A local modification to monopole equations in 8-dimension

Nedim Değirmenci and Nülifer Özdemir

Abstract

Monopole equations on 8 -manifolds with $\operatorname{spin}(7)$ holonomy are given in [1]. In this work we write a local modification of the monopole equations on \mathbb{R}^{8}. We show that these new equations are admit non-trivial solutions including all the 4 -dimensional solutions as a special case as in [1].

M.S.C. 2000: 57R15, 53C27.

Key words: Seiberg-Witten monopole equations, spin c-structure

1 Introduction

The Seiberg-Witten monopole equations are stated for 4 -dimensional manifolds and these equations have great importance for the topology of smooth four-manifolds (See [6], [5]). There are various generalizations of these equations to higher dimensions (See [3], [6], [1]). In this work we propose a modification of the monopole equations on \mathbb{R}^{8} which are stated in [1].

2 Preliminaries

The framework used hereafter is described in detail in [6].
Definition 1. A spinct-structure on a 2n-dimensional oriented real Hilbert space V is a pair (W, Γ) where W is a 2^{n}-dimensional complex Hermitian vector space and $\Gamma: V \longrightarrow E n d(W)$ is a linear map which satisfies

$$
\Gamma(v)^{*}+\Gamma(v)=0, \quad \Gamma(v)^{*} \Gamma(v)=|v|^{2} 1
$$

for every $v \in V$.
It is pointed out in [6] that such a map can be extended to an algebra isomorphism $\mathbb{C l}(V) \longrightarrow \operatorname{End}(W)$ which satisfies $\Gamma(\widetilde{x})=\Gamma(x)^{*}$, where $\mathbb{C l}(V) \cong C l(V) \otimes \mathbb{C}$ is complex Clifford algebra over V, \tilde{x} is conjugate of x in $\mathbb{C l}(V)$ and $\Gamma(x)^{*}$ denotes hermitian-conjugate of $\Gamma(x)$.

[^0]Let (W, Γ) be a spin^{c} structure on V. There is a natural splitting of W. We fix an orientation of V and denote by

$$
\varepsilon=e_{2 n} \ldots e_{2} e_{1} \in C l(V)
$$

the unique element of $C l(V)$ which has degree $2 n$ and is generated by a positively oriented orthonormal basis $e_{1}, \ldots, e_{2 n}$. Then $\varepsilon^{2}=(-1)^{n}$ and hence

$$
W=W^{+} \bigoplus W^{-}
$$

where the $W^{ \pm}=\left\{w \in W \mid \Gamma(\varepsilon) w= \pm i^{n} w\right\}$ are the eigen spaces of $\Gamma(\varepsilon)$. Note that $\Gamma(v) W^{+} \subset W^{-}$and $\Gamma(v) W^{-} \subset W^{+}$for every $v \in V$. So the restrictions of $\Gamma(v)$ to W^{+}for $v \in V$ determine a linear map $\gamma: V \longrightarrow \operatorname{Hom}\left(W^{-}, W^{+}\right)$which satisfies

$$
\gamma(v)^{*} \gamma(v)=|v|^{2} 1
$$

for every $v \in V$. The linear map $\Gamma: V \longrightarrow \operatorname{End}(W)$ can be recovered from γ via $W=W^{+} \bigoplus W^{-}$and

$$
\Gamma(v)=\left(\begin{array}{ll}
0 & \gamma(v) \\
-\gamma(v)^{*} & 0
\end{array}\right)
$$

γ satisfies $\gamma(v)^{*} \gamma(v)=|v|^{2} 1$ if and only if Γ satisfies

$$
\Gamma(v)^{*}+\Gamma(v)=0, \Gamma(v)^{*} \Gamma(v)=|v|^{2} 1
$$

Let (W, Γ) be a spin^{c} structure on V. Such a structure gives an action of the space of 2 -forms $\Lambda^{2} V$ on W. This action is defined by the following:

