A local modification to monopole equations in 8-dimension

Nedim Değirmenci and Nülifer Özdemir

Abstract

Monopole equations on 8-manifolds with spin(7) holonomy are given in [1]. In this work we write a local modification of the monopole equations on \mathbb{R}^8 . We show that these new equations are admit non-trivial solutions including all the 4-dimensional solutions as a special case as in [1].

M.S.C. 2000: 57R15, 53C27.

Key words: Seiberg-Witten monopole equations, $spin^c$ -structure

1 Introduction

The Seiberg-Witten monopole equations are stated for 4-dimensional manifolds and these equations have great importance for the topology of smooth four-manifolds (See [6], [5]). There are various generalizations of these equations to higher dimensions (See [3], [6], [1]). In this work we propose a modification of the monopole equations on \mathbb{R}^8 which are stated in [1].

2 Preliminaries

The framework used hereafter is described in detail in [6].

Definition 1. A spin^c-structure on a 2n-dimensional oriented real Hilbert space V is a pair (W, Γ) where W is a 2^n -dimensional complex Hermitian vector space and $\Gamma: V \longrightarrow End(W)$ is a linear map which satisfies

$$\Gamma(v)^{*} + \Gamma(v) = 0, \qquad \Gamma(v)^{*} \Gamma(v) = |v|^{2} 1$$

for every $v \in V$.

It is pointed out in [6] that such a map can be extended to an algebra isomorphism $\mathbb{C}l(V) \longrightarrow End(W)$ which satisfies $\Gamma(\tilde{x}) = \Gamma(x)^*$, where $\mathbb{C}l(V) \cong Cl(V) \otimes \mathbb{C}$ is complex Clifford algebra over V, \tilde{x} is conjugate of x in $\mathbb{C}l(V)$ and $\Gamma(x)^*$ denotes hermitian-conjugate of $\Gamma(x)$.

Applied Sciences, Vol.7, 2005, pp. 62-71.

[©] Balkan Society of Geometers, Geometry Balkan Press 2005.

Let (W, Γ) be a spin^c structure on V. There is a natural splitting of W. We fix an orientation of V and denote by

$$\varepsilon = e_{2n} \dots e_2 e_1 \in Cl(V)$$

the unique element of Cl(V) which has degree 2n and is generated by a positively oriented orthonormal basis $e_1, ..., e_{2n}$. Then $\varepsilon^2 = (-1)^n$ and hence

$$W = W^+ \bigoplus W^-$$

where the $W^{\pm} = \{w \in W | \Gamma(\varepsilon) w = \pm i^n w\}$ are the eigen spaces of $\Gamma(\varepsilon)$. Note that $\Gamma(v) W^+ \subset W^-$ and $\Gamma(v) W^- \subset W^+$ for every $v \in V$. So the restrictions of $\Gamma(v)$ to W^+ for $v \in V$ determine a linear map $\gamma: V \longrightarrow Hom(W^-, W^+)$ which satisfies

$$\gamma(v)^*\gamma(v) = |v|^2 \, 1$$

for every $v\in V$. The linear map $\Gamma:V\longrightarrow End\,(W)$ can be recovered from γ via $W=W^+\bigoplus W^-$ and

$$\Gamma(v) = \begin{pmatrix} 0 & \gamma(v) \\ -\gamma(v)^* & 0 \end{pmatrix}.$$

 γ satisfies $\gamma(v)^*\gamma(v) = |v|^2 \, 1$ if and only if Γ satisfies

$$\Gamma(v)^* + \Gamma(v) = 0, \Gamma(v)^* \Gamma(v) = |v|^2 1.$$

Let (W, Γ) be a spin^c structure on V. Such a structure gives an action of the space of 2-forms $\Lambda^2 V$ on W. This action is defined by the following:

Firstly, we identify $\Lambda^2 V$ with the space of second order elements of Clifford algebra $C_2(V)$ via the map

$$\Lambda^2 V \longrightarrow C_2(V) ; \eta = \sum_{i < j} \eta_{ij} e_i \wedge e_j \longmapsto \sum_{i < j} \eta_{ij} e_i e_j.$$

