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Abstract

Using a model based on probabilistic functions (PF ), it’s introduced the concept of
perfect zero knowledge (PZK ) commitment scheme (CS ) allowing quasigroupic homomorphic
commitment (QHC ). Using QHC of +m (modular sum in Zm), application is considered in
interactive argument systems (IAS ) for several languages. In four of the examples – generalized
nand (

[∧(α)

]
), string equality (

[
=(m,α,)

]
), string inequality (

[ �=(m,α,)

]
) and graph three-

colourations (G3C) – complexity improvements are obtained, in comparison to other established
results. Motivation then arises to define a general framework for PZK -IAS for membership
in language with committed alphabet (MLCA), such that the properties of soundness and
PZK result from high-level parametrizable aspects. A general simulator is constructed for
sequential and (most interestingly) for parallel versions of execution. It therefore becomes easier
to conceptualize functionalities of this kind of IAS without the consideration of low level aspects
of cryptographic primitives. The constructed framework is able to embrace PZK -CS allowing
QHC of functions that are not themselves quasigroupic. Several theoretical considerations are
made, namely recognizing a necessary requirements to demand on an eventual PZK -CS allowing
QHC of some complete function in a Boolean sense.
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1 Introduction

Interactive Proof Systems (IPS ) with Zero Knowledge (ZK ), as introduced in [2], allow a prover
P with unlimited computational power to convince a polynomially bounded verifier V that a
given public element belongs to a certain language, without any other relevant information being
transmitted. A variant of this notion – Interactive Argument System (IAS ) – was introduced in
[4], considering instead a polynomailly bounded P and a possibly unbounded V and prefering
computational to unconditional soundness and perfect to computational ZK.

Related with these notions, Commitment Schemes (CS ), “digital analogues of non-transparent
sealed envelopes” ([10]), allow interesting functionalities. Already in [4] was developed a CS with
unconditional security for bits (0 or 1), in the sense that blobs (published commitments) have
no computational relation with the committed bit. It then becomes possible for P, by randomly
selecting permutations of the truth table of function Nand, to convince V that some blob vector
commits some satisfiable Boolean formula (and from that, trivially, any NP -language).

Meanwhile, the concept of “homomorphic encryption” (HC ), allowing specific algebraic
operations to be performed in encrypted data without necessity of decryption, formalizes the notion
of “computing on encrypted bits” [4]. Several examples of cryptographic systems allowing HC have
already been proposed (see examples in [13]).

In the beginning of this paper, with the intent of setting the basis for a framework to
use, several concepts and respective notation are introduced by means of definitions, namely
for probability distribution (PD), probabilistic function (PF ), perfect zero knowledge commitment
scheme (PZK -CS ) and quasigroupic homomorphic commitment (QHC ). Then, the concept of
perfect zero knowledge interactive argument system for membership in language with committed
alphabet (PZK -IAS -MLCA) is introduced as a way of arguing knowledge about a secret
decommitment that codifies an element of some language.

Initial examples are given and in some cases are pointed out complexity improvements
in comparison to other established results, namely for languages (with committed elements):
generalized nand (

[∧(α)

]
), string equality (

[
=(m,α,)

]
), string inequality (

[ �=(m,α,)

]
) and graph

three-colourability (G3C). The similarities and differences in the set of examples motivates the
construction of a general framework where all can fit as specific parametrizations.

An immediate benefit of such a highly parameterizable framework is the ability to reduce the
description of requirements to a small number of high-level conditions that a PZK -CS and other
paramenters should satisfy in order that a PZK -IAS is suitable for a given language. Soundness and
PZK aspects are proven to exist as a consequence of the requirements. Moreover, the emphasis
in high level aspects enables the conceptualization of protocols and its functionalities without
accounting for low-level aspects of cryptographic primitives. General simulators are constructed
for sequential and (most interestingly) for parallel versions of the IAS.

The framework is prepared to consider PZK -CS allowing QHC of functions that (in high level)
are not themselves quasigroupic. In a inal consideration, a necessary requirement is identified that
a PZK -CS must satisfy in order to allow QHC of some complete function in a Boolean sense, such
as nand (∧̄).
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2 Preliminary Definitions

Some basic definitions and notation1 are useful to the structures and results presented in this article.

Definition 2.1 (Probability Distribution) A probability distribution (PD) over set Y is a
function g : Y → [0, 1] satisfying

∑
y∈Y g (y) = 1. PD (Y ) denotes the set of all PD over Y ;

y ← [g] : Y indicates that variable y is assigned a value selected from Y using PD g ∈ PD (Y ).

Definition 2.2 (Probabilistic Function) A probabilistic function (PF) from set X to
set Y is a function φ : X → PD (Y ). Let φ (x) ≡ φx. φ is deterministic if
(∀x ∈ X) (∃y ∈ Y ) (φx (y) = 1), injective if (∀x, x′, y ∈ X,X, Y ) (φx (y)φx′ (y) > 0⇒ x = x′) and
surjective if (∀y ∈ Y ) (∃x ∈ X) (φx (y) > 0). � (X,Y ) denotes the set of all PFs from X to Y .

Definition 2.3 (Inverse of a PF) Let g ∈ PD (X) and φ ∈ � (X,Y ). The 〈g〉-inverse of φ is a
PF φ〈−1,g〉 ∈ � (Y,X) satisfying φ〈−1,g〉

y (x) = g (x)φx (y) /
∑

x′∈X g (x′)φx′ (y) for all x, y ∈ X,Y
such that g (x)φx (y) �= 0 and φ〈−1,g〉

y (x) = 0 if g (x)φx (y) = 0. (Generalization to inverses of
PFs with more than one argument of input or output is trivial and is thus considered implicit.)

Informal Definition 2.4 (Computability and one-way-ness) A PF φ or a PD g is
computable if, given a set (�) of “available” PFs or PDs, it’s possible to compute a PF φ′ “similar”
to φ or a PD g′ “similar” to g, respectively. A PF φ is 〈g〉-one-way if it’s computable but its 〈g〉-
inverse is not. (Specific formal definitions of this concepts can be widely found in literature)

As a first application of these definitions, commitment schemes (CS ) will now be considered.
Informally [8], a CS is a procedure by which a prover (P) compromises information to a verifier
(V ), without V being able to gain knowledge about it and without P being able to decommit
dishonest information. Consider the following descriptions of steps of a particular CS.

Initialization Consider set K of security parameters, set N of public key parameters, set T of
private key (trapdoor) parameters and family φ(0) ∈ � (K,N × T ) of initialization PF s. Procedure:
V chooses security parameter k ∈ K and computes a pair 〈n, t〉 ← [

φ(0)
k

]
: N × T of public and

private keys, univocally defining a one-way function f (n,2) with trapdoor t. Keeping secret the
value of t, V publishes n and by means of some IPS or IAS, V convinces2 P that n belongs to N
and (for parallel versions) that it has the ability to invert f (n,2) (Consult Appendix B).

Codification and decodification Consider alphabet set Δ and, for each n ∈ N , codification set
X(n), along with set X =

⋃
n∈N X(n). Consider also family φ(1) =

{
φ(n,1) ∈ � (Δ,X(n)

)
: n ∈ N}

of injective and surjective codification PF s and family f (1) =
{
f (n,1) ∈ F (X(n),Δ

)
: n ∈ N} of

surjective decodification functions, where each φ(n,1) is a uniform inverse of f (n,1). Procedure: Each
�d ∈ �Δ is codified by P as �x←

[
φ(n,1)

(
�d
)]

: X and each �x is decodified by V as �d = f (n,1) (�x).