Firstly, we identify $\Lambda^{2} V$ with the space of second order elements of Clifford algebra $C_{2}(V)$ via the map

$$
\Lambda^{2} V \longrightarrow C_{2}(V) ; \eta=\sum_{i<j} \eta_{i j} e_{i} \wedge e_{j} \longmapsto \sum_{i<j} \eta_{i j} e_{i} e_{j} .
$$

We compose this map with Γ to obtain a map $\rho: \Lambda^{2} V \longrightarrow \operatorname{End}(W)$ given by

$$
\rho\left(\sum_{i<j} \eta_{i j} e_{i} \wedge e_{j}\right)=\sum_{i<j} \eta_{i j} \Gamma\left(e_{i}\right) \Gamma\left(e_{j}\right)
$$

for any orthonormal basis $e_{1}, \ldots, e_{2 n}$ of V. This map is independent of the choice of the orthonormal basis $e_{1}, \ldots, e_{2 n}$. The spaces $W^{ \pm}$are invariant under $\rho(\eta)$ for every 2 -form $\eta \in \Lambda^{2} V$. So we can define

$$
\rho^{ \pm}(\eta)=\left.\rho(\eta)\right|_{W^{ \pm}}
$$

for $\eta \in \Lambda^{2} V$. In 4-dimension $\rho^{+}(\eta)=\rho^{+}\left(\eta^{+}\right)$for every 2 -form $\eta \in \Lambda^{2} V$, where η^{+} is the self-dual part of η. The map ρ extends to a map

$$
\rho: \Lambda^{2} V \otimes \mathbb{C} \longrightarrow \operatorname{End}(W)
$$

on the space of complex valued 2 -forms. If η is real valued 2 -form then $\rho(\eta)$ is skew-Hermitian and if η is imaginary valued then $\rho(\eta)$ is Hermitian.

Globalizing Γ to $2 n$-dimensional oriented manifolds X leads to a spin ${ }^{c}$ structure $\Gamma: T X \longrightarrow \operatorname{End}(W), W$ being a 2^{n}-dimensional complex Hermitian vector bundle on X. Such a structure exists iff $w_{2}(X)$ has an integral lift (See [4]). Γ extends to an isomorphism between the complex Clifford algebra bundle $\mathbb{C l}(T X)$ and $E n d(W)$. There is a natural splitting $W=W^{+} \oplus W^{-}$into the $\pm i^{n}$ eigenspaces of $\Gamma\left(e_{2 n} e_{2 n-1} \ldots e_{1}\right)$ where $e_{1}, e_{2}, \ldots, e_{2 n}$ is any positively oriented local orthonormal frame of $T X$.

A Hermitian connection ∇ on W is called a spin^{c} connection (compatible with the Levi-Civita connection) if

$$
\nabla v(\Gamma(w) \Psi)=\Gamma(w) \nabla_{v} \Psi+\Gamma\left(\nabla_{v} w\right) \Psi
$$

where Ψ is a spinor (section of W), v and w are vector fields on X and $\nabla_{v} w$ is the Levi-Civita connection on $X . \nabla$ preserves the sub bundles $W^{ \pm}$.

There is a principal $\operatorname{Spin}^{c}(2 n)$-bundle P on X such that the bundle W of spinors, the tangent bundle $T X$, and the line bundle L_{Γ} can be recovered as the associated bundles

$$
W=P \times_{\text {Spinc}^{c}(2 n)} \mathbb{C}^{2 n}, \quad T X=P \times_{A d} \mathbb{R}^{2 n}
$$

where $A d$ is being the adjoint action of

$$
\operatorname{Spin}^{c}(2 n)=\left\{e^{i \theta} x: \theta \in \mathbb{R}, x \in \operatorname{Spin}(2 n)\right\} \subset \mathbb{C} l_{2 n}
$$

on $\mathbb{R}^{2 n}$. Then it can be obtain a complex line bundle $L_{\Gamma}=P \times{ }_{\delta} \mathbb{C}$ where δ : $\operatorname{Spin}^{c}(2 n) \rightarrow S^{1}$ by $\delta\left(e^{i \theta} x\right)=e^{2 i \theta}$.

