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Abstract

We are using in this paper an optimal control approach to determine the opti-
mal production rate in a production inventory system where items are subject
to deterioration. Necessary and sufficient optimality conditions are obtained.
The optimal solutions are given in detail for specific exogenous functions and
illustrative examples are provided.
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1 Introduction

Inventory theory is one of the main areas of Operations Research and Management
Science, and a variety of mathematical models have been introduced for the control
of inventory systems. Of particular interest in inventory theory are deteriorating
inventory systems in which the product deteriorates with time. Three surveys are
available (Nahmias (1982), Raafat (1991), and Goyal and Giri (2001)), which shows
the importance of the subject.

We will mention first that inventory models are classified as deterministic (static
or dynamic) or stochastic, according to whether the demand rate is known (constant
or dynamic) or random. Standard calculus is used to deal with static models (Har-
ris (1913)) while filtering techniques (Kalman (1960a, 1960b) are used on stochastic
models.

The model we are interested in is dynamic. Dynamic programming has been used
to solve some dynamic models (Wagner and Whitin (1958)). In the absence of deteri-
oration, some dynamic models have been studied using an optimal control approach.
For example, Salama (2000) considered the optimal control of an unreliable manu-
facturing system with restarting costs. Riddalls and Bennett (2001) used an optimal
control algorithm to a differential equation model of a production inventory system to
cater for batch production costs which, usually, are not modelled in aggregate produc-
tion problems. Zhang et al. (2001) were concerned with the scheduling of a marketing
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production system with a demand dependent on the marketing status. Khemlnitsky
and Gerchak (2002) used an optimal control approach to solve a production system
where demand depends on the inventory level. Kiesmüller (2003) was interested in the
optimal control of recovery systems, where attention is given to recycling and reman-
ufacturing of used products in order to reduce waste. Dobos (2003) were interested
in the optimal control of reverse logistics systems, where reusable materials returned
from the market are remanufactured. Finally, multi-echelon inventory systems have
been considered by Diks and de Kok (1998). We are not aware of any papers dealing
with the optimal control of deteriorating inventory systems.

We are thus considering in the present paper the optimal control of a deteriorat-
ing inventory system. The goal is to determine the production rate that minimizes
some cost function. The layout of the paper is as follows. We start in Section 2 by
introducing the notation. Then we build the mathematical model and derive the nec-
essary and sufficient optimality conditions in the case where the planning horizon is
finite. We also give explicit solutions as functions of time for some specific exogenous
functions. The results obtained are extended in Section 3 to the case of an infinite
planning horizon. In Section 4 we illustrate the results obtained by performing a
complete analysis of a system with linear demand rate. Finally we formulate our
conclusions in Section 5.

2 Model Formulation

Let us consider a manufacturing firm producing a single product. To state the model
we use the following notation:

I(t) : the inventory level at time t,
P (t) : the production rate at time t,
D(t) : the demand rate at time t,
θ(t, I(t)) : the deterioration rate at time t corresponding to I(t),
h(I(t)) : the holding cost rate corresponding to I(t),
K(P (t)) : the production cost rate corresponding to P (t),
T : the length of the planning horizon,
ρ : the constant nonnegative discount rate,
I0 : the initial inventory level,
θ̂ : the deterioration goal rate,
Î : the inventory goal level,
P̂ : the production goal rate,
c : the positive unit production cost.

The interpretation of the goal rates are as follows:

• We are assuming that product deterioration can be somehow controlled by the
firm. This can be done by keeping the product in adequate conditions through
control of such elements as pressure, temperature, etc. The firm wants to keep
the product deterioration close to the deterioration goal rate θ̂. For example, θ̂
could be 10 units of the finished product, during the time interval [0, T ].
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• The inventory goal level Î is a safety stock that the company wants to keep on
hand. For example, Î could be 200 units of the finished product.

• The production goal rate P̂ is the most efficient rate desired by the firm.