Commitment and decommitment Consider for each n ∈ N commitment set Y(n), set
Y =

⋃
n∈N Y(n) and family f (2) =

{
f (n,2) ∈ F (X(n), Y(n)

)
: n ∈ N} of non-injective committing

functions. Procedure: To commit �x (with decodification �d = f (n,1) (�x)), P calculates blob
�y = f (n,2) (�x) and sends it to V. To decommit −→y , P simply sends x to V.

Procedure sketch: (k ∈ K)
φ(0)

→ (〈n, t〉 ∈ N × T ) and (d ∈ Δ)
φ(n,1)

�
f(n,1)

(
x ∈ X(n)

) f(n,2)

→ (
y ∈ Y(n)

)
.

1Consult Appendix A for some notation.
2Note here the temporary exchange of roles – V is a prover and P a verifier.
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Definition 2.5 (Perfect Zero Knowledge Commitment Scheme (PZK-CS))
A PZK-CS is a CS procedure, with steps as defined above by sets K, N , T , Δ, X, Y and families
φ(0), φ(1), f (1), f (2) of computable PFs and functions, satisfying the following properties:

(Let [...]? denote a predicate returning 0 if ... is false and 1 if it’s true.)

1. PZK in blobs: Exists a PF φ(PZK) ∈ � (N,Y ) satisfying, for all d, n, y ∈ Δ, N, Y ,
φ(PZK)

n (y) =
∑

x∈X(n)
φ(n,1)

d (x)
[
f (n,2) (x) =? y

]?
(i.e. blob �y is independent of �d).

2. One-way-ness in f (2): For each n, x ∈ N,X(n) consider class
x̄ ≡ {

x′ ∈ X(n) : ∧i∈{1,2}f (n,i) (x′) = f (n,i) (x)
}
, set X(n) ≡

{
x̄ : x ∈ X(n)

}
of classes and

family f (2) =
{
f (n,2) ∈ � (X(n), Y(n)

)
: n ∈ N

}
of functions satisfying(∀x ∈ X(n)

) (
f (n,2) (x̄) = f (n,2) (x)

)
. f (2) is one-way in the sense that, given 〈x, y〉 such

that y = f (n,2) (x), it’s infeasible – without a trapdoor t obtained by 〈n, t〉 ← [
φ(0)

k

]
– to find

x′ such that f (n,2) (x′) = f (n,2) (x) and f (n,1) (x′) �= f (n,1) (x), although it may be “fesible” to
find x′ �= x such that x′ ∈ x.3

3. Soundness: Exists a computable PF φ(SND) ∈ � (N × 〈X ×X〉 × Y ×Δ,X) satisfying
φ(SND)

n,〈x(1),x(2)〉,y,d (x) =
[
φ(n,1)

d (x)× a0 (d, x, y)
/
a1 (d, y)

]
× a2

(
x(1), x(2)

)
, for each

n, x(1), x(2), y, d ∈ N,X(n),X(n), Y,Δ, with a0 (d, x, y) =
[
f (n,1) (x) = d

]? [
f (n,2) (x) = y

]?
,

a1 (d, y) =
∑

x′∈X(n)
φ(n,1)

d (x′) × a0 (d, x′, y) and a2

(
x(1), x(2)

)
=[

f (n,2)
(
x(1)

)
= f (n,2)

(
x(2)

)]? [
f (n,1)

(
x(1)

) �= f (n,1)
(
x(2)

)]?
(i.e. a pair

〈
x(1), x(2)

〉
satisfying

simultaneously f (n,2)
(
x(1)

)
= f (n,2)

(
x(2)

)
and f (n,1)

(
x(1)

) �= f (n,1)
(
x(2)

)
is a trapdoor

element for f (n,2), because it allows its
〈
φ(n,1) (d)

〉
-inversion f (n,2) for any d ∈ Δ).

Some types of CS enable the possibility of “homomorphic commitment” (consult [3] for the
concept of “computing on encrypted bits” and [13] for a list of examples). After the two following
auxiliary definitions, a similar though more specialized notion – quasigroupic homomorphic
commitment (QHC ) – is presented, with relation to the just defined PZK -CS structure.

Informal Definition 2.6 (Relevant arguments of input – function γ) Consider a positive
integer α and a function ξ ∈ F (Xα,X). By definition, γ (ξ) ⊆ Zα is the set of indices of relevant
arguments of input of ξ, i.e. the arguments whose input is susceptible of influencing the output.
Note: each index is given as the number of the argument less 1, thus for an input with α arguments,
the respective indices run from 0 to α− 1. (consult appendix B for a formal definition of γ).

Definition 2.7 (Quasigroupic arguments) 4 Consider sets S(0), ..., S(α) with equal cardinality.
A function f ∈ F

(×j∈ZαS(j), S(α)

)
is said to be quasigroupic in argument with index j ∈ Zα if(

∀
−→
s(1) ∈ ×j∈ZαS(j)

)
S(α) =

{
f

(−→
s(2)

)
:
(
s(2)j ∈ ×j∈ZαS(j)

) ∧ (∧k∈Zα′′ :k �=j s
(1)

k = s(2)k
)}

.

Definition 2.8 (Quasigroupic Homomorphic Commitment (QHC )) A PZK-CS is said to
allow QHC of function ♦ ∈ F (Δα,Δ) over alphabet Δ if for every n ∈ N exists at least one
function ξ ∈ F (X(n)

α,X(n)

)
such that:

1. f (n,1) :
〈
X(n), ξ

〉→ 〈Δ,♦〉 is an homomorphism, i.e. f (n,1) (ξ (�x)) = ♦ (f (n,1) (�x)
)
.

3For the sake of simplicity it’s avoided the formal definition of family of one-way functions. It’s intentional
however that no dependence exists with an assumption that P �= NP . All that is needed is that exist functions
whose computational evaluation is sufficiently more “easy” that the computation of it’s inverse.

4This definition is inspired in the concept of quasigroup: A pair 〈S, ∗〉 of a set S and a binary operation * is a
quasigroup if for each a and b in S there exist unique elements x and y in S such that a ∗ x = b and y ∗ a = b.
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2. Exists a function ψ ∈ F
(
Y(n)

α, Y(n)

)
such that f (n,2) :

〈
X(n), ξ

〉 → 〈
Y(n), ψ

〉
is an

homomorphism, i.e. f (n,2) (ξ (�x)) = ψ
(
f (n,2) (�x)

)
.

3. For every �d ∈ Δα, consider element d′ ≡ ♦
(
�d
)
, set X(n,d) ≡

{
x ∈ X(n) : f (n,1) (x) = d

}
and

function ξ

“−→
d

”
: ×j∈ZαX(n,dj) → X(n,d′) defined by

(
∀�x ∈ ×j∈ZαX(n,dj)

)(
ξ

“−→
d

”
(�x) = ξ (�x)

)
.

Condition statement: Function ξ

“−→
d

”
is quasi-groupic for all its relevant arguments of input.

Let ∇ ≡ F (Δα,Δ) and let Ξ(n,♦) and Ψ(n,♦) stand for the set of functions ξ and ψ,
respectively, satisfying the above conditions for a selected parameter n ∈ N in a PZK -CS allowing
QHC of ♦ ∈ ∇. Consider from this point forward that exists an implicitly defined family
q =

{
q(n) : n ∈ N} of functions q(n) : ∇ → F

(
X(n)

α,X(n)

)
satisfying (∀♦ ∈ ∇)

(
q(n) (♦) ∈ Ξ(n,♦)

)
and q(n) (♦) = ξ ⇒ φ(n,1)♦ (ξ) = 1.