There is a one-to-one correspondence between spin c connections on W and $\operatorname{spin}^{c}(2 n)=\operatorname{Lie}\left(\operatorname{Spin}^{c}(2 n)\right)=\operatorname{spin}(2 n) \oplus i \mathbb{R}$-valued connection 1-forms $\widehat{A} \in A(P) \subset$ $\Omega^{1}\left(P, \operatorname{spin}^{c}(2 n)\right)$ on P. Hence every spin^{c} connection \widehat{A} decomposes as

$$
\widehat{A}=\widehat{A}_{0}+\frac{1}{2^{n}} \operatorname{trace}(\widehat{A})
$$

where \widehat{A}_{0} is the traceless part of \widehat{A}. Let $A=\frac{1}{2^{n}} \operatorname{trace}(\widehat{A})$, this is an imaginary valued 1-form in $\Omega^{1}(P, i \mathbb{R})$ which satisfies

$$
\begin{equation*}
A_{p g}(v g)=A_{p}(v), \quad A_{p}(p \cdot \xi)=\frac{1}{2^{n}} \operatorname{trace}(\xi) \tag{2.1}
\end{equation*}
$$

for $v \in T_{p} P, g \in \operatorname{Spin}^{c}(2 n)$, and $\xi \in \operatorname{spin}^{c}(2 n)$. Let

$$
\mathcal{A}(\Gamma)=\left\{A \in \Omega^{1}(P, i \mathbb{R}): A \text { satisfies }(2.1)\right\}
$$

There is a one-to-one correspondence between these 1 -forms and spin^{c} connections on W. Let ∇_{A} be the spin^{c} connection corresponding to $A . \mathcal{A}(\Gamma)$ is an affine space with parallel vector space $\Omega^{1}(X, i \mathbb{R})$. Let $F_{A} \in \Omega^{2}(P, i \mathbb{R})$ be the curvature of the 1-form A and D_{A} denote the Dirac operator corresponding to $A \in \mathcal{A}(\Gamma)$,

$$
D_{A}: C^{\infty}\left(X, W^{+}\right) \longrightarrow C^{\infty}\left(X, W^{-}\right)
$$

defined by

$$
D_{A}(\Psi)=\sum_{i=1}^{2 n} \Gamma\left(e_{i}\right) \nabla_{A, e_{i}}(\Psi)
$$

where $\Psi \in C^{\infty}\left(X, W^{+}\right)$and $e_{1}, e_{2}, \ldots, e_{2 n}$ is any local orthonormal frame.
The Seiberg-Witten equations can be expressed as follows:
Let $\Gamma: T X \longrightarrow E n d(W)$ be a fixed spin^{c} structure on X and consider the pairs $(A, \Psi) \in \mathcal{A}(\Gamma) \times C^{\infty}\left(X, W^{+}\right)$. The Seiberg-Witten equations read

$$
D_{A}(\Psi)=0, \quad \rho^{+}\left(F_{A}\right)=\left(\Psi \Psi^{*}\right)_{0}
$$

where $\left(\Psi \Psi^{*}\right)_{0} \in C^{\infty}\left(X, \operatorname{End}\left(W^{+}\right)\right)$is defined by $\left(\Psi \Psi^{*}\right)(\tau)=\langle\Psi, \tau\rangle \Psi$ for $\tau \in$ $C^{\infty}\left(X, W^{+}\right)$and $\left(\Psi \Psi^{*}\right)_{0}$ is the traceless part of $\left(\Psi \Psi^{*}\right)$.

3 Seiberg-Witten Equations on \mathbb{R}^{4}

We fix the constant spin^{c} structure $\Gamma: \mathbb{R}^{4} \longrightarrow \operatorname{End}\left(\mathbb{C}^{4}\right)$ given by

$$
\Gamma(w)=\left(\begin{array}{cc}
0 & \gamma(w) \\
-\gamma(w)^{*} & 0
\end{array}\right)
$$

where $\gamma: \mathbb{R}^{4} \longrightarrow \operatorname{End}\left(\mathbb{C}^{2}\right)$ is defined on generators $e_{1}, e_{2}, e_{3}, e_{4}$ by the following: $\gamma\left(e_{1}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \gamma\left(e_{2}\right)=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right), \gamma\left(e_{3}\right)=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \gamma\left(e_{4}\right)=\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$.