We compose this map with Γ to obtain a map $\rho: \Lambda^2 V \longrightarrow End(W)$ given by

$$\rho\left(\sum_{i < j} \eta_{ij} e_i \wedge e_j\right) = \sum_{i < j} \eta_{ij} \Gamma\left(e_i\right) \Gamma\left(e_j\right)$$

for any orthonormal basis $e_1, ..., e_{2n}$ of V. This map is independent of the choice of the orthonormal basis $e_1, ..., e_{2n}$. The spaces W^{\pm} are invariant under $\rho(\eta)$ for every 2-form $\eta \in \Lambda^2 V$. So we can define

$$\rho^{\pm}\left(\eta\right) = \rho\left(\eta\right)|_{W^{\pm}}$$

for $\eta \in \Lambda^2 V$. In 4-dimension $\rho^+(\eta) = \rho^+(\eta^+)$ for every 2-form $\eta \in \Lambda^2 V$, where η^+ is the self-dual part of η . The map ρ extends to a map

$$\rho: \Lambda^2 V \otimes \mathbb{C} \longrightarrow End(W)$$

on the space of complex valued 2-forms. If η is real valued 2-form then $\rho(\eta)$ is skew-Hermitian and if η is imaginary valued then $\rho(\eta)$ is Hermitian.

Globalizing Γ to 2*n*-dimensional oriented manifolds X leads to a $spin^c$ structure $\Gamma: TX \longrightarrow End(W)$, W being a 2^{*n*}-dimensional complex Hermitian vector bundle on X. Such a structure exists iff $w_2(X)$ has an integral lift (See [4]). Γ extends to an isomorphism between the complex Clifford algebra bundle $\mathbb{C}l(TX)$ and End(W). There is a natural splitting $W = W^+ \oplus W^-$ into the $\pm i^n$ eigenspaces of $\Gamma(e_{2n}e_{2n-1}...e_1)$ where $e_1, e_2, ..., e_{2n}$ is any positively oriented local orthonormal frame of TX.

A Hermitian connection \bigtriangledown on W is called a $spin^c$ connection (compatible with the Levi-Civita connection) if

$$\nabla_{v} \left(\Gamma \left(w \right) \Psi \right) = \Gamma \left(w \right) \nabla_{v} \Psi + \Gamma \left(\nabla_{v} w \right) \Psi$$

where Ψ is a spinor (section of W), v and w are vector fields on X and $\nabla_v w$ is the Levi-Civita connection on X. ∇ preserves the sub bundles W^{\pm} .

There is a principal $Spin^{c}(2n)$ -bundle P on X such that the bundle W of spinors, the tangent bundle TX, and the line bundle L_{Γ} can be recovered as the associated bundles

$$W = P \times_{Spin^{c}(2n)} \mathbb{C}^{2n}, \ TX = P \times_{Ad} \mathbb{R}^{2n}$$

where Ad is being the adjoint action of

$$Spin^{c}(2n) = \left\{ e^{i\theta}x : \theta \in \mathbb{R}, \ x \in Spin(2n) \right\} \subset \mathbb{C}l_{2n}$$

on \mathbb{R}^{2n} . Then it can be obtain a complex line bundle $L_{\Gamma} = P \times_{\delta} \mathbb{C}$ where δ : $Spin^{c}(2n) \to S^{1}$ by $\delta(e^{i\theta}x) = e^{2i\theta}$.

There is a one-to-one correspondence between $spin^c$ connections on W and $spin^c(2n) = Lie(Spin^c(2n)) = spin(2n) \oplus i\mathbb{R}$ -valued connection 1-forms $\widehat{A} \in A(P) \subset \Omega^1(P, spin^c(2n))$ on P. Hence every $spin^c$ connection \widehat{A} decomposes as

$$\widehat{A} = \widehat{A}_0 + \frac{1}{2^n} trace(\widehat{A})$$

where \widehat{A}_0 is the traceless part of \widehat{A} . Let $A = \frac{1}{2^n} trace(\widehat{A})$, this is an imaginary valued 1-form in $\Omega^1(P, i\mathbb{R})$ which satisfies

(2.1)
$$A_{pg}(vg) = A_p(v), \quad A_p(p.\xi) = \frac{1}{2^n} trace(\xi)$$

for $v \in T_p P$, $g \in Spin^c(2n)$, and $\xi \in spin^c(2n)$. Let

$$\mathcal{A}(\Gamma) = \left\{ A \in \Omega^1(P, i\mathbb{R}) : A \text{ satisfies } (2.1) \right\}$$