QHC sketch: 〈d ∈ Δ,♦〉
φ(n,1)

�
f(n,1)

〈
x ∈ X(n), ξ ∈ Ξ(n,♦)

〉 f(n,2)

→ 〈
y ∈ Y(n), ψ ∈ Ψ(n,♦)

〉

Comment As a specific example, consider the CS used in [1], based on Jacobi Symbol and Blum
integers, that satisfies the properties here required for PZK -CS allowing QHC of +2 (sum mod 2).
In that case f (n) is squaring modulo n, and q(n) (+2) = ×m (multiplication mod n). Note that QHC
of a function ♦ doesn’t imply that ♦ itself is a quasigroup. In fact, a major breakthrough would
be exactly to find a PZK -CS allowing QHC of some function that is not a quasigroup, namely
function Nand (∧ ∈ F (Δ2,Δ

)
, with Δ = {0, 1}.

3 Membership in Language with Committed Alphabet: Examples

Consider a language L and a relation r ⊆ X × Y satisfying 〈x, y〉 ∈ r ⇒ y ∈ L. In a typical
Interactive Proof System ([2]) for language L, given a public element element y ∈ L, P wants to
prove (to V ) the knowledge of a certificate of membership of y, i.e. of an element x such that
〈x, y〉 ∈ r. For the IPS to be Zero-Knowledge (ZK ), V must get convinced of the assertion (y ∈ L)
without acquiring information that enables the determination of x.

Another perspective, however, is to consider a relation r ⊆ X×Y satisfying 〈x, y〉 ∈ r ⇒ x ∈ L.
In particular – and making now the connection with the structure PZK -CS defined in the previous
section – consider a relation r satisfying 〈x, y〉 ∈ r ⇒ (

f (n,2) (x) = y ∧ f (n,1) (x) ∈ L), for some
language L. In this case, the membership proof (or argument) will be about a secret element,
instead of a public one. In what follows, in the perspective of arguing knowledge of a secret
membership certificate, a special type of interactive argument system (IAS ) is defined – (see [4] for
a distinction between the concepts of proof and argument).

Definition 3.1 (PZK -IAS-MLCA) A PZK-IAS for membership in language L(α) ⊆ Δα with
committed alphabet (PZK-IAS-MLCA-L(α)) is a (complete and sound) PZK-IAS in which, for
any �d ∈ L(α), after agreement of a PZK-CS and respective parameter n, P is able to generate a

codification �x←
[
φ(n,1)

(
�d
)]

: X(n)
α of �d , publish its commitment �y = f (n,2) (�x) (“blob”) and then

convince V that it knows a secret decommitment �x whose decodification �d = f (n,1) (�x) is indeed an
element of L(α), without V gaining any relevant additional information (in a PZK sense).

Note: The framework constructed after the examples of this section will demonstrate the
properties of soundness and PZK and show how all PZK -IAS -MLCAs can be parallelized.
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3.1 “Generalized nand” – using QHC of +2 (sum mod 2)

Consider function ∧ : Z2
∗ → Z2 (nand) satisfying ∧

(
�d
)

=2

(∏
j∈{0,...,|�d|} dj

)
+2 1. The set

obtained by concatenating each of the 2α−1 distinct possible inputs in Z2
α−1 with the

respective output of function ∧ gives rise to language
[∧(α)

]
=
{
�d ∈ Z2

α : dα−1 = ∧ (d0 · ... · dα−2)
}

(generalized α-Nand). Note that
[∧(α)

]
can also be characterized as the set of elements �d in Z2

α

that satisfy
∑

j∈{0,...,α−2} [dj +2 dα−1 =2 1]? + (α− 2)× [dα−1 =2 1]? ≥ α− 1.

Let function �μ : Z2
α → Z2

2α−3 be defined by μj

(
�d
)

= dj +2 dα−1 if 0 ≤ j ≤ α− 2 and

μj

(
�d
)

= dα−1 if α−1 ≤ j ≤ 2α−3. The equivalence
[
�d ∈ [∧(α)

]]? ≡ [1 ∈α−1 μ
(
�d
)]?

of predicates,

with i ∈j �d standing for # ({dk : dk = i}) ≥ j, imply that �d in Z2
α is an element of

[∧(α)

]
if and

only if there are at least α− 1 components of μ
(
�d
)

with value 1.

The table at the side sketchs this property for the case α = 3,
with �μ

(
�d
)

= 〈d0 +2 d2, d1 +2 d2, d2〉. �d in Z2
3 is in

[∧(3)

]
if and

only if there are at least two components of μ
(
�d
)

with value 1.
Considering again a generic integer α, assume that a PZK -CS
allowing QHC of +2 is already initialized with public key
parameter n, and that P has published an initial commitment
�y ∈ Y(n)

α, for which it knows a secret decommitment �x ∈ X(n)
α

satisfying �y = f (n,2) (�x) and f (n,1) (�x) ∈ [∧(α)

]
.

�d ∈ Δ3 μ
“

�d
” h

�d ∈ ˆ∧(3)

˜i?

000 000
001 111 True
010 010
011 101 True
100 100
101 011 True
110 110 True
111 001

Procedure In order to reduce the probability of sucessful cheating by P to a value negligibly
superior to 2−s, s rounds (sequentially or in parallel) of the following steps are performed:

Witness Let �ν : Z2
α × Z2

2α−3 → Z2
2α−3 satisfy �ν

(
�d,
−→
d′
)

= �μ
(
�d
)

+2

(−→
d′
)
. Let Π (m) stand

for the set of permutations of 〈0, ...,m − 1〉, for any m ∈ N1. P selects permutation
π ← [U (Π (2α− 3))], determines functions �♦ = π (�ν) and �ξ = q(n)

(
�♦
)
, selects codification

−→
x′ ← [

φ(n,1)
(
02α−3

)]
, calculates

−→
x′′ =

−→
ξ
(
�x,
−→
x′
)

and sends witness
−→
y′′ = f (n,2)

(−→
x′′
)

to V.

Challenge V uniformly selects a challenge e ∈ {0, 1} and sends it to P.

Response If e = 0, P discloses �ξ (univocally defined by permutation π) and codification
−→
x′ . If

e = 1, P discloses α− 1 distinct components of
−→
x′′ codifying value 1.

Verification If e = 0, V calculates
−→
y′ = f (n,2)

(−→
x′
)

and �ψ = f (n,2)
(
�ξ
)

and verifies that

�ψ
(
�y,
−→
y′
)

=
−→
y′′, f (n,1)

(−→
x′
)

= 02α−3 and f (n,1)
(−→
ξ′
)
∈ Π(2α − 3). If e = 1, V verifies,

for the α− 1 indexes j of disclosed components, that f (n,2) (x′′j) = y′′j and f (n,1) (x′′j) = 1.

Comment In [3], using a specific CS that allows QHC of +2, it’s presented a method of
“permuted truth tables” enabling a PZK -IAS for

[∧(3)

]
(nand). The direct generalization of that

result for other languages has a complexity proportional to the size of the string of all elements of
the language, giving for

[∧(α)

]
an overall complexity in O (α× 2α). The above protocol presents a

complexity improvement, since it has complexity proportional to 2α− 3, which is in O (α).
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3.2 “Multiplication modulo 3”

Consider function ×3 : Z3
∗ → Z3 satisfying ×3

(
�d
)

=3 Π(j∈{0,...,|�d|})dj (mod 3) (multiplication

mod 3). Language
[×(α,3)

]
=
{
�d ∈ Z3

α : dα−1 = ×3 (d0 · ... · dα−2)
}

is obtained by concatenating

each of the 3α−1 distinct possible inputs in Z3
α−1 with the respective output of

function ×3. Consider, for α = 3, auxiliary function �μ : Z3
3 → Z3

5

satisfying �μ
(
�d
)

= 〈2d1 +3 2d2, d0 +3 d2, 2d0 +3 d2, 1 +3 2d0, 2 +3 2d0 +3 d2〉. The equivalence[
�d ∈ [×(3,3)

]]? ≡ [0 ∈2 μ
(
�d
)
∧ 1 ∈1 μ

(
�d
)
∧ 2 ∈1 μ

(
�d
)]?

of predicates (found after a computational
search), immediately suggests the procedure of an PZK -IAS -MLCA , defined similarly to the one
described above for

[∧(3)

]
– only differing in �μ : Z2

3 → Z2
5 (and the parameters dependent on �μ).