The spin^{c} connection $\nabla=\nabla A$ on \mathbb{R}^{4} is given by

$$
\nabla_{j} \Phi=\frac{\partial \Phi}{\partial x_{j}}+A_{j} \Phi
$$

where $A_{j}: \mathbb{R}^{4} \longrightarrow i \mathbb{R}$ and $\Phi: \mathbb{R}^{4} \longrightarrow \mathbb{C}^{2}$. Then the associated connection on the line bundle $L_{\Gamma}=\mathbb{R}^{4} \times \mathbb{C}$ is the connection 1 -form

$$
A=\sum_{i=1}^{4} A_{i} d x_{i} \in \Omega^{1}\left(\mathbb{R}^{4}, i \mathbb{R}\right)
$$

and its curvature 2 -form is given by

$$
F_{A}=d A=\sum_{i=1}^{4} F_{i j} d x_{i} \wedge d x_{j} \in \Omega^{2}\left(\mathbb{R}^{4}, i \mathbb{R}\right)
$$

where $F_{i j}=\frac{\partial A_{j}}{\partial x_{i}}-\frac{\partial A_{i}}{\partial x_{j}}$ for $i, j=1, \ldots, 4$.
According to the above data Seiberg-Witten equations on \mathbb{R}^{4} can be written in the following form:
$D_{A} \Phi=0$ can be expressed as

$$
-\nabla_{1} \Phi+i \sigma_{1} \nabla_{2} \Phi+i \sigma_{2} \nabla_{3} \Phi+i \sigma_{3} \nabla_{4} \Phi=0
$$

and $\rho^{+}\left(F_{A}\right)=\left(\Phi \Phi^{*}\right)_{0}$ rewrite

$$
\begin{aligned}
& F_{12}+F_{34}=-\frac{i}{2}\left(\phi_{1} \bar{\phi}_{1}-\phi_{2} \bar{\phi}_{2}\right) \\
& F_{13}-F_{24}=\frac{1}{2}\left(\phi_{1} \bar{\phi}_{2}-\phi_{2} \bar{\phi}_{1}\right) \\
& F_{14}+F_{23}=-\frac{i}{2}\left(\phi_{1} \bar{\phi}_{2}+\phi_{2} \bar{\phi}_{1}\right)
\end{aligned}
$$

4 Monopole Equations in 8-dimension

The Seiberg-Witten equations make sense on a manifold X of any even dimension. However, they have interesting consequences only in dimension 4 . For different from 4 dimensions, the second equation $\rho^{+}\left(F_{A}\right)=\left(\Phi \Phi^{*}\right)_{0}$ yields an over-determined set of equations having no non-trivial solutions even locally (see [2]).

In [1] the authors construct a consistent set of monopole equations on eightmanifolds with $\operatorname{Spin}(7)$ - holonomy, using the generalized self-duality notion of 2forms.

BDK stated monopole equations for 8-manifolds with $\operatorname{Spin}(7)$ holonomy as follows:
Let X be an 8 -manifold with $\operatorname{Spin}(7)$ holonomy, so that the structure group is reducible to $S p i n(7))$ and gives rise to the global subbundles $S_{1}, S_{2} \subset \wedge^{2}\left(T^{*} X\right)$ which are 7 and 21 dimensional respectively. They concentrate on the 7 dimensional subbundle S_{1}, which is called bundle of self-dual 2 -forms and consider its complexification $V^{+}=S_{1} \otimes \mathbb{C}$. Let F be an imaginary valued 2 -form and its projection onto V^{+}denoted by F^{+}and the projection of the map $\Psi \Psi^{*}$ onto the sub bundle $\rho^{+}\left(V^{+}\right) \subset \operatorname{End}\left(W^{+}\right)$by $\left(\Psi \Psi^{*}\right)^{+}$. Then the monopole equations of BDK are as follows:

$$
\begin{array}{ccc}
D_{A} \Psi & = & 0 \\
\rho^{+}\left(F_{A}^{+}\right) & = & \left(\Psi \Psi^{*}\right)^{+} \tag{4.2}
\end{array}
$$

