On Space-Times with commutative parings of vector fields

Giuseppe Caristi and Massimiliano Ferrara

Abstract

Let (M, g) be general space-time and let S be a Sachs frame over M. In this paper we use the complex vectoríal formalism constructed in [2]. If $h_{A},(A=$ $1,2,3,4)$ are the null vector fields which define S, we assume in this paper that $\left(h_{1}, h_{2}\right)$ and (h_{3}, h_{4}) define commutative parings. If $D_{12}=\left\{h_{1}, h_{2}\right\}$ and $D_{34}=\left\{h_{3}, h_{4}\right\}$ are the distributions defined by $\left(h_{1}, h_{2}\right)$ and $\left(h_{3}, h_{4}\right)$ then it is shown that M is of type D in Petrov's classification, and M is the local Riemannian product $M=M_{12} \times M_{34}$, where M_{12} is a surface tangent to D_{12} and M_{34} is a surface tangent to D_{34}. If the simple unit forms corresponding to M_{12} and M_{34} have the same recurrence form, then M moves to a Schwarzchild space-time of type 1 , and M is endowed with a symplectic structure.

M.S.C. 2000: 53C15, 53C80, 83C75.

Key words: Commutative parings, sachs frame, Schwarzchild space-time.

1 The main result

Let (M, g) be a general space-time satisfying the usual integrability conditions and let $S\left\{h_{A}\right\}$ be a Sachs frame (on a null frame) over M. It is assumed that, the vector fields h_{1}, h_{4} are real null vector field whereas h_{2}, h_{3} are complex conjugate vector fields.

We shall make use of the complex vectorial formalism (abv. C.V.F.) constructed in [2]. This formalism is based on the local isomorphism $\tilde{A}: L(4) \rightarrow S 0^{3} C$ where L (4) and $S 0^{3} C$ are the 4 -dimensional Lorentz group and the 3-dimensional rotation group.

If $\left\{\theta^{A}\right\}$ is the dual basis of $h_{A}, A=1,2,3,4$ then there exists an isomorphism between the 2 -forms $\theta^{A} \wedge \theta^{B}$ of the 6 -dimensional L_{6}^{*} and the antidual forms Z^{α} $(\alpha=1,2,3)$, which form a basis of the complex space C^{3}. That is in compact form (1.1) $d Z=\sigma \wedge Z$.

The 1-forms $\sigma_{\alpha}, \bar{\sigma}_{\alpha}$ (which are complex conjugate) depend on θ^{A} via

$$
\begin{align*}
& \sigma_{\alpha}=\sigma_{\alpha A} \theta^{A}, \bar{\sigma}_{\alpha}=\bar{\sigma}_{\alpha A} \bar{\theta}^{A} . \tag{1.1}\\
& \theta^{1}=\bar{\theta}^{1}, \theta^{4}=\bar{\theta}^{4}, \theta^{2}=\bar{\theta}^{3} \tag{1.2}
\end{align*}
$$

Applied Sciences, Vol.7, 2005, pp. 58-61.
© Balkan Society of Geometers, Geometry Balkan Press 2005.

The coefficients $\sigma_{\alpha A}, \bar{\sigma}_{\alpha A}$ correspond in [2] to the spinorial coefficients of Newmann and Penrose [5]. In terms of σ the manifold (M, g) is structured by the connection

$$
\left\{\begin{array}{c}
\nabla h_{1}=-\frac{1}{4}\left(\sigma_{3}+\bar{\sigma}_{3}\right) \otimes h_{1}+\frac{\bar{\sigma}}{2} \otimes h_{2}+\frac{\sigma_{2}}{2} \otimes h_{3} \tag{1.3}\\
\nabla h_{2}=-\frac{1}{2} \bar{\sigma}_{1} \otimes h_{1}+\frac{1}{4}\left(\sigma_{3}-\bar{\sigma}_{3}\right) \otimes h_{2}+\frac{\sigma_{2}}{2} \otimes h_{4} \\
\nabla h_{3}=\frac{1}{2} \sigma_{1} \otimes h_{1}-\frac{1}{4}\left(\sigma_{3}-\bar{\sigma}_{3}\right) \otimes h_{3}+\frac{\sigma_{2}}{2} \otimes h_{4} \\
\nabla h_{3}=-\frac{1}{2} \sigma_{1} \otimes h_{1}-\frac{\bar{\sigma}_{1}}{2} \otimes h_{3}+\frac{1}{4}\left(\sigma_{3}+\bar{\sigma}_{3}\right) \otimes h_{4}
\end{array}\right.
$$