There is a one-to-one correspondence between these 1-forms and $spin^c$ connections on W. Let ∇_A be the $spin^c$ connection corresponding to A. $\mathcal{A}(\Gamma)$ is an affine space with parallel vector space $\Omega^1(X, i\mathbb{R})$. Let $F_A \in \Omega^2(P, i\mathbb{R})$ be the curvature of the 1-form A and D_A denote the Dirac operator corresponding to $A \in \mathcal{A}(\Gamma)$,

$$D_A: C^{\infty}(X, W^+) \longrightarrow C^{\infty}(X, W^-)$$

defined by

$$D_{A}(\Psi) = \sum_{i=1}^{2n} \Gamma(e_{i}) \bigtriangledown_{A,e_{i}} (\Psi)$$

where $\Psi \in C^{\infty}(X, W^+)$ and $e_1, e_2, ..., e_{2n}$ is any local orthonormal frame.

The Seiberg-Witten equations can be expressed as follows:

Let $\Gamma : TX \longrightarrow End(W)$ be a fixed $spin^c$ structure on X and consider the pairs $(A, \Psi) \in \mathcal{A}(\Gamma) \times C^{\infty}(X, W^+)$. The Seiberg-Witten equations read

$$D_A(\Psi) = 0, \ \ \rho^+(F_A) = (\Psi\Psi^*)_0$$

where $(\Psi\Psi^*)_0 \in C^{\infty}(X, End(W^+))$ is defined by $(\Psi\Psi^*)(\tau) = \langle \Psi, \tau \rangle \Psi$ for $\tau \in C^{\infty}(X, W^+)$ and $(\Psi\Psi^*)_0$ is the traceless part of $(\Psi\Psi^*)$.

3 Seiberg-Witten Equations on \mathbb{R}^4

We fix the constant spin^c structure $\Gamma : \mathbb{R}^4 \longrightarrow End(\mathbb{C}^4)$ given by

$$\Gamma(w) = \begin{pmatrix} 0 & \gamma(w) \\ -\gamma(w)^* & 0 \end{pmatrix}$$

where $\gamma : \mathbb{R}^4 \longrightarrow End(\mathbb{C}^2)$ is defined on generators e_1, e_2, e_3, e_4 by the following: $\gamma(e_1) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \gamma(e_2) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \gamma(e_3) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \gamma(e_4) = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$ The spin^c connection $\nabla = \nabla_A$ on \mathbb{R}^4 is given by

$$\nabla_j \Phi = \frac{\partial \Phi}{\partial x_j} + A_j \Phi$$

where $A_j : \mathbb{R}^4 \longrightarrow i\mathbb{R}$ and $\Phi : \mathbb{R}^4 \longrightarrow \mathbb{C}^2$. Then the associated connection on the line bundle $L_{\Gamma} = \mathbb{R}^4 \times \mathbb{C}$ is the connection 1-form

$$A = \sum_{i=1}^{4} A_i dx_i \in \Omega^1 \left(\mathbb{R}^4, i \mathbb{R} \right)$$

and its curvature 2-form is given by

$$F_A = dA = \sum_{i=1}^{4} F_{ij} dx_i \wedge dx_j \in \Omega^2 \left(\mathbb{R}^4, i \mathbb{R} \right)$$

where $F_{ij} = \frac{\partial A_j}{\partial x_i} - \frac{\partial A_i}{\partial x_j}$ for i, j = 1, ..., 4. According to the above data Seiberg-Witten equations on \mathbb{R}^4 can be written in

According to the above data Seiberg-Witten equations on \mathbb{R}^4 can be written in the following form:

 $D_A \Phi = 0$ can be expressed as

$$- \bigtriangledown_1 \Phi + i\sigma_1 \bigtriangledown_2 \Phi + i\sigma_2 \bigtriangledown_3 \Phi + i\sigma_3 \bigtriangledown_4 \Phi = 0$$

and $\rho^+(F_A) = (\Phi \Phi^*)_0$ rewrite

$$\begin{array}{rcl} F_{12} + F_{34} &= -\frac{i}{2} \left(\phi_1 \overline{\phi}_1 - \phi_2 \overline{\phi}_2 \right) \\ F_{13} - F_{24} &= \frac{1}{2} \left(\phi_1 \overline{\phi}_2 - \phi_2 \overline{\phi}_1 \right) \\ F_{14} + F_{23} &= -\frac{i}{2} \left(\phi_1 \overline{\phi}_2 + \phi_2 \overline{\phi}_1 \right) \end{array}$$

4 Monopole Equations in 8-dimension

The Seiberg-Witten equations make sense on a manifold X of any even dimension. However, they have interesting consequences only in dimension 4. For different from 4 dimensions, the second equation $\rho^+(F_A) = (\Phi\Phi^*)_0$ yields an over-determined set of equations having no non-trivial solutions even locally (see [2]).