All functions are assumed to be non-negative, continuous and differentiable functions.
Since demand occurs at rate D, production occurs at the controllable rate P , and
deterioration occurs at rate θ, it follows that the inventory level I(t) evolves according
to the dynamics (or state equation)

d

dt
I(t) = P (t)−D(t)− θ(t, I(t)).(2.1)

The model is represented as an optimal control problem with one state variable (in-
ventory level) and one control variable (rate of manufacturing). The problem (P)
associated to this model is to minimize the following objective function

min
P (t)≥0

J(P, I) =
∫ T

0

F (t, I(t), P (t))dt,

subject to the state equation (2.1) where

F (t, I(t), P (t)) = e−ρt

�
1

2

[
h(I(t))− h(Î)

]2
+

1

2

[
K(P (t))−K(P̂ )

]2
+

c

2

[
θ(t, I(t))− θ̂

]2�
.(2.2)

The main tool in the study of problems (P) involves looking for the necessary opti-
mality conditions in the form of the Pontryagin maximum principle (see Pontryagin
et al. (1962)). The theory involves the Hamiltonian function

H(t, I(t), P (t), λ(t)) = −F (t, I(t), P (t)) + λ(t)f(t, I(t), P (t)),(2.3)

where f(t, I(t), P (t)) = P (t)−D(t)−θ(t, I(t)) and λ is the adjoint function associated
with the differential equation constraint. The next result is a specialized version of
the Pontryagin maximum principle for problem (P)

Theorem 2.1 A necessary condition for (P ∗, I∗) to be an optimal solution of
problem (P) is

[
K(P ∗(t))−K(P̂ )

]� d

dt
P ∗(t)

d2

dP 2
K(P ∗(t))−

�
ρ +

∂

∂I
θ(t, I∗(t))

�
d

dP
K(P ∗(t))

�
=

− d

dt
P ∗(t)

�
d

dP
K(P ∗(t))

�2
+
[
h(I∗(t))− h(Î)

] d

dI
h(I∗(t)) + c

[
θ(t, I∗(t))− θ̂

] ∂

∂I
θ(t, I∗(t)),

(2.4)

and

I∗(0) = I0,
[
K(P ∗(T ))−K(P̂ )

] d

dP
K(P ∗(T )) = 0, P ∗(t) ≥ 0.

Proof. Assume that (P ∗, I∗) is an optimal solution to problem (P). By the
maximum principle, there exists an adjoint function λ satisfying

H(t, I∗(t), P ∗(t), λ(t)) ≥ H(t, I∗(t), P (t), λ(t)), for all P (t) ≥ 0(2.5)

− d

dt
λ(t) =

∂

∂I
H(t, I∗(t), P ∗(t), λ(t)),(2.6)
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I∗(0) = I0, λ(T ) = 0.(2.7)

Equation (2.5) is equivalent to

∂

∂P
H(t, I∗(t), P ∗(t), λ(t)) = 0,

which is equivalent to

λ(t) = e−ρt
[
K(P (t))−K(P̂ )

] d

dP
K(P (t)).(2.8)

Equation (2.6) is equivalent to

d

dt
λ(t) = e−ρt

{[
h(I(t))− h(Î)

] d

dI
h(I(t)) + c

[
θ(t, I(t))− θ̂

] ∂

∂I
θ(t, I(t))

}
+ λ(t)

∂

∂I
θ(t, I(t)).

(2.9)

Now, combining Equation (2.8) and Equation (2.9) completes the proof.

The following lemma is a standard result from convex analysis, needed in the proof
of the next theorem.

Lemma 2.1 Let X be a normed vector space and let f : X → R be a convex
function, differentiable at some point x̄ ∈ X. Then the gradient ∇f(x̄) of f at x̄
satisfies the following inequality:

∇f(x̄)(x̄− x) ≥ f(x̄)− f(x), for all x ∈ X.

Theorem 2.2 Assume the functions F (t, ·, P ) and θ(t, ·) are convex. Then, the
necessary conditions (2.5)-(2.7) are sufficient for (P ∗, I∗) to be an optimal solution
for problem (P).

Proof. By Lemma 2.1 and the convexity of the function F (t, ·, P ), we have the
following inequality:

∂

∂I
F (t, I∗(t), P (t)) [I∗(t)− I(t)] ≥ F (t, I∗(t), P (t))− F (t, I(t), P (t)), for all t, I, P.

Equation (2.6) is equivalent to

∂

∂I
F (t, I∗(t), P (t)) =

d

dt
λ(t)− λ(t)

∂

∂I
θ(t, I∗(t)).

Substituting the value of ∂
∂I F (t, I∗(t), P (t)) in the last inequality we obtain

d

dt
λ(t)(I∗(t)− I(t))− λ(t)

∂

∂I
θ(t, I∗(t)) [I∗(t)− I(t)] ≥(2.10)

e−ρt
[
[h(I∗(t))− h(Î)]2 − [h(I(t))− h(Î)]2 +

c

2
[θ(t, I∗(t))− θ̂]2 − [θ(t, I(t))− θ̂]2

]
, ∀ t, I, P.