The associativity of ×3 makes it easy to consider language
[×(α,3)

]
with α > 3.

3.3 “String Equality” (over Zm)

Consider language
[
=(m,α)

]
=
{−−→
d(1) ·

−−→
d(2) ∈ Zm

2α :
−−→
d(2) =

−−→
d(2)

}
of pairs of equal strings of length

α ∈ N2 over alphabet Zm. Let two strings
−−→
d(1) and

−−→
d(2), both in Zm

α, be codified by
−−→
x(1) and

−−→
x(2) and

committed by
−−→
y(1) and

−−→
y(2), respectively, using a PZK -CS that allows QHC of +m : Zm

∗ → Zm.

Aspect 1 Let
−−→
μ(0) : Z2

2α → Z2
α be defined by

−−→
μ(0)

(−−→
d (1),

−−→
d (2)

)
=
−−→
d(1) +m (m− 1)×m

−−→
d(2), with

(m− 1)×m

−−→
d(2) calculated as a sum ofm−1 equal terms. Using QHC of +m, it’s possible to calculate

functions
−→
ξ(0) = q(n)

(−−→
μ(0)

)
and
−−→
ψ(0) = f (n,2)

(−→
ξ(0)

)
, codification

−−→
x(0) =

−→
ξ(0)

(−−→
x(1),

−−→
x(2)

)
and blob

−−→
y(0) =

−−→
ψ(0)

(−−→
y(1),

−−→
y(2)

)
satisfying f (n,1)

(−−→
x(0)

)
=
−−→
d(0) and f (n,2)

(−−→
x(0)

)
=
−−→
y(0). The equivalence[−−→

d(1) =
−−→
d(2)

]?

≡
[−−→
d(0) = 0α

]
, suggests focusing simply on a PZK -IAS -MLCA for language {0α}.

Aspect 2 Consider function μ(�c) : Z2
α → Z2, defined by μ(�c)

(
d(0)

)
=
∑

j∈Zα
cj ×m d(0)

j , with

cj ×m d(0)
j being calculated as a sum of cj equal terms, for every �c ∈ Zm

α. Let d(�c) ≡ μ(�c)

(−−→
d(0)

)
.

Note that #
{
�c ∈ Zm

α : d(�c) �=m 0
}

equals 0 if
−−→
d(0) = 0α and is no less than mα/2 if

−−→
d(0) �= 0α. So, for

each selected �c← [U (Zm
α)], if d(0) =m 0α then d(�c) is 0 with certainty, while if d(0) �=m 0α then d(�c)

differs from 0 with probability of at least 1/2. Again, QHC of +m allows the calculation of functions
ξ(�c) = q(n)

(
μ(�c)

)
and ψ(�c) = f (n,2)

(
ξ(�c)
)
, codification x(�c) = ξ(�c)

(
x(0)

)
and blob y(�c) = ψ(�c)

(
y(0)

)
,

together satisfying f (n,1)
(
x(�c)

)
= d(�c) and f (n,2)

(
x(�c)

)
= y(�c).

Procedure For each �c ← [U (Zm
α)], a single-round PZK -IAS -MLCA arguing that d(�c) equals 0

gives some confidence about
−−→
d(1) ·

−−→
d(2) ∈ [=(m,α)

]
. The probability of sucess for a dishonest prover,

knowing decommitments x(1) and x(2) of y(1) and y(2) but correponding to elements d(1) �= d(2),
is utmost 3/4 = 1/2 + 1/2 × 1/2 (1/2 probability that �c satisfies d(�c) = 0 plus, if d(�c) �= 0 – with
1/2 probability – being able with 1/2 probability to respond to a dishonestly produced witness –
see how in the simulator description in the next section). To reduce to 2−s the overall probability,
s× log4/3 2 single-round IAS s are executed, each with a new selection �c← [U (Zm

α)]. In the same
way that for language

[∧(α)

]
was argued that in a set of 2α− 3 elements there were at least α− 1

with value 1, in this case it’s argued that in a set of just one element there’s one with value 0.
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Comment Since in each round, the witness and response steps demand the communication
of a single blob and decommitment, respectively, the overall communication complexity of the
PZK -IAS -MLCA is in O (s), instead of O (s× α) as in the example mentioned also in [3] for string
equality, that runs every index j ∈ Zα and showing that d(1)

j �= d
(1)
j .

3.4 “String Inequality” (over Zm)

The language of pairs of different strings in Zm
α is easily defined as

[�=(m,α)

]
= Zm

2α\ [=(m,α)

]
.

A reasoning similar to the one made initially for “string equality” allows reducing the problem to

arguing that vector
−−→
d(0) =

−−→
d(1) +m (m− 1)×m

−−→
d(2) is different from 0α. This case may seem simpler

than the one for “string equality”, but caution be taken. Let index l ∈ Zα satisfy d(0)
l �= 0.

Caution 1 Index j (there may be several satisfying the above condition) shouldn’t be disclosed.
Let, as for “string equality”, d(�c) ≡ ∑

j∈Zα
cj ×m d(0)

j, for every cj ∈ Zm
α. Let also, for

every
−−→
c (0) ∈ Zm

α, vector
−−→
c (1) ∈ Zm

α be defined by (∀j ∈ Zα : j �= l)
(
c (1)j = m− c (0)j

)
and

c (1)l = (m− c (0)l + 1) (mod m). Note that at least one of d
“−−→
c(0)

”
or d

“−−→
c(1)

”
differs from 0. The

problem thus reduces to arguing that at least one of two components is different from 0.

Caution 2 Let index i ∈ Z2 satisfy d

“−→
c(i)

”
�= 0. The case with m = 2 is simple because

it resumes to show that a component with value 1 exists. For m > 2, however, the value

of d
“−→
c(i)

”
must not be disclosed (or it would give information besides

−−→
d(1) ·

−−→
d(2) ∈ [�=(α,m)

]
).

Let Z
∗
m be the set of elements of Zm coprime with m. When m is prime5, the equivalence[

d

“−→
c(i)

”
�=m 0

]?

⇔
[
Z
∗
m =

{
k ×m d

“−→
c(i)

”
: k ∈ Z

∗
m

}]?

suggests a procedure.

Procedure s rounds are executed as follows:

Witness P selects
−−→
c (0)← [U (Zm

α)] and k ← [U (Z∗
m)], determines

−−→
c (1) (from

−−→
c (0) as defined

above) and
−→♦ : Zm

2α → Zm
2 satisfying ♦i

(−−→
d(1) ·

−−→
d(2),
−→
d′
)

= d′i +m k ×m d

“−→
c(i)

”
with i ∈ Z2

(value k ×m d

“−→
c(i)

”
is in fact calculated as the sum of k equal terms d

“−→
c(i)

”
), calculates−→

ξ = q(n)
(−→♦), determines

−→
d′ = 02, computes

−→
x′ ←

[
φ(n,1)

(−→
d′
)]

, calculates
−→
x′′ = ξ

(−→x ,−→x′)
and sends witness

−→
y′′ = f (n,2)

(−→
x′′
)

to V.

Challenge V selects a challenge e← [U ({0, 1, 2})] and sends it to P.