In [1] the authors construct a consistent set of monopole equations on eightmanifolds with Spin(7)- holonomy, using the generalized self-duality notion of 2forms.

BDK stated monopole equations for 8-manifolds with Spin(7) holonomy as follows:

Let X be an 8-manifold with Spin(7) holonomy, so that the structure group is reducible to Spin(7)) and gives rise to the global subbundles $S_1, S_2 \subset \wedge^2(T^*X)$ which are 7 and 21 dimensional respectively. They concentrate on the 7 dimensional subbundle S_1 , which is called bundle of self-dual 2-forms and consider its complexification $V^+ = S_1 \otimes \mathbb{C}$. Let F be an imaginary valued 2-form and its projection onto V^+ denoted by F^+ and the projection of the map $\Psi\Psi^*$ onto the sub bundle $\rho^+(V^+) \subset End(W^+)$ by $(\Psi\Psi^*)^+$. Then the monopole equations of BDK are as follows:

(4.2)
$$\begin{aligned} D_A \Psi &= 0\\ \rho^+ \left(F_A^+\right) &= \left(\Psi \Psi^*\right)^+ \end{aligned}$$

They exemplify this on \mathbb{R}^8 as follows:

Firstly they choose the following basis $f_1, f_2, ..., f_7 \in \wedge^2 \mathbb{R}^8$ for S_1 by using the generalized self-duality notions of 2-forms.

 $\begin{array}{rcl} f_1 &=& dx_1 \wedge dx_5 + dx_2 \wedge dx_6 + dx_3 \wedge dx_7 + dx_4 \wedge dx_8, \\ f_2 &=& dx_1 \wedge dx_2 + dx_3 \wedge dx_4 - dx_5 \wedge dx_6 - dx_7 \wedge dx_8, \\ f_3 &=& dx_1 \wedge dx_6 - dx_2 \wedge dx_5 - dx_3 \wedge dx_8 + dx_4 \wedge dx_7, \\ f_4 &=& dx_1 \wedge dx_3 - dx_2 \wedge dx_4 - dx_5 \wedge dx_7 + dx_6 \wedge dx_8, \\ f_5 &=& dx_1 \wedge dx_7 + dx_2 \wedge dx_8 - dx_3 \wedge dx_5 - dx_4 \wedge dx_6, \\ f_6 &=& dx_1 \wedge dx_4 + dx_2 \wedge dx_3 - dx_5 \wedge dx_8 - dx_6 \wedge dx_7, \\ f_7 &=& dx_1 \wedge dx_8 - dx_2 \wedge dx_7 + dx_3 \wedge dx_6 - dx_4 \wedge dx_5. \end{array}$

They also associate each 2-form a skew-symmetric matrices in an obvious way, and obtain a constant $spin^c$ structure $\Gamma : \mathbb{R}^8 \longrightarrow End(\mathbb{C}^{16})$ given by

$$\Gamma(e_i) = \begin{pmatrix} 0 & \gamma(e_i) \\ -\gamma(e_i)^* & 0 \end{pmatrix}$$

 $(e_i, i = 1, 2, ..., 8$ being the standard basis for \mathbb{R}^8), where $\gamma(e_1) = Id$, $\gamma(e_i) = f_{i-1}$ for i = 2, ..., 8. Then, according to the above form of f_i and Γ , we get the explicit monopole equations on \mathbb{R}^8 .