and the first group of structure equations is expressed by

$$
\left\{\begin{array}{c}
d \theta^{1}=\frac{1}{2}\left(\sigma_{3}+\bar{\sigma}_{3}\right) \wedge \theta^{1}+\frac{\bar{\sigma}_{1}}{2} \wedge \theta^{2}+\frac{\sigma_{1}}{2} \wedge \theta^{3} \tag{1.4}\\
d \theta^{2}=-\frac{1}{2} \bar{\sigma}_{2} \wedge \theta^{1}+\frac{1}{4}\left(\sigma_{3}-\bar{\sigma}_{3}\right) \wedge \theta^{2}+\frac{\sigma_{1}}{2} \wedge \theta^{4} \\
d \theta^{3}=-\frac{1}{2} \sigma_{2} \wedge \theta^{1}-\frac{1}{4}\left(\sigma_{3}-\bar{\sigma}_{3}\right) \wedge \theta^{3}+\frac{\bar{\sigma}_{1}}{2} \wedge \theta^{4} \\
d \theta^{4}=-\frac{1}{2} \sigma_{2} \wedge \theta^{2}-\frac{1}{2} \bar{\sigma}_{2} \wedge \theta^{3}-\frac{1}{4}\left(\sigma_{3}+\bar{\sigma}_{3}\right) \wedge \theta^{4}
\end{array}\right.
$$

(see also [4]).
We assume in this paper that the parings $\left(h_{1}, h_{2}\right)$ and $\left(h_{3}, h_{4}\right)$ of null vector fields, are commutative (see also [4]); thus we have

$$
\begin{equation*}
\left[h_{1}, h_{2}\right]=0 \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[h_{3}, h_{4}\right]=0 \tag{1.6}
\end{equation*}
$$

where [.] denotes a Lie braket.
By (4) one finds that the Neumann-Penrose coefficients $\sigma_{\alpha A}, \bar{\sigma}_{\alpha A}$ satisfy

$$
\begin{equation*}
\sigma_{21}=0, \quad \sigma_{22}=0, \quad \sigma_{13}=0, \quad \sigma_{14}=0 \tag{1.7}
\end{equation*}
$$

and

$$
\left\{\begin{array}{cc}
\sigma_{32}+\bar{\sigma}_{33}-\frac{1}{2} \bar{\sigma}_{11}=0, & \sigma_{33}+\bar{\sigma}_{32}-\frac{1}{2} \bar{\sigma}_{24}=0 \tag{1.8}\\
\sigma_{31}+\bar{\sigma}_{31}-\frac{1}{2} \bar{\sigma}_{23}=0 & \sigma_{34}+\bar{\sigma}_{34}-\frac{1}{2} \bar{\sigma}_{12}=0
\end{array}\right.
$$

Equations (8) prove the significant fact that the space-time under consideration belongs to type D in Petrov's classification.

Furthermore, we derive from (5), taking account of (8), that

$$
\left\{\begin{array}{c}
d \theta^{1}=\left(\frac{1}{4}\left(\sigma_{3}+\bar{\sigma}_{3}\right)-\frac{1}{2}\left(\bar{\sigma}_{11} \theta^{2}+\sigma_{11} \theta^{3}\right)\right) \wedge \theta^{1}+\frac{1}{2}\left(\bar{\sigma}_{12}-\sigma_{12}\right) \theta^{3} \wedge \theta^{2} \tag{1.9}\\
d \theta^{2}=\left(\frac{1}{4}\left(\sigma_{3}-\bar{\sigma}_{3}\right)+\frac{1}{2}\left(\bar{\sigma}_{23} \theta^{1}-\sigma_{12} \theta^{4}\right)\right) \wedge \theta^{2}-\frac{1}{2}\left(\bar{\sigma}_{22}-\left(\theta^{3}+\sigma_{11} \theta^{4}\right) \theta^{3} \wedge \theta^{1}\right)
\end{array}\right.
$$

Furthermore setting $\varphi_{12}=\theta^{1} \wedge \theta^{2}$, we derive by (10)

$$
\begin{equation*}
d \varphi_{12}=\frac{1}{2}\left(\sigma_{3}-\sigma_{11} \theta^{3}-\sigma_{12} \theta^{4}\right) \wedge \varphi_{12} \tag{1.10}
\end{equation*}
$$

which shows that φ_{12} is an exterior recurrent (abv. E.R.) [3] form.