They exemplify this on \mathbb{R}^{8} as follows:
Firstly they choose the following basis $f_{1}, f_{2}, \ldots, f_{7} \in \wedge^{2} \mathbb{R}^{8}$ for S_{1} by using the generalized self-duality notions of 2-forms.

$$
\begin{aligned}
& f_{1}=d x_{1} \wedge d x_{5}+d x_{2} \wedge d x_{6}+d x_{3} \wedge d x_{7}+d x_{4} \wedge d x_{8}, \\
& f_{2}=d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{4}-d x_{5} \wedge d x_{6}-d x_{7} \wedge d x_{8}, \\
& f_{3}=d x_{1} \wedge d x_{6}-d x_{2} \wedge d x_{5}-d x_{3} \wedge d x_{8}+d x_{4} \wedge d x_{7}, \\
& f_{4}=d x_{1} \wedge d x_{3}-d x_{2} \wedge d x_{4}-d x_{5} \wedge d x_{7}+d x_{6} \wedge d x_{8}, \\
& f_{5}=d x_{1} \wedge d x_{7}+d x_{2} \wedge d x_{8}-d x_{3} \wedge d x_{5}-d x_{4} \wedge d x_{6}, \\
& f_{6}=d x_{1} \wedge d x_{4}+d x_{2} \wedge d x_{3}-d x_{5}^{\wedge} \wedge d x_{8}-d x_{6} \wedge d x_{7}, \\
& f_{7}=d x_{1} \wedge d x_{8}-d x_{2} \wedge d x_{7}+d x_{3} \wedge d x_{6}-d x_{4} \wedge d x_{5} .
\end{aligned}
$$

They also associate each 2-form a skew-symmetric matrices in an obvious way, and obtain a constant spin^{c} structure $\Gamma: \mathbb{R}^{8} \longrightarrow \operatorname{End}\left(\mathbb{C}^{16}\right)$ given by

$$
\Gamma\left(e_{i}\right)=\left(\begin{array}{cc}
0 & \gamma\left(e_{i}\right) \\
-\gamma\left(e_{i}\right)^{*} & 0
\end{array}\right)
$$

$\left(e_{i}, i=1,2, \ldots, 8\right.$ being the standard basis for $\left.\mathbb{R}^{8}\right)$, where $\gamma\left(e_{1}\right)=I d, \gamma\left(e_{i}\right)=f_{i-1}$ for $i=2, \ldots, 8$. Then, according to the above form of f_{i} and Γ, we get the explicit monopole equations on \mathbb{R}^{8}.

The explicit form of $D_{A} \Psi=0$ is

$$
\begin{gathered}
\partial_{1} \psi_{1}-\partial_{2} \psi_{5}-\partial_{3} \psi_{2}-\partial_{4} \psi_{6}-\partial_{5} \psi_{3}-\partial_{6} \psi_{7}-\partial_{7} \psi_{4}-\partial_{8} \psi_{8}= \\
-A_{1} \psi_{1}+A_{2} \psi_{5}+A_{3} \psi_{2}+A_{4} \psi_{6}+A_{5} \psi_{3}+A_{6} \psi_{7}+A_{7} \psi_{4}+A_{8} \psi_{8}
\end{gathered}
$$