The explicit form of $D_A \Psi = 0$ is

$$\partial_1\psi_1 - \partial_2\psi_5 - \partial_3\psi_2 - \partial_4\psi_6 - \partial_5\psi_3 - \partial_6\psi_7 - \partial_7\psi_4 - \partial_8\psi_8 = -A_1\psi_1 + A_2\psi_5 + A_3\psi_2 + A_4\psi_6 + A_5\psi_3 + A_6\psi_7 + A_7\psi_4 + A_8\psi_8$$

 $\partial_1\psi_2 - \partial_2\psi_6 + \partial_3\psi_1 + \partial_4\psi_5 + \partial_5\psi_4 - \partial_6\psi_8 - \partial_7\psi_3 + \partial_8\psi_7 =$ $-A_1\psi_2 + A_2\psi_6 - A_3\psi_1 - A_4\psi_5 - A_5\psi_4 + A_6\psi_8 + A_7\psi_3 - A_8\psi_7$ $\partial_1\psi_3 - \partial_2\psi_7 - \partial_3\psi_4 + \partial_4\psi_8 + \partial_5\psi_1 + \partial_6\psi_5 + \partial_7\psi_2 - \partial_8\psi_6 =$ $-A_1\psi_3 + A_2\psi_7 + A_3\psi_4 - A_4\psi_8 - A_5\psi_1 - A_6\psi_5 - A_7\psi_2 + A_8\psi_6$ $\partial_1\psi_4 - \partial_2\psi_8 + \partial_3\psi_3 - \partial_4\psi_7 - \partial_5\psi_2 + \partial_6\psi_6 + \partial_7\psi_1 + \partial_8\psi_5 =$ $-A_1\psi_4 + A_2\psi_8 - A_3\psi_3 + A_4\psi_7 + A_5\psi_2 - A_6\psi_6 - A_7\psi_1 - A_8\psi_5$ $\partial_1\psi_5 + \partial_2\psi_1 + \partial_3\psi_6 - \partial_4\psi_2 + \partial_5\psi_7 - \partial_6\psi_3 + \partial_7\psi_8 - \partial_8\psi_4 =$ $-A_1\psi_5 - A_2\psi_1 - A_3\psi_6 + A_4\psi_2 - A_5\psi_7 + A_6\psi_3 - A_7\psi_8 + A_8\psi_4$ $\partial_1\psi_6 + \partial_2\psi_2 - \partial_3\psi_5 + \partial_4\psi_1 - \partial_5\psi_8 - \partial_6\psi_4 + \partial_7\psi_7 + \partial_8\psi_3 =$ $-A_1\psi_6 - A_2\psi_2 + A_3\psi_5 - A_4\psi_1 + A_5\psi_8 + A_6\psi_4 - A_7\psi_7 - A_8\psi_3$ $\partial_1\psi_7 + \partial_2\psi_3 + \partial_3\psi_8 + \partial_4\psi_4 - \partial_5\psi_5 + \partial_6\psi_1 - \partial_7\psi_6 - \partial_8\psi_2 =$ $-A_1\psi_7 - A_2\psi_3 - A_3\psi_8 - A_4\psi_4 + A_5\psi_5 - A_6\psi_1 + A_7\psi_6 + A_8\psi_2$ $\partial_1\psi_8 + \partial_2\psi_4 - \partial_3\psi_7 - \partial_4\psi_3 + \partial_5\psi_6 + \partial_6\psi_2 - \partial_7\psi_5 + \partial_8\psi_1 =$ $-A_1\psi_8 - A_2\psi_4 + A_3\psi_7 + A_4\psi_3 - A_5\psi_6 - A_6\psi_2 + A_7\psi_5 - A_8\psi_1$ where $\partial_i \psi_j = \frac{\partial \psi_j}{\partial x_i}$. The explicit form of $\rho^+ (F_A^+) = (\psi \psi^*)^+$ is $F_{15} + F_{26} + F_{27} + F_{48} =$

$$\frac{1}{4} \left(\psi_1 \overline{\psi}_3 - \psi_3 \overline{\psi}_1 - \psi_2 \overline{\psi}_4 + \psi_4 \overline{\psi}_2 - \psi_5 \overline{\psi}_7 + \psi_7 \overline{\psi}_5 - \psi_6 \overline{\psi}_8 + \psi_8 \overline{\psi}_6 \right)$$

$$F_{12} + F_{34} - F_{56} - F_{78} = \frac{1}{4} \left(\psi_1 \overline{\psi}_5 - \psi_5 \overline{\psi}_1 - \psi_2 \overline{\psi}_6 + \psi_6 \overline{\psi}_2 + \psi_3 \overline{\psi}_7 - \psi_7 \overline{\psi}_3 + \psi_4 \overline{\psi}_8 - \psi_8 \overline{\psi}_4 \right)$$