Similarly, setting $\varphi_{34}=\theta^{3} \wedge \theta^{4}$, we derive, taking account of (8)

$$
\begin{equation*}
d \varphi_{34}=\frac{1}{2}\left(\sigma_{3}+\sigma_{23} \theta^{1}+\sigma_{24} \theta^{2}\right) \wedge \varphi_{34} \tag{1.11}
\end{equation*}
$$

Let $D_{12}=\left\{h_{1}, h_{2}\right\}$ and $D_{34}=\left\{h_{3}, h_{4}\right\}$ be the two distributions which have the simple unit forms respectively φ_{12} and φ_{34}. Since both φ_{12} and φ_{34} are E.R., it follows by Frobenius theorem that the manifold M under consideration is the local Riemannian product of two surfaces M_{12} and M_{34} tangent to D_{12} and D_{34} respectively, i.e.

$$
M=M_{12} \times M_{34}
$$

It is worth noting that if φ_{12} and φ_{34} have the same recurrence form σ_{3}, then it follows by (11) and (12) that we have

$$
\begin{equation*}
\sigma_{11}=0, \quad \sigma_{12}=0, \quad \sigma_{23}=0, \quad \sigma_{24}=0 \tag{1.12}
\end{equation*}
$$

Then equations (8) and (13) prove the significant fact that the manifold M under consideration is a Schwarzchild space-time of type 1.

Moreover, by reference to Rosca [6], the equations (13) show that the almost symplectic form structure

$$
Z^{3}=\frac{1}{2}\left(\theta^{1} \wedge \theta^{4}-\theta^{2} \wedge \theta^{3}\right)
$$

moves to a symplectic form. Summing up we state the following
Theorem. Let (M, g) be a general space-time and let $S=\left\{h_{A}, A=1,2,3,4\right\}$ be a Sachs frame over M. If $\left(h_{1}, h_{2}\right)$ and $\left(h_{3}, h_{4}\right)$ define commutative parings then the following emerges:
(i) M belongs to type D in Petrov's classification;
(ii) M is the local Riemannian product

$$
M=M_{12} \times M_{34}
$$

where M_{12} is a surface tangent to the distribution $\left(h_{1}, h_{2}\right)$ and M_{34} is a surface tangent to the distribution $\left(h_{1}, h_{2}\right)$. If the simple unit forms corresponding to M_{12} and M_{34} have the same recurrence form, then M moves to a Schwarzchild Space-Time of type l.

References

[1] F. Amato, Espace-temps à champs isotropes commutatifs, C.R. Acad. Sci. Paris 289 (1979), 533-536.
[2] M. Cahen, R. Debever and L. Defrise, A complex vectorial formalism in General Relativity, J. Math. Mech. 16 (1967), 761-785.
[3] D.K. Datta, Exterior recurrent forms on a manifold, Tensor N.S. 36 (1982), 115120.
[4] W. Israel, Differential forms in General Relativity, Commun. Dublin Inst. Advanced Stud., Series A, 19 (1970).
[5] E. Neumann and R. Penrose, An approach to gravitational radiation by a method of spin coefficients, Journal Math. Phys. 3 (1962), 566-578.
[6] Gh. Vrănceanu, R. Rosca, Introduction in Relativity and Pseudo-Riemannian Geometry, Editura Academiei Rep. Soc. Romania, Bucharest, 1976, 1-127.

Authors' addresses:

Giuseppe Caristi and Massimiliano Ferrara
D.E.S.Ma.S. "V. Pareto", Faculty of Economics, University of Messina, Italy e-mail addresses: gcaristi@dipmat.unime.it, mferrara@unime.it