On the other hand, the convexity of the functions θ(t, ·) and Lemma 2.1 give

∂

∂I
θ(t, I∗(t)) [I∗(t)− I(t)] ≤ θ(t, I∗(t))− θ(t, I(t)), for all t, I.
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Substituting this inequality in (2.10) we get
d

dt
λ(t) [I∗(t)− I(t)]− λ(t)

[
θ(t, I∗(t))− θ(t, I(t))

]
≥

e−ρt
[
[h(I∗(t))− h(Î)]2 − [h(I(t))− h(Î)]2 +

c

2
[θ(t, I∗(t))− θ̂]2 − [θ(t, I(t))− θ̂]2

]
, ∀t, I.

Now, by the state equation (2.1) we have

θ(t, I∗(t)) = P ∗(t)−D(t)− d

dt
I∗(t) and θ(t, I(t)) = P (t)−D(t)− d

dt
I(t).

Therefore, substituting these two equalities in the last inequality we obtain
d

dt
λ(t) [I∗(t)− I(t)]− λ(t)

[
[P ∗(t)− P (t)]− [

d

dt
I∗(t)− d

dt
I(t)]

]
≥

e−ρt
[
[h(I∗(t))− h(Î)]2 − [h(I(t))− h(Î)]2 +

c

2
[θ(t, I∗(t))− θ̂]2 − [θ(t, I(t))− θ̂]2

]
, ∀t, I.

It follows from equation (2.5)

λ(t) [P ∗(t)− P (t)] ≥ e−ρt
[
[K(P ∗(t))−K(P̂ )]2 − [K(P (t))−K(P̂ )]2

]
, for all t, P.

Finally, simple computations give

d

dt

[
λ(t)(I∗(t)− I(t))

]
≥ F (t, I∗(t), P ∗(t))− F (t, I(t), P (t)), for all t, I, P.

By integrating this inequality on the interval [0, T ] and by using the initial and the
terminal conditions (2.13) we obtain

0 ≥
∫ T

0

F (t, I∗(t), P ∗(t))dt−
∫ T

0

F (t, I(t), P (t))dt, for all I, P,

which ensures that

J(t, I∗(t), P ∗(t)) ≤ J(t, I(t), P (t)), for all I, P.

This completes the proof.

Remark 2.1 The convexity of F (t, ·, P ) is ensured provided some hypothesis are
made on h and θ(t, ·). For example, it suffices that

1. both functions be affine or,

2. both functions be concave with the two natural constraints h(I(t)) ≤ h(Î) and
θ(t, I(t)) ≤ θ̂, (these inequalities mean that we don’t want to spend more than
the holding cost goal rate and we don’t want the deterioration rate to be larger
than the deterioration goal rate).

Up to this point, all exogenous functions were taken as very general functions.
An explicit solution is then difficult to obtain for the problem we want to study.
To exploit the intrinsic properties of the system, we determine the explicit solution
in the case where exogenous functions have explicit forms. The obtained results will
enable us to develop optimal strategies for more complex systems by considering other
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exogenous functions. Other exogenous functions are not considered here though, in
order not to involve complex notation and excessive technical detail. For illustration
purposes, let us assume the following forms for the exogenous functions

K(P (t)) = K1P (t) + K2,

h(I(t)) = h1I(t) + h2,

θ(t, I(t)) = θ1I(t) + θ2,

where Ki, θi, and hi (i = 1, 2) are real constants with K1, θ1, and h1 nonzero. In this
case, since I is close to Î and θ(t, I(t)) is close to θ̂, then we may take θ̂ = θ1Î + θ2

in problem (P). Thus, the objective function (2.2) becomes

F (t, I(t), P (t)) = e−ρt

{
h

2

[
I(t)− Î

]2

+
K

2

[
P (t)− P̂

]2
}

,(2.11)

with h = h2
1 + cθ2

1 and K = K2
1 . Under the above forms of the exogenous functions

Theorem 2.1 has the following simpler form.
Corollary 2.1 A necessary condition for (P ∗, I∗) to be an optimal solution of

problem (P) is

d2

dt2
I(t)− ρ

d

dt
I(t)−

[
(ρ + θ1)θ1 +

h

K

]
I(t) = β(t),(2.12)

with

I∗(0) = I0, P ∗(T ) = P̂ , P ∗(t) ≥ 0,(2.13)

where

β(t) = (ρ + θ1)[D(t)− P̂ + θ2]− d

dt
D(t)− h

K
Î.(2.14)

The problem stated in Corollary 2.1 is a two-point boundary value problem. This is
because it is both an initial value problem and a terminal value problem. It is solved
in the next corollary.