$$F_{16} - F_{25} - F_{38} + F_{47} = \frac{1}{4} \left(\psi_1 \overline{\psi}_7 - \psi_7 \overline{\psi}_1 + \psi_2 \overline{\psi}_8 - \psi_8 \overline{\psi}_2 - \psi_3 \overline{\psi}_5 + \psi_5 \overline{\psi}_3 + \psi_4 \overline{\psi}_6 - \psi_6 \overline{\psi}_4 \right)$$

$$F_{13} - F_{24} - F_{57} + F_{68} = \frac{1}{4} \left(\psi_1 \overline{\psi}_2 - \psi_2 \overline{\psi}_1 + \psi_3 \overline{\psi}_4 - \psi_4 \overline{\psi}_3 + \psi_5 \overline{\psi}_6 - \psi_6 \overline{\psi}_5 - \psi_7 \overline{\psi}_8 + \psi_8 \overline{\psi}_7 \right)$$

$$F_{17} + F_{28} - F_{35} - F_{46} = \frac{1}{4} \left(\psi_1 \overline{\psi}_4 - \psi_4 \overline{\psi}_1 + \psi_2 \overline{\psi}_3 - \psi_3 \overline{\psi}_2 - \psi_5 \overline{\psi}_8 + \psi_8 \overline{\psi}_5 + \psi_6 \overline{\psi}_7 - \psi_7 \overline{\psi}_6 \right)$$

$$F_{14} + F_{23} - F_{58} - F_{67} = \frac{1}{4} \left(\psi_6 \overline{\psi}_1 - \psi_1 \overline{\psi}_6 - \psi_2 \overline{\psi}_5 + \psi_5 \overline{\psi}_2 - \psi_3 \overline{\psi}_8 + \psi_8 \overline{\psi}_3 + \psi_4 \overline{\psi}_7 - \psi_7 \overline{\psi}_4 \right)$$

$$\begin{split} F_{18} - F_{27} + F_{36} - F_{45} = \\ & \frac{1}{4} \left(\psi_1 \overline{\psi}_8 - \psi_8 \overline{\psi}_1 - \psi_2 \overline{\psi}_7 + \psi_7 \overline{\psi}_2 - \psi_3 \overline{\psi}_6 + \psi_6 \overline{\psi}_3 - \psi_4 \overline{\psi}_5 + \psi_5 \overline{\psi}_4 \right) \end{split}$$

In [1] it is pointed out that if the pair (A, Φ) with

$$A = \sum_{i=1}^{4} A_i \left(x_1, x_2, x_3, x_4 \right) dx_i \text{ and } \Phi = \left(\phi_1 \left(x_1, x_2, x_3, x_4 \right), \phi_2 \left(x_1, x_2, x_3, x_4 \right) \right)$$

is a solution of the 4-dimensional Seiberg-Witten equations, then the pair (B, Ψ) with

$$B = \sum_{i=1}^{4} A_i \left(x_1, x_2, x_3, x_4 \right) dx_i$$

(i. e. the first four components B_i of B coincide with A_i , thus not depending on x_5, x_6, x_7, x_8 and the last four components of B vanish) and

$$\Psi = (0, 0, \phi_1, \phi_2, 0, 0, i\phi_1, -i\phi_2)$$

is a solution of the equations $D_A(\Psi) = 0$, $\rho^+(F_A^+) = (\Psi\Psi^*)^+$ on \mathbb{R}^8 .

The aim of this work is to modify the equations above on \mathbb{R}^8 . To do this modification we also consider the subspace S_2 which is the orthogonal complement of S_1 , the spaces of self-dual 2-forms, in $\wedge^2 \mathbb{R}^8$. S_2 is 21-dimensional subspace of $\wedge^2 \mathbb{R}^8$. Let $G = \sum_{i < j} G_{ij} dx_i \wedge dx_j$ be any element of S_2 then it is orthogonal to each element of S_1 , in particular it is orthogonal to the basis elements $f_1, f_2, ..., f_7$ of S_1 , that is $\langle G, f_i \rangle = 0$ for i = 1, ..., 7. Then we get following equations which determine S_2 :

$$\begin{array}{rcrrr} G_{15}+G_{26}+G_{37}+G_{48}&=&0\\ G_{12}+G_{34}-G_{56}-G_{78}&=&0\\ G_{16}-G_{25}-G_{38}+G_{47}&=&0\\ G_{13}-G_{24}-G_{57}+G_{68}&=&0\\ G_{17}+G_{28}-G_{35}-G_{46}&=&0\\ G_{14}+G_{23}-G_{58}-G_{67}&=&0\\ G_{18}-G_{27}+G_{36}-G_{45}&=&0 \end{array}$$