Response If e ∈ {0, 1}, P discloses ξe (univocally defined by
−−→
c (e) and k) and discloses x′e. If

e = 2, P discloses x′′i for some i such that d
“−→
c(i)

”
�= 0.

Verification If e ∈ {0, 1}, V verifies that f (n,1) (x′) = 0, calculates ♦e = f (n,1) (ξe) (univocally
determining

−−→
c (e) and k) and verifies that

−−→
c (e) ∈ Zm

α and k ∈ Z
∗
m, calculates y′e = f (n,2) (x′e)

and ψe = f (n,2) (ξe) and verifies that ψe

(−→y ,−→y′) = y′′e. If e = 2, V verifies that

f (n,2) (x′′i) = y′′i and f (n,1) (x′′i) ∈ Z
∗
m.

Comment Responding simultaneously to e = 0 and e = 1 would disclose l, since it’s the only
index j ∈ Zα for which c (0)j + c (1)j = 1. Responding simultaneously to a challenge e = i ∈ {0, 1}
and e = 2 would disclose d

−−−→
(c(i)), because it’s univocally defined by k, d′i and d′′i = d′i + k × d

−−−→
(c(i)).

5The more complex case with m not prime easily derives from [(∃l ∈ Zα) (∃d′ ∈ {1, ..., m− 1}) (d′ +m dl = 0)]
?
.
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3.5 “Graph 3-colorations”

In [5] was presented a first example of a PZK -IPS for G3C (3-colorable graphs) – a NP -Complete
language – based on the sole assumption that secure encryption functions exist. For a soundness
error probability of about e−s ≈ 2.72−s and a graph with nv vertices and ne edges, that protocol
requires ne × s rounds, each requiring encryption of the color of all nv vertices, thus making an
overall complexity of about O (nv × ne× s). However, assuming QHC of +2, the communication
complexity can be reduced to O ((nv + ne)× s) as explained ahead. Although this improvement
could be obtained as a trivial consequence of a PZK -IAS -MLCA for Nand, by constructing a
circuit of nand gates verifying the validity of 3-colorations, the following form seems to be worth
mentioning for its elegant simplicity. Consider a graph G = 〈Znv,E〉 with nv vertices and ne
edges in Znv

2 and a valid 3-coloration mapping col : Znv → Z2
2\ {00}. Consider also that a

PZK -CS allowing QHC of +2 has been initialized with public-key parameter n and that P has

published, for every vertex i ∈ Znv, the commitment
−→
y(i) ∈ Y(n)

2 of a secret codification
−→
x(i) ∈ X(n)

2

of colour
−→
d(i) =

−→
col (i) ∈ Z2

2. The equivalences of predicates
[−→
d(i) ∈ {01, 10, 11}

]?

≡
[
1 ∈1

−→
d(i)

]?

(for i ∈ Znv) and
[−→
d(i) �=

−→
d(j)

]?

≡
[
1 ∈1

(−→
d(i) +2

−→
d(j)

)]?

(for 〈i, j〉 ∈ E), immediately suggest a

very simple PZK -IAS -MLCA for G3C. Basically the protocol consists of nv + ne protocols of
arguing that a given pair in Z2

2 includes element 1.

4 A generalized framework for PZK -IAS-MLCA

Motivation and guidelines All the examples above present obvious similarities and differences
among each other. It seems worthwhile the definition of a framework in which all the examples can
be framed and each can be defined as a specific parametrization. In particular, this will allow that a
formal description of each procedure and a demonstration of properties of soundness and PZK occur
simply as a consequence of the general structure, instead of having to make exaustive description
and proofs for every example. Note that the PZK -CS structure already differentiates three spaces,
associated with sets Δ (alphabet), X(n) (codifications) and Y(n) (commitments), related by means of
homomorphisms f (n,1) and f (n,2). Note also that in each PZK -IAS -MLCA three types of elements
may be disclosed in responses, namely ξ, x′ and x′′ related to space X(n), each corresponding,
respectively, to ♦, d′ and d′′ related to space Δ and, respectively, to ψ, y′ and y′′ related to
space Y(n). The framework will among other things generalize the functions for which QHC may
be available and will consider integrated responses disclosing components of every type. General
requirements will be stated in order that properties of soundness and PZK (in sequential and
parallel versions of execution) are a consequence of the structural definition. For each case it will
then only be necessary to make an approriate parametrization and select an adequate PZK -CS .

4.1 Parameters introduction

Abbreviation Let ∇ ≡ F
“
Δα ×Δα′

, Δα′′” and ∇′ ≡ F
“
Δα ×Δα′ ×Δα′′

, Δα′′”, with α, α′ and α′′ in N1.

Witness construction Consider a secret
−→
d ∈ Δα. Generators

−→♦ ∈ ∇α′′
and

−→
d′ ∈ Δα′

are
selected using PF φ(W ) ∈ �

(
Δα,∇α′′ ×Δα′

)
, so that witness

−→
d′′ =

−→♦
(−→
d ,
−→
d′
)

is calculated.

By definition let W(�d) ≡
{〈−→♦ ,−→d′〉 : φ(W )

�d

(−→♦ ,−→d′) > 0
}

and W ≡ ⋃�d∈L(α)
W
(
�d
)
.

Challenges Let Zε be the set of possible challenges, Tr the set of possible (partial or complete)
transcripts and s the number of rounds of an execution of a PZK -IAS -MLCA . ch = U (Zε)
is the PD used for honest challenge selection, while ch ∈ � (Tr,Zε) or ch ∈ � (Tr,Zε

s) are
the PDs used for dishonest selection in the sequential or parallel versions, respectively.
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Equation solving Let function χ : ∇ → P (∇′) be such that
−→♦′ ∈ χ

(−→♦) implies
−→
d′′ =

−→♦
(−→
d ,
−→
d′
)
⇔ −→d′′ =

−→♦′
(−→
d ,
−→
d′ ,
−→
d′′
)

(Note that
−→♦′ must enables explicity evaluation of

−→
d′′.

Responses Responses may disclose components of three types: �♦ and
−→
d′ (witness generators) and−→

d′′ (witness). Consider function ρ defined by ρ
(〈−→♦′,

−→
d′ ,
−→
d′′
〉
, 〈J0, J1, J2〉

)
= 〈r0, r1, r2〉, with

r0 ≡
{〈
j0,♦′

j0

〉
: j0 ∈ J(0)

}
, r1 ≡

{〈
j1, d

′
j1

〉
: j1 ∈ J(1)

}
and r2 ≡

{〈
j2, d

′′
j2

〉
: j2 ∈ J(2)

}
. R

is defined as the set of triplets 〈r0, r1, r2〉, with
−→♦′,
−→
d′ ,
−→
d′′ running over ∇′α′′

,Δα′
,Δα′′

and with
J(0), J(1), J(2) running over all subsets of Zα′′ ,Zα′ ,Zα′′ , respectively. After determination of a

witness d′′ = �♦
(
�d,
−→
d′ ,
−→
d′′
)

and a challenge e ∈ Zε, the response (in high-level) is selected

as −→r ←
[
φ(R)

(−→
d ,
−→♦ ,−→d′ , e

)]
using some PF φ(R) ∈ �

(
Δα ×∇α′′ ×Δα′ × Zε, R

)
. By

definition, let R(e) ≡
⋃

�d,�♦,
−→
d′∈Δα,∇α′′ ,Δα′

{
�r ∈ R : φ(R)−→

d ,
−→♦ ,

−→
d′ ,e

(−→r ) > 0
}

.