Corollary 2.2 The optimal solution (P ∗, I∗) to problem (P) is given by

P ∗(t) = max
{

P (t), 0
}

,

I∗(t) = I0e
−θ1t +

∫ t

0

[P ∗(s)−D(s)− θ2] eθ1(s−t)ds,(2.15)

where

P (t) = a1(m1 + θ1)em1t + a2(m2 + θ1)em2t +
d

dt
Q(t) + θ1Q(t) + D(t) + θ2,

the constants a1, a2, m1, and m2 are given in the proof below, and Q(t) is a particular
solution of Equation (2.12).
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Proof. We solve Equation (2.12) by the standard method. The characteristic
equation is

m2 − ρm− (ρ + θ1)θ1 +
h

K
= 0.

It has two real roots of opposite signs, given by

m1 =
1
2

(
ρ−

√
ρ2 + 4

[
(ρ + θ1)θ1 +

h

K

])
< 0,

m2 =
1
2

(
ρ +

√
ρ2 + 4

[
(ρ + θ1)θ1 +

h

K

])
> 0,

and therefore,

I(t) = a1e
m1t + a2e

m2t + Q(t),(2.16)

where Q(t) is a particular solution of (2.12). The initial and terminal conditions (2.13)
are used to determine the constants a1 and a2 as follows. From the initial condition
we have

a1 + a2 + Q(0) = I0,

and from the terminal condition we have

a1(m1 + θ1)em1T + a2(m2 + θ1)em2T +
[

c

K
+

d

dt
Q(T ) + θ1Q(T ) + D(T )

]
= 0.

By putting

b1 = I0 −Q(0),

b2 = −
[

c

K
+

d

dt
Q(T ) + θ1Q(T ) + D(T )

]
,

we obtain the following system of two linear equations in two unknowns

a1 + a2 = b1

a1(m1 + θ1)em1T + a2(m2 + θ1)em2T = b2,

which has the following unique solution

a1 =
b2 − (m2 + θ1)em2T b1

(m1 + θ1)em1T − (m2 + θ1)em2T
,

a2 =
b1(m1 + θ1)em1T − b2

(m1 + θ1)em1T − (m2 + θ1)em2T
.

The expression of P is deduced using the optimal expression of I along with the state
equation (2.1). Recalling that the optimal control P ∗ has to be nonnegative, so P ∗

will be
P ∗(t) = max

{
P (t), 0

}
,

and then I∗ will be deduced directly from (2.1).



Optimal control of deteriorating production inventory systems 37

Remark 2.2

1. Note that if we had chosen the deterioration function θ depending on both
variables t and I instead of I only (for example: θ(t, I(t)) = θ(t)I(t)), then
the differential equation (2.12) would become with variable coefficients. The
procedure used in the proof of Corollary 2.2 is no longer appropriate. However,
the differential equation (2.12) can be solved by more technical methods (for
instance power series methods).

2. Observe that Equation (2.8) becomes

λ(t) = K2
1e−ρt[P (t)− P̂ ],

from which

P (t) = P̂ +
eρtλ(t)

K2
1

.

Therefore, by choosing P̂ large enough so that P (t) is nonnegative, then the
optimal control P ∗ will be equal to P . In this case, Equation (2.15) reduces to
Equation (2.16)

3 Extension

The optimal solution of (P) obtained in Corollary 2.2 can be extended under some
conditions to the case of an infinite planning horizon. We will show that these solu-
tions make sense when T → ∞. Assume ρ > 0. We show that the limit of the finite
horizon problem optimal solution solves the following corresponding infinite horizon
problem:

(P∞)





min
P (t)≥0

J(P, I) =
∫ ∞

0

F (t, I(t), P (t))dt

d

dt
I(t) = f(t, I(t), P (t)), I(0) = I0

where F and f are given in Section 2.

