatsuba-2 * 9.24 * 10.68 * 12.20 * 14.49 * 33.06

Karatsuba-3 over Schoolbook-2 = 10.15 12.04 13.79 16.71 39.90

Toom-Cook-3x over Karatsuba-2 10.74 12.22 13.57 16.09 = 33.30

Toom-Cook-3x over Schoolbook-2 11.40 13.32 14.95 17.99 38.95

Squaring

Schoolbook-3 over Karatsuba-2/Complex = 7.02 = 8.22 9.47 11.48 26.17

Schoolbook-3 over Karatsuba-2 8.07 9.32 10.67 12.88 30.15

Schoolbook-3 over Schoolbook-2 8.23 9.68 11.24 13.74 33.17

Karatsuba-3 over Karatsuba-2/Complex = 6.89 = 7.79 = 8.91 = 10.66 = 23.17

Karatsuba-3 over Karatsuba-2 8.93 9.94 11.40 13.34 30.89

Karatsuba-3 over Schoolbook-2 8.20 9.46 10.89 12.87 30.20

Toom-Cook-3x over Karatsuba-2/Complex 8.31 9.20 10.38 12.25 24.32

Toom-Cook-3x over Karatsuba-2 9.98 11.01 12.40 14.26 30.55

Toom-Cook-3x over Schoolbook-2 9.33 10.60 11.94 13.98 30.42

CH-SQR1 over Karatsuba-2/Complex = 6.90 = 7.90 = 8.99 = 10.80 = 24.08

CH-SQR1 over Karatsuba-2 7.50 8.60 9.87 11.83 26.80

CH-SQR1 over Schoolbook-2 7.78 9.10 10.50 13.22 29.92

CH-SQR2 over Karatsuba-2/Complex * 6.51 * 7.49 * 8.49 * 10.22 = 22.51

CH-SQR2 over Karatsuba-2 7.56 8.56 9.74 11.56 26.53

CH-SQR2 over Schoolbook-2 7.50 8.70 9.99 12.04 28.53

CH-SQR3 over Karatsuba-2/Complex = 6.81 = 7.62 = 8.70 = 10.40 = 22.09

CH-SQR3 over Karatsuba-2 8.08 9.10 10.32 12.12 27.85

CH-SQR3 over Schoolbook-2 7.89 8.93 10.22 12.28 28.80

CH-SQR3x over Karatsuba-2/Complex = 6.76 = 7.60 = 8.62 = 10.39 * 22.05

CH-SQR3x over Karatsuba-2 8.07 9.05 10.30 12.07 27.56

CH-SQR3x over Schoolbook-2 7.83 8.86 10.20 12.35 28.22

MUL/SQR ratio 1.42 1.42 1.44 1.42 1.50

28

Table 23. Timings of multiplication and squaring for Fp6 as a direct sextic extension
(microseconds)

160-bit 192-bit 224-bit 256-bit 512-bit

Multiplication

Schoolbook-6 = 12.52 = 15.09 17.40 21.81 54.01

Montgomery-6 * 12.04 * 13.87 * 15.68 * 19.09 * 39.26

Toom-Cook-6x 39.34 75.47 82.81 51.59 156.39

Squaring

Schoolbook-6 * 7.72 * 9.14 * 10.54 * 13.17 * 32.10

Montgomery-6 11.08 12.45 14.17 16.50 35.87

Toom-Cook-6x 35.45 67.83 74.34 45.23 144.22

MUL/SQR ratio 1.56 1.52 1.49 1.45 1.22

Table 24. Best performance of multiplication and squaring for Fp6 , all constructions
(microseconds)

Multiplication Squaring MUL/SQR

160-bit KA-2 over KA-3 8.58 KA-2 over KA-3/CH-SQR3x 6.19 1.39

192-bit KA-2 over KA-3 10.17 KA-2 over KA-3/CH-SQR2 7.24 1.40

224-bit KA-2 over KA-3 11.55 KA-2 over KA-3/CH-SQR3 8.24 1.40

256-bit KA-2 over KA-3 14.44 KA-2 over KA-3/CH-SQR3x 10.20 1.42

512-bit KA-2 over KA-3 32.11 CH-SQR3x over KA-2/Complex 22.05 1.46

29