4.2 Execution procedure

PZK -CS initialization Fixed a security parameter k, V selects a pair 〈n, t〉 ← [
φ(0) (k)

]
of

public and private key parameters and, by means of some IPS, proves to P that n belongs
to N (i.e. that the CS with value n is indeed a PZK -CS ). For parallel versions of the
PZK -IAS -MLCA, V also proves to have the ability to invert the PZK -CS .6 Remember that
n univocally defines φ(n,1), f (n,1), f (n,2) and q(n).

Initial commitment P computes codification �x←
[
φ(n,1)

(
�d
)]

and sends �y = f (n,2) (�x) to V.

Iterations To minimize the probability of successful cheating by P, to a value negligibly superior
to # (Δ)−s, s iterations of type 〈�w, e,�r〉 (“witness → challenge → response”) are executed,
sequentially or in parallel, as follows.

Witness P computes
〈−→♦ ,−→d′〉← [

φ(W )
(
�d
)]

,
−→
ξ = q(n)

(−→♦), −→x′ ← [
φ(n,1)

(−→
d′
)]

and
−→
x′′ =

−→
ξ
(
�x,
−→
x′
)

and sends witness
−→
y′′ = f (n,2)

(−→
x′′
)

to V. Let
−→
d′′ ≡ −→♦

(
�d,
−→
d′
)
.

Challenge V Computes challenge e← [U (Zε)] (uniform selection) and sends it to P.

Response P computes −→r ←
[
φ(R)

(−→
d ,
−→♦ ,−→d′ , e

)]
, with r0 ≡

{〈
j0,♦′

j0

〉
: j0 ∈ J(0)

}
,

r1 ≡
{〈j1, d′j1〉 : j1 ∈ J(1)

}
and r2 ≡

{〈j2, d′′j2〉 : j2 ∈ J(2)

}
, with �J ∈ ×i∈Z3P

(
Zα(i)

)
and−→♦′ ∈ χ

(
�♦
)
. Computes

−→
ξ′ = q(n)

(−→♦′
)

and sends response
−→
r′ = 〈r′0, r′1, r′2〉 to V, with r′0 ={〈

j0,♦′
j0, ξ

′
j0

〉
: j0 ∈ J0

}
, r′1 = {〈j1, d′j1, x′j1〉 : j1 ∈ J1} and r′2 = {〈j2, d′′j2, x′′j2〉 : j2 ∈ J2}.

Verification V verifies that �r ∈? R(e) (with R(e) defined specifically for each PZK -IAS -MLCA).
For each j1 ∈ J(1) verifies that f (n,1) (x′j1) =? d′j1 and determines y′j1 = f (n,2) (x′j1).
For each j2 ∈ J(2) verifies that f (n,1) (x′′j2) =? d′′j2 and f (n,2) (x′′j2) =? y′′j2. For each
j0 ∈ J(0) verifies that f (n,1)

(
ξ′j0
)

=? ♦′
j0 , determines ψ′

j0 = f (n,2)
(
ξ′j0
)

and verifies that

ψ′
j0

(−→y ,−→y′ ,−→y′′) =? y′′j0 (possible because (∀j0 ∈ J0)
(
γ1

(♦′
j0

) ⊆ J1

)
will be required).

4.3 Conditions on parameters

Some requirements will be more easily understood after a familiarization with the simulators
(sequential and parallel) defined in the two following subsections.

6See in appendix B how this can be easily accomplished.
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Completeness The protocol must be accepted if P and V act honestly. Consider a response
�r = ρ

(〈−→♦′,
−→
d′ ,
−→
d′′
〉
, �J
)
∈ R(e) given after a challenge e ∈ Zε to a witness

−→
d′′ generated using pair〈−→♦ ,−→d′〉 ∈W of generators. Requirement:

−→♦′ is in χ
(−→♦); the PZK -CS allows QHC of

−→♦ and
−→♦′;

and J(1) =
⋃

j0∈J(0)
γ1

(
♦′

j0

)
(component d′′j0 can be verified using ♦′

j0).

PZK in witnesses It’s required that every component y′′j2 is probabilistically independent of
blob �y and of every other blob component y′′j′2 with j′2 �= j2. General requirement: For every

function
−→
ξ = q(n)

(
�♦
)

for which �♦ is susceptible of being a witness generator. The conditional

probability of obtaining a witness
−→
y′′ = f (n,2)

(
�ξ
(
�x,
−→
x′
))

, knowing that
−→
x′ ←

[
φ(n,1)

(−→
d′
)]

, is equal

to φ(PZK)
(−→
y′′
)

(remember PF φ(PZK) from the definition of PZK -CS ). A sufficient requirement:

The set of α′′ equations
−→
x′′ =? −→ξ

(−→x ,−→x′) (with all components of �x,
−→
x′ and

−→
x′′ as incognits) can’t

be solved to give a relation relating only components of −→x and
−→
x′′. Notes: The quasigroupicness

of
−→
ξ makes it possible to solve the system of linear equations in order of components x′j1, with

j1 ∈ γ1

(−→
ξ
)
. In this case linear independence implies probabilistic independence.

Soundness in responses In this framework, soundness is based on the assumption of infeasibility
to invert functions f (n,2) (as defined along with PZK -CS ). Consider initial secret −→x and generators−→
x′ and

−→
ξ of witness decommitment

−→
x′′ =

−→
ξ
(−→x ,−→x′). A response to some challenge e ∈ Zε discloses

some components ξ′j0, x
′
j1 and x′′j2, for some

−→
ξ′ ∈ χ

(−→
ξ
)
. This response can be summarized in

a set of equations
{
x′′j0 =? ξj0

(−→x ,−→x′ ,−→x′′) : j0 ∈ J(0)

}
, where each x′j1 for j1 ∈ J(1) and x′′j2 for

j2 ∈ J(2) is substituted by the disclosed value (and is thus no longer an incognit). Requirement:
Whatever two valid responses to two different challenges but the same witness, the set of equations
obtained by joining the two responses can be solved in order of some function ξ′ (�x) relating only
components of −→x (note that this is the inverse of some ψ′ (�y)).

Comment Although descriptions about ξ require a specific PZK -CS to be defined, its
quasigroupicness will often enable the verifications related with equation solving to be made just
by looking at the indexes γ (ξ) of relevant components of imput. In specific cases where

−→♦ has the
same components of relevant input than

−→
ξ , then all the requirements can be checked in space Δ.

Sequential simulator – PZK in responses Requirement: Exists a computable PF
φ(SS−R) ∈ � (Zε, R) satisfying, for every �d ∈ L(α), (∀e,�r ∈ Zε, R)(
φ(SS−R)

e (�r) =
∑D−→♦ ,

−→
d′

E
∈W(�d)

φ(W )
�d

(−→♦ ,−→d′)× φ(R)
�d,
−→♦ ,

−→
d′ ,e

(�r)
)

. Note: This guarantees the

existence of a sequential simulator without need of an element �d.

Parallel simulator – PZK in witnesses and responses Requirement: Exists computable
PD g(PS−W ) ∈ PD (W ) and a computable PF φ(PS−R) ∈ � (W × Ze, R) satisfying (∀e,�r ∈ Zε, R)(∑D

�♦,
−→
d′

E
∈W

g(PS−W )
(〈
�♦,−→d′

〉)
× φ(PS−R)D

�♦,
−→
d′

E
,e

(�r)
)

= φ(SS−R)
e (�r). Also, it’s required that(∀e,�r ∈ Zε, R(e)

)
(J0

⋂
J2 = ∅) Note: After a selection of witnesses (using g(PS−W )), responses can

be selected with the same probability as in real executions. The first conditions guarantee the
existence of a parallel simmulator without the need of an element �d. The last condition, relating
sets J0 and J2 of disclosed components, eliminates the necessity of inverting functions

−→
ξ .
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Comment After these parameter’s conditioning, the parameterization of
specific PZK -IAS -MLCAs depend on the definition of PF s φ(W ) and φ(R), in conjunction with
all parameters that relate them with the language L(α) in question.