For the infinite horizon case, the terminal condition λ(T ) = 0 must be changed to

lim
t→∞

λ(t) = 0,(3.1)

where λ is the adjoint function associated to problem (P). In practice, the production
rate P (t) is usually bounded and so K2

1 [P (t)− P̂ ] is bounded. Then, for ρ > 0

lim
t→∞

λ(t) = lim
t→∞

e−ρtK2
1 [P (t)− P̂ ] = 0,

so that (3.1) is satisfied. An inspection of our proofs of Theorems 2.1-2.2 shows that
the equations (2.5)-(2.7) with (3.1) instead of λ(T ) = 0, are necessary and sufficient
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conditions for (P ∗∞, I∗∞) (given below) to be an optimal solution to (P∞):

P ∗∞(t) = max
{

P∞(t), 0
}

,

I∗∞(t) = I0e
−θ1t +

∫ t

0

[P ∗∞(s)−D(s)− θ2] eθ1(s−t)ds,

where

P∞(t) = b1(m1 + θ1)em1t +
d

dt
Q(t) + θ1Q(t) + D(t) + θ2,

with b1 = I0 −Q(0) and m1 = 1
2

(
ρ−

√
ρ2 + 4

[
(ρ + θ1)θ1 + h

K

])
.

4 Illustrative Examples

We want in this section to present some illustrative examples of the results obtained.
Computations of problem (P) optimal solution are performed for the constant de-
mand functions D(t) = d and the linear demand functions D(t) = d1t + d2. These
computations are performed in the infinite horizon case where the formulas are sim-
ple, and similar computations can be done in the finite horizon case.

Case 1: Constant Demand. We assume a positive demand function D(t) = d with
d > 0. The particular solution of Equation (2.12) is first found to be Q(t) = q with

q = − (ρ + θ1)(d− P̂ )− h
K Î

(ρ + θ1)θ1 + h
K

.

The expression of the optimal control P ∗(t) and the optimal state I∗(t) depend on
the system parameters as follows:

• If I0 = q, then P and I are constant and given by

P (t) = θ1q + d + θ2 and I(t) = q.

Therefore P ∗ is constant and equal to θq + d + θ2 or 0 depending on whether
θ1q + d + θ2 is positive or negative, while I∗ is given by

I∗(t) =





I0e
−θ1t −

∫ t

0

(d + θ2)eθ1(s−t)ds, θ1q + d + θ2 ≤ 0,

I0e
−θ1t +

∫ t

0

θ1qe
θ1(s−t)ds, θ1q + d + θ2 > 0.

• If I0 6= q, then, P (t) is given by

P (t) = (I0 − q)(m1 + θ1)em1t + θ1q + d + θ2.

At this point, it is preferable to consider separately the cases I0 < q and I0 > q.



Optimal control of deteriorating production inventory systems 39

? If I0 < q, we note that since

d

dt
P (t) = (I0 − q)m1(m1 + θ1)em1t,

is negative then, P (t) decreases to θ1q + d + θ2, starting from the value

P (0) = m1(I0 − q) + I0θ1 + d + θ2.

Clearly P ∗(t) = P (t) and I∗(t) = I(t) whenever θ1q+d+θ2 is nonnegative.
In case θ1q + d + θ2 and P (0) are both negative, then P ∗(t) = 0 and I∗ is
given by

I∗(t) = I0e
−θ1t −

∫ t

0

(d + θ2)eθ1(s−t)ds.

Otherwise, there exists some t0 for which P (t0) = 0. Then,

P ∗(t) =
{

0, t ≤ t0,
P (t) t > t0.

(4.2)

and

I∗(t) =





I0e−θ1t −
∫ t

0
(d + θ2)eθ1(s−t)ds, t ≤ t0,

I0e−θ1t −
∫ t0

0
deθ1(s−t0)ds +

∫ t

t0

(P (s)− d− θ2)eθ1(s−t)ds, t > t0.

An explicit form of I∗ can easily be obtained.

? If I0 > q, an analysis similar to the previous one can be conducted. A
numerical example is presented below.

Example 4.1 Assume, for example, the following constant demand d = 20. Also,
assume the following targets Î = 1, P̂ = 30, the following unit costs c = 1, h = 1,K =
1 and the following deterioration and discount rates θ1 = 0.001, θ2 = 0, ρ = 0.01.
The initial inventory I0 is assumed to be equal to 1. This is a case where I0 < q
and θ1q + d + θ2 > 0. We have seen that in this case, P (t) > 0 so that P ∗(t) =
P (t) = (I0 − q)(m1 + θ1)em1t + θ1q + d + θ2. Variations of P (t) are depicted in
Figure 1. It starts from the positive value P (0) = m1(I0 − q) + I0θ1 + d + θ2 then
it decreases to tend to the value θ1q + d + θ2 > 0 as t tends to infinity. Also,
I∗(t) = I(t) = I0e