68

From these equations we obtain following basis element for S_2

 $= dx_1 \wedge dx_2 - dx_3 \wedge dx_4$ g_1 $= -dx_5 \wedge dx_6 + dx_7 \wedge dx_8$ g_2 $= dx_1 \wedge dx_2 + dx_3 \wedge dx_4 + dx_5 \wedge dx_6 + dx_7 \wedge dx_8$ g_3 $= dx_1 \wedge dx_3 + dx_2 \wedge dx_4$ g_4 $= -dx_5 \wedge dx_7 - dx_6 \wedge dx_8$ g_5 $= dx_1 \wedge dx_3 - dx_2 \wedge dx_4 + dx_5 \wedge dx_7 - dx_6 \wedge dx_8$ g_6 $= dx_1 \wedge dx_4 - dx_2 \wedge dx_3$ g_7 $= -dx_5 \wedge dx_8 + dx_6 \wedge dx_7$ g_8 $= dx_1 \wedge dx_4 + dx_2 \wedge dx_3 + dx_5 \wedge dx_8 + dx_6 \wedge dx_7$ g_9 $g_{10} = dx_1 \wedge dx_5 - dx_2 \wedge dx_6$ $g_{11} = dx_3 \wedge dx_7 - dx_4 \wedge dx_8$ $g_{12} = dx_1 \wedge dx_5 + dx_2 \wedge dx_6 - dx_3 \wedge dx_7 - dx_4 \wedge dx_8$ $g_{13} = dx_1 \wedge dx_6 + dx_2 \wedge dx_5$ $= -dx_3 \wedge dx_8 - dx_4 \wedge dx_7$ g_{14} $= dx_1 \wedge dx_6 - dx_2 \wedge dx_5 + dx_3 \wedge dx_8 - dx_4 \wedge dx_7$ g_{15} $= dx_1 \wedge dx_7 - dx_2 \wedge dx_8$ g_{16} $g_{17} = -dx_3 \wedge dx_5 + dx_4 \wedge dx_6$ $= dx_1 \wedge dx_7 + dx_2 \wedge dx_8 + dx_3 \wedge dx_5 + dx_4 \wedge dx_6$ g_{18}

$$\begin{array}{rcl} g_{19} & = & dx_1 \wedge dx_8 + dx_2 \wedge dx_7 \\ g_{20} & = & dx_3 \wedge dx_6 + dx_4 \wedge dx_5 \\ g_{21} & = & dx_1 \wedge dx_8 - dx_2 \wedge dx_7 - dx_3 \wedge dx_6 + dx_4 \wedge dx_5 \end{array}$$

Among the above basis elements $g_3, g_6, g_9, g_{12}, g_{15}, g_{18}, g_{21}$ are each non-degenerate and moreover the associated skew-symmetric matrices of these 2-forms constitute a Radon-Hurwitz family of matrices.

Let V^- be the complexification of the subspace of S_2 which is spanned by $\{g_3, g_6, g_9, g_{12}, g_{15}, g_{18}, g_{21}\}$ and F_A^- be the projection of F_A on to the subspace V^- . The image $\rho^+(V^-)$ is a subspace of $End(W^+)$. We know that for any $\Psi \in C^{\infty}(\mathbb{R}^8, W^+)$ associates the endomorphism $\Psi\Psi^* \in End(W^+)$. We project $\Psi\Psi^*$ on to the subspace $\rho^+(V^-)$ and denote by $(\Psi\Psi^*)^-$. Hence we consider the (new) equation $\rho^+(F_A^-) = (\Psi\Psi^*)^-$. With the last modification, the monopole equations on \mathbb{R}^8 take the following form:

(4.3)
$$D_A \Psi = 0 \\ \rho^+ (F_A^+) = (\Psi \Psi^*)^+ \\ \rho^+ (F_A^-) = (\Psi \Psi^*)^-$$