4.4 Sequential simulator

Sequential versions are specially adequated when P doens’t trust in V ’s ability to invert f (n,2).
Consider the simulation of an execution where the possibly dishonest behaviour of V in the selection
of challenges is defined by ch ∈ � (Tr,Zε), with Tr being the set of possible transcripts.

Initialization The PZK -CS initialization is trivial because V is the prover in that stage. The
initial blob is selected as �y ←

[(
φ(PZK)

n

)α′′]
. The transcript initializes as tr = 〈〈k, n, s, ..., �y〉〉,

with “. . . ” being information about the validation of n.

Iterations s iterations of the following steps are executed sequentially:

Challenge anticipation Challenge is guessed as e← [U (Zε)] (uniform selection).

Simultaneous computation of witness and response Selects �r ← [
φ(SS−R) (e)

]
. Let �r ≡

ρ
(〈−→♦′,

−→
d′ ,
−→
d′′
〉
, �J
)
. For j1 ∈ J(1): computes x′j1 ←

[
φ(n,1) (d′j1)

]
and y′j1 = f (n,2) (x′j1). For

j1 ∈ Zα′\J(1): computes y′j1 ←
[
φ(PZK)

n

]
. For j2 ∈ J(2): computes x′′j2 ←

[
φ(n,1) (d′′j2)

]
and y′′j2 = f (n,2) (x′′j2). For j0 ∈ J(0): determines ξ′j0 = q(n)

(
♦′

j0

)
, ψ′

j0
= f (n,2)

(
ξ′j0
)

and7 y′′j0 = ψ′
j0

(−→y ,−→y′ ,−→y′′). Sets
−→
r′ = 〈r′0, r′1, r′2〉, with r′0 =

{〈
j0,♦′

j0, ξ
′
j0

〉
: j0 ∈ J(0)

}
,

r′1 =
{〈j1, d′j1, x′j1〉 : j1 ∈ J(1)

}
and r′2 =

{〈j2, d′j2, x′j2〉 : j2 ∈ J(2)

}
.

Challenge verification and transcript update Determines e′ ← [ch (〈tr, �y〉)]. If e = e′ the
transcript is updated as tr→

〈
tr,
〈
�y, e,
−→
r′
〉〉

and the number of rounds incremented by one.
If e �= e′ the all round repeats from the beginning. Note that the expected number of rounds
is about ε× s, because ε−1 is the probability of guessing a challenge.

4.5 Parallel simulator

Consider the simulation of a parallel version in which V is able to invert the f (n,2) and has a
possibly dishonest behaviour, in the selection of challenges, defined by ch ∈ � (Tr,Zε

s).

Initialization Besides an initialization of the PZK -CS similar to the sequential simulator case,
it’s also simulated the proof that V makes about the ability to invert the f (n,2). The initial
blob is also selected as �y ←

[(
φ(PZK)

n

)α′′]
.

Witnesses The anticipated guessing of challenges isn’t feasible now because of the exponential
cardinality (in s) of the challenge space Zε

s. For l ∈ s: selects generators〈−−→
♦(l),

−−→
d′(l)

〉
← [

g(PS−W )
]
, determines function

−−→
ψ(l) = f (n,2)

(−→
ξ(l) ←

[
φ(n,1)

(−−→
♦(l)

)])
,

selects
−−→
y′(l) ←

[(
φ(PZK)

n

)α′]
and determines witness

−−→
y′′(l) =

−−→
ψ(l)

(
−→y ,
−−→
y′(l),

−−→
y′′(l)

)
.

Challenge Transcript is initiallized as tr =
〈〈

k, n, ..., s, �y,

〈−−→
y′′(l) : l ∈ Zs

〉〉〉
. Then, selects

challenges as
〈
e(l) : l ∈ Zs

〉← [ch (tr)], with ch ∈ � (Tr,Zε
s).

7It’s trivial to calculate a permutation π ∈ Π(α′′), whose order enables explicit calculation of components of
−→
y′′.
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Response Consider superscript (l) implicit from this point forward. For each l ∈ Zs: determines
�r ←

[
φ(PS−R)

(〈
�♦,−→d′

〉
, e
)]

. Let �r ≡ ρ
(〈−→♦′,

−→
d′ ,
−→
d′′
〉
, �J
)

with
−→♦′ ∈ χ

(
�♦
)
. For j0 ∈

J(0): selects ξ′j0 ←
[
φ(n,1)

(♦′
j0

)]
and determines ψ′

j0 = f (n,2)
(
ξ′j0
)
. Using the ability

to invert f (n,2), computes8 for j1 ∈ J(1) ≡
⋃

j0∈J(0)
γ1

(
♦′

j0

)
components x′j1 satisfying

f (n,2) (x′j1) = y′j1 and f (n,1) (x′j1) = d′j1 and computes for j2 ∈ J(2) components x′′j2
satisfying f (n,2) (x′′j2) = y′′j2 and f (n,1) (x′′j2) = d′′j2. Defines

−→
r′ as in the sequential version.

Transcript update The transcript is finalized as tr =
〈
tr,
〈
e(l) : l ∈ Zs

〉
,

〈−−→
r′(l) : l ∈ Zs

〉〉
.

5 Some considerations

Some accomplishments 1) Communication complexity improvements were obtained for
PZK -IAS -MLCAs for 4 different languages (

[∧(α)

]
,
[
=(α,m)

]
,
[ �=(α,m)

]
and G3C), assuming QHC

of +2 or +m; 2) The defined framework allows conceptualization of functionalities considering just
high-level properties, namely alternative forms to recognize languages, that “intuitively” suggest
the definition of PF s q(W ) and q(R) when a PZK -CS allowing QHC of some function ♦ is available;
3) Simulators were constructed for both sequential and parallel versions of the PZK -IAS -MLCA.

An interesting problem The example in section 3 for language
[×(α=3,3)

]
was solved after

equivaling membership with a condition of type 0 ∈2 μ
(
�d
)
∧ 1 ∈1 μ

(
�d
)
∧ 2 ∈1 μ

(
�d
)
, for some

“strange” function −→μ : Z3
3 → Z3

5. This apparent non-triviality suggests the following problem: Is
there any straightforward way, for general m ∈ N, to define function �μ : Z

3
m → Zm

α′′
and respective

properties of type ∧j∈Zmj ∈k (j) �μ
(
�d
)

that enable an equivalence with membership in
[×(α=3,m)

]
?

Clarifying an open problem It remains an open problem nowadays to find a CS allowing
homomorphic encryption of a complete function in a Boolean sense, as is the case of Nand
(∧ : {0, 1}∗ → {0, 1}). By using an eventual PZK -CS allowing QHC of a complete function it would
be possible to homomorphically produce a witness y′′ whose decommitment x′′ codified an element

d′′ equal to the value of the membership predicate
[
�d ∈ L(α)

]?
, for any verifiable language L(α).