−θ1t − ∫ t

0
(P (s) − d + θ2)eθ1(s−t)ds and the variations of I∗(t) are

also depicted in Figure 2. It starts from the positive value I0 = 1 then it increases to
tend to the value q as t tends to infinity. We also computed in this case the optimal
cost and found J∗ = 4992. Finally, to determine the effect of the deterioration on
the system, we computed the optimal cost for various values of the deterioration rate.
The results are plotted in Figure 3. We observe that the higher the deterioration
rate, the lower the optimal cost. Case 2: Linear Demand. We assume a demand
function D(t) = d1t + d2 with d1 > 0. The particular solution of Equation (2.12) is
first found to be Q(t) = q1t + q2 with

q1 = − (ρ + θ1)d1

(ρ + θ1)θ1 + h
K

,
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Figure 1: Variations of P ∗ as function of time t.
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Figure 2: Variations of I∗ as function of time t.
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Figure 3: Variations of optimal cost J∗ as function of deterioration rate θ.

and

q2 = − 1
(ρ + θ1)θ1 + h

K

[
(ρ + θ1)(d2 − P̂ )− d1 − h

K
Î + ρq1

]
.

The expression of the optimal control P ∗(t) and the optimal state I∗(t) depend on
the system parameters as follows:

• If I0 = q2, then

P (t) = (θ1q1 + d1)t + (q1 + θ1q2 + d2 + θ2) and I(t) = Q(t).

We note that θ1q1 + d1 is always positive, so that if we choose, for example, d2

so that q1 + θ1q2 + d2 + θ2 is positive, then P ∗(t) = P (t) and I∗(t) = I(t).

• If I0 6= q2, then, P (t) is given by

P (t) = (I0 − q2)(m1 + θ1)em1t + (θ1q1 + d1)t + (q1 + θ1q2 + d2 + θ2).

? If I0 > q2, we note that since

d

dt
P (t) = (I0 − q2)m1(m1 + θ1)em1t + (θ1q1 + d1),

is positive then, P (t) is an increasing function, starting from the value

P (0) = (I0 − q2)(m1 + θ1) + q1 + θ1q2 + d2 + θ2.
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Clearly P ∗(t) = P (t) and I∗(t) = I(t) whenever P (0) is nonnegative. In
case P (0) is negative, then there exists some t0 for which P (t0) = 0, since
lim

t→∞
P (t) = ∞. Then,

P ∗(t) =
{

0, t ≤ t0,
P (t) t > t0.

and

I∗(t) =





I0e−θ1t −
∫ t

0
(D(s) + θ2)eθ1(s−t)ds, t ≤ t0,

I0e−θ1t −
∫ t0

0
D(s)eθ1(s−t0)ds +

∫ t

t0

(P (s)−D(s)− θ2)eθ1(s−t)ds, t > t0.

An explicit form of I∗ can easily be obtained.

? If I0 < q2, then depending on the values of the system parameter, P (t) is
not necessarily monotone. However, it is not hard to check that Equation
P (t) = 0 may have no roots but at most two roots, and these roots need to
be determined in order to determine the intervals on which P (t) is positive.
Numerical examples are presented below.

Example 4.2 Assume, for example, the following affine demand, d1 = 1 and
d2 = 0. Let I0 = 5 and let all other parameters be the same as in Example 4.1. This
is a case where I0 > q2 and P (0) < 0. In this case, there exists t0 = 0.997 for which
P (t0) = 0 and

P ∗(t) =
{

0, t ≤ t0,
P (t) t > t0.

Variations of P ∗(t) are depicted in Figure 4. The production rate P starts from
the negative value P (0) = −2.663 then it increases asymptotically to the line (θ1q1 +
d1)t+q1 +θ1q2 +d2 +θ2 = 0. Also, the variations of I∗(t) are depicted in Figure 5. It
starts from the positive value I0 = 1 then it decreases as t tends to infinity. Finally,
to determine the effect of the deterioration on the starting time of the production,
we computed the time t0 for various values of the deterioration rate. The results
are plotted in Figure 6. As can be seen and as one would expect, the higher the
deterioration rate, the earlier starting time of the production.

5 Conclusion

We have used in this paper an optimal control approach to determine the optimal
production rate in a production inventory system where items are subject to deteriora-
tion. The optimal solutions have been given in detail for specific exogenous functions.
It may be worth investigating the effect of other exogenous functions on the solution.
We expect the solution procedure to be more or less difficult, depending on the shape
of these functions.
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