The explicit form of the third equation with respect to above constant $spin^c$ -structure Γ is:

$$F_{15} + F_{26} - F_{37} - F_{48} = \frac{1}{4} \left(\psi_1 \overline{\psi}_3 - \psi_3 \overline{\psi}_1 + \psi_2 \overline{\psi}_4 - \psi_4 \overline{\psi}_2 - \psi_5 \overline{\psi}_7 + \psi_7 \overline{\psi}_5 + \psi_6 \overline{\psi}_8 - \psi_8 \overline{\psi}_6 \right)$$

$$F_{12} + F_{34} + F_{56} + F_{78} = \frac{1}{4} \left(\psi_5 \overline{\psi}_1 - \psi_1 \overline{\psi}_5 + \psi_2 \overline{\psi}_6 - \psi_6 \overline{\psi}_2 + \psi_3 \overline{\psi}_7 - \psi_7 \overline{\psi}_3 + \psi_4 \overline{\psi}_8 - \psi_8 \overline{\psi}_4 \right)$$

$$F_{16} - F_{25} + F_{38} - F_{47} = \frac{1}{4} \left(\psi_1 \overline{\psi}_7 - \psi_7 \overline{\psi}_1 - \psi_2 \overline{\psi}_8 + \psi_8 \overline{\psi}_2 - \psi_3 \overline{\psi}_5 + \psi_5 \overline{\psi}_3 - \psi_4 \overline{\psi}_6 + \psi_6 \overline{\psi}_4 \right)$$

$$F_{13} - F_{24} + F_{57} - F_{68} = \frac{1}{4} \left(\psi_2 \overline{\psi}_1 - \psi_1 \overline{\psi}_2 + \psi_3 \overline{\psi}_4 - \psi_4 \overline{\psi}_3 - \psi_5 \overline{\psi}_6 + \psi_6 \overline{\psi}_5 - \psi_7 \overline{\psi}_8 + \psi_8 \overline{\psi}_7 \right)$$

$$F_{17} + F_{28} + F_{35} + F_{46} = \frac{1}{4} \left(\psi_1 \overline{\psi}_4 - \psi_4 \overline{\psi}_1 - \psi_2 \overline{\psi}_3 + \psi_3 \overline{\psi}_2 - \psi_5 \overline{\psi}_8 + \psi_8 \overline{\psi}_5 - \psi_6 \overline{\psi}_7 + \psi_7 \overline{\psi}_6 \right)$$

$$F_{14} + F_{23} + F_{58} + F_{67} = \frac{1}{4} \left(\psi_1 \overline{\psi}_6 - \psi_6 \overline{\psi}_1 + \psi_2 \overline{\psi}_5 - \psi_5 \overline{\psi}_2 - \psi_3 \overline{\psi}_8 + \psi_8 \overline{\psi}_3 + \psi_4 \overline{\psi}_7 - \psi_7 \overline{\psi}_4 \right)$$

$$F_{18} - F_{27} - F_{36} + F_{45} = \frac{1}{4} \left(\psi_1 \overline{\psi}_8 - \psi_8 \overline{\psi}_1 + \psi_2 \overline{\psi}_7 - \psi_7 \overline{\psi}_2 + \psi_3 \overline{\psi}_6 - \psi_6 \overline{\psi}_3 - \psi_4 \overline{\psi}_5 + \psi_5 \overline{\psi}_4 \right)$$

It can be easily checked that the pair (B, Ψ) which is solution to (4.2) is also a solution to(4.3).

References

- A. H. Bilge, T. Dereli, Ş. Koçak, Monopole equations on 8-manifolds with spin(7) holonomy, Communications in Mathematical Physics 203(1) 1999.
- [2] A. H. Bilge, T. Dereli, Ş. Koçak, Seiberg-Witten Equations on ℝ⁸, Proceedings of Gökova Geometry-Topology Conference 1996, 87-92.
- [3] Y. H. Gao, G. Tian, Instantons and the monopole-like equations in eight dimensions, Journal of High Energy Physics, (5) 2000.
- [4] H. B. Lawson, M-L. Michelsohn, Spin Geometry, Princeton University Press, 1989.
- [5] J. W. Morgan, Seiberg-Witten Equations and Topology of Smooth Four Manifolds, Princeton University Press, 1996.
- [6] D. Salamon, Seiberg-Witten Invariants and Spin Geometry, preprint.

Authors' addresses:

Nedim Değirmenci Mathematics Department, Science Faculty, Anadolu University, 26470, Eskisehir, Turkey e-mail: ndegirmenci@anadolu.edu.tr

Nülifer Özdemir Mathematics Department, Science Faculty, Anadolu University, 26470, Eskisehir, Turkey e-mail: nozdemir@anadolu.edu.tr