This would be a breakthrough in terms of communication complexity improvement, since arguments
for membership in any verifiable language would reduce to disclosure of a single decommitment.
Consider the following reasoning: A complete function is not quasigroupic (because composition
of functions is closed under quasigroupicness). Also, the composition of a complete function may
produce any other function. Thus, without loss of generality, consider a function �♦ : Δ2 → Δ,
satisfying d(0) = ♦ (d(1) · d(2)

)
= ♦ (d(1) · d(3)

)
, for some specific values d(0), d(1), d(2), d(3) all in

Δ and satisfying d(2) �= d(3). Consider now function �ξ = q(n)
(
�♦
)

and, for i ∈ {0, 1, 2, 3},
codifications x(i) and commitments y(i) satisfying f (n,1)

(
x(i)
)

= d(i) and f (n,2)
(
x(i)
)

= y(i) and
also x(0) = ξ

(
x(1), x(2)

)
= ξ

(
x(1), x(3)

)
and y(0) = ψ

(
y(1), y(2)

)
= ψ

(
y(1), y(3)

)
. Because ψ

is quasigroupic, y(2) and y(3) must be equal. Assuming now that inversion of function ξ is
computationally feasible, given x(0) and x(1) it’s possible to solve x(0) = ξ

(
x(1), x(2)

)
in order

of x(2) and solve x(0) = ξ
(
x(1), x(3)

)
in order of x(3). But since d(2) �= d(3), the pair of values〈

x(2), x(3)
〉

constitute, according to the definition of PZK -CS a trapdoor for f (n,2). Thus, it must
be concluded that an eventual PZK -CS allowing QHC of a complete Boolean must be such that
inversion of functions ξ is not computationally feasible, i.e. functions ξ are themselves one-way.

8Let t ∈ X(n)
2 be a trapdoor for n, as described in the definition of PZK -CS , enabling inversion of f (n,2) using

PF φ(SND). Components x′
j1 are computed as x′

j1 ←
h
φ(SND)

`
n, t, y′

j1 , d′
j1

´i
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Universidade Técnica de Lisboa, for having supervised my final graduation work in 2003/2004 (from
which this article follows), encouraging me to generalize some early stage results and concretize
and improve notation in a final stage. I thank my parents for all the support given throughout the
realization of this work.

7

References

[1] Manuel Blum; Coin Flipping by Telephone; Crypto, 1981, pages 11-15

[2] S. Goldwasser, S. Micali and C. Rackoff. The knowledge Complexity of Interactive
Proof Systems. placecountry-regionSIAM J. Comp. Vol. 18 (1989), pp. 186-208.
Preliminary version in 17th STOC, 1985.

[3] Gilles BRASSARD and Claude CREPEAU, Non Transitive Transfer of Confidence:
A perfect Zero Knowledge Interactive Protocol for SAT and Beyond. In 27th Symp.
of Found. of Computer Sci., pages 188-195. IEEE, 1986.
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A Notation

Frequent Acronyms

• CS : Commitment Scheme

• QHC : Quasigroupic Homomorphic
Commitment

• IAS : Interactive Argument System

• MLCA: Membership in language with
Committed Alphabet

• PD : Probability Distribution

• PF : Probabilistic Function

• PZK : Perfect Zero Knowledge

Frequent general symbols

• x, y, ... ∈ X,Y, ... : (x ∈ X) ∧ (y ∈ Y ) ∧ ...
• [n = m]? : 1 if n = m , 0 otherwise.

• X , Y : set of input, set of output.

• F (X,Y ) : Set of functions from X to Y .

• PD (X,Y ) : Set of PD from X to Y .

• � (X,Y ) : Set of PF from X to Y .

• P (S) : Power-set of set S.

• f , g , φ : Function, PD, PF.

• φ〈−1,g〉 : g -inverse of PF φ.

• φx (y) : probability that PF φ returns
output y when it has x as input.

• y ← [φ (x)] : Y : element y is selected from
Y using a PD φ (x).

• U (X) : Uniform PD over set X.

• A\B : {x ∈ A : x /∈ B}.
• # (S) : cardinality of set S.

• Δ : Alphabet

• ≡ : Equality by definition.

• Zn : Set of non-negative integers inferior
to n.

• =n,×n,+n : equality, multiplication and
sum mod n.

• Nn : Set of integers not inferior to n.

Notation in vectors and strings

• dj : (j + 1)th component of vector �d.

• 〈a0, a1, ...〉, 〈ai : i ∈ I〉 or a0 · a1 · ... :
Sequence, vector or string (order matters).

• �a||�b : concatenation of vectors �a and �b.

• |�v| : length of vector �v.

• Z
∗
n : Set of finite length strings with

components in Zn (don’t confuse with Z
∗
n).

• ∃iδ ∈ �d : exist exactly i components of �d
with value δ.

• δ ∈i �d : exist at least i components of �d
with value δ.

• dα : sequence 〈d : j ∈ Zα〉.
• Subscript or superscript inside parenthesis

(e.g. X(n) or ξ(n) ): enumeration of a set or
element, respectively, from within a family.

• Subscript or superscript without
parenthesis (e.g. dj or Δα ): component
of a vector or power (Cartesian product),
respectively.

• Π(n) , Π (〈a0, ...〉) : Set of permutations of
〈j : j ∈ Zn〉 and of 〈a0, ...〉, respectively.
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B Notes

Function γ (relevant arguments of input)

Consider an arbitrary set S and arity α ∈ N1. The indices of components that are relevant input
to functions in F (Sα, S) may be determined by function γ : F (Sα, S) → P (Zα) defined by
(∀f, j ∈ F (Sα, S) ,Zα)[
j ∈ (Zα\γ (f))⇔

[
(∀�s ∈ Sα) (∃σ ∈ S)

(
∀−→s′ ∈ Sα

)(
(∧k∈Zα:k �=jsk = s′k)⇒ f

(−→
s′
)

= σ
)]]

.

Informally, index j belongs to γ (f) if and only if the (j + 1)th component of f ’s input is relevant
to its output.

Consider now, more generally, integer n ∈ N2 and arities α (i) ∈ N1 for each i ∈ Zn. Indices
of components of relevant input can be determined by vector function
�γ ∈ F

(
F
(×i∈ZnS

α(i), S
)
,×i∈ZnP

(
Zα(i)

))
, defined by condition

(∀f, i, j ∈ F (Sα, S) ,Zn,Zα(i)

)
[ j ∈ (Zα(i)\γi (f)

) ⇔
[(
∀��s ∈ ×i′∈ZnS

α
)

(∃σ ∈ S)
(
∀
−→−→
s′ ∈ ×i′∈ZnS

α

)
([(∧i′∈Zn:i′ �=i�si = �si′

) ∧ (∧k∈Zα:k �=jsi,k = s′i,k
)]
⇒ f

(−→−→
s′
)

= σ

)]]
. Informally, index j belongs

to γi (f) if and only if the (j + 1)th component of the (i+ 1)th argument of input of f is relevant
to its output.

Proving the ability to invert the PZK -CS

To enable a parallelization possibility of a PZK -IAS -MLCA (whose framework is defined in section
4), it’s necessary that in the initialization process of the PZK -CS , agent V proves to have the
ability to invert function f (n,2). For a sufficiently large integer s, the desired proof runs as follows:

1. V computes −→y =
〈
yj ←

[
φ(PZK)

n

]
: j ∈ Zs

〉
and sends it to P.

2. P selects
−→
d ← [U (Δs)] and sends it to V.

3. V computes −→x =
〈(
xj ←

[
φ(SND) (n, t, yj, dj)

]
: X(n)

)
: j ∈ Zs

〉
and sends it to P.

4. P verifies that f (n,1) (−→x ) =? −→d and f (n,2) (−→x ) =? −→y .

The length s of vectors makes the probability of success for a dishonest P utmost negligibly
superior to m−s. A dishonest P (i.e. not able to invert f (n,2)) would have a probability of m−s of
guessing challenge �d and thus initially generating xj ←

[
φ(n,1) (dj)

]
and only then yj = f (n,2) (xj),

for each j ∈ Zs. If P didn’t guess the challenge but still was capable of responding correctly with
value xj, then it would have two decommitments corresponding to different values in Δ. However,
according to function φ(SND) in the definition of PZK -CS , that pair of decommitments is indeed
a trapdoor enabling inversion of f (n,2).
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