$$
\begin{gathered}
\partial_{1} \psi_{2}-\partial_{2} \psi_{6}+\partial_{3} \psi_{1}+\partial_{4} \psi_{5}+\partial_{5} \psi_{4}-\partial_{6} \psi_{8}-\partial_{7} \psi_{3}+\partial_{8} \psi_{7}= \\
-A_{1} \psi_{2}+A_{2} \psi_{6}-A_{3} \psi_{1}-A_{4} \psi_{5}-A_{5} \psi_{4}+A_{6} \psi_{8}+A_{7} \psi_{3}-A_{8} \psi_{7} \\
\partial_{1} \psi_{3}-\partial_{2} \psi_{7}-\partial_{3} \psi_{4}+\partial_{4} \psi_{8}+\partial_{5} \psi_{1}+\partial_{6} \psi_{5}+\partial_{7} \psi_{2}-\partial_{8} \psi_{6}= \\
-A_{1} \psi_{3}+A_{2} \psi_{7}+A_{3} \psi_{4}-A_{4} \psi_{8}-A_{5} \psi_{1}-A_{6} \psi_{5}-A_{7} \psi_{2}+A_{8} \psi_{6} \\
\partial_{1} \psi_{4}-\partial_{2} \psi_{8}+\partial_{3} \psi_{3}-\partial_{4} \psi_{7}-\partial_{5} \psi_{2}+\partial_{6} \psi_{6}+\partial_{7} \psi_{1}+\partial_{8} \psi_{5}= \\
-A_{1} \psi_{4}+A_{2} \psi_{8}-A_{3} \psi_{3}+A_{4} \psi_{7}+A_{5} \psi_{2}-A_{6} \psi_{6}-A_{7} \psi_{1}-A_{8} \psi_{5} \\
\partial_{1} \psi_{5}+\partial_{2} \psi_{1}+\partial_{3} \psi_{6}-\partial_{4} \psi_{2}+\partial_{5} \psi_{7}-\partial_{6} \psi_{3}+\partial_{7} \psi_{8}-\partial_{8} \psi_{4}= \\
-A_{1} \psi_{5}-A_{2} \psi_{1}-A_{3} \psi_{6}+A_{4} \psi_{2}-A_{5} \psi_{7}+A_{6} \psi_{3}-A_{7} \psi_{8}+A_{8} \psi_{4} \\
\\
\partial_{1} \psi_{6}+\partial_{2} \psi_{2}-\partial_{3} \psi_{5}+\partial_{4} \psi_{1}-\partial_{5} \psi_{8}-\partial_{6} \psi_{4}+\partial_{7} \psi_{7}+\partial_{8} \psi_{3}= \\
-A_{1} \psi_{6}-A_{2} \psi_{2}+A_{3} \psi_{5}-A_{4} \psi_{1}+A_{5} \psi_{8}+A_{6} \psi_{4}-A_{7} \psi_{7}-A_{8} \psi_{3} \\
\partial_{1} \psi_{7}+\partial_{2} \psi_{3}+\partial_{3} \psi_{8}+\partial_{4} \psi_{4}-\partial_{5} \psi_{5}+\partial_{6} \psi_{1}-\partial_{7} \psi_{6}-\partial_{8} \psi_{2}= \\
-A_{1} \psi_{7}-A_{2} \psi_{3}-A_{3} \psi_{8}-A_{4} \psi_{4}+A_{5} \psi_{5}-A_{6} \psi_{1}+A_{7} \psi_{6}+A_{8} \psi_{2} \\
\partial_{1} \psi_{8}+\partial_{2} \psi_{4}-\partial_{3} \psi_{7}-\partial_{4} \psi_{3}+\partial_{5} \psi_{6}+\partial_{6} \psi_{2}-\partial_{7} \psi_{5}+\partial_{8} \psi_{1}= \\
-A_{1} \psi_{8}-A_{2} \psi_{4}+A_{3} \psi_{7}+A_{4} \psi_{3}-A_{5} \psi_{6}-A_{6} \psi_{2}+A_{7} \psi_{5}-A_{8} \psi_{1}
\end{gathered}
$$

where $\partial_{i} \psi_{j}=\frac{\partial \psi_{j}}{\partial x_{i}}$. The explicit form of $\rho^{+}\left(F_{A}^{+}\right)=\left(\psi \psi^{*}\right)^{+}$is

$$
\begin{gathered}
F_{15}+F_{26}+F_{37}+F_{48}= \\
\frac{1}{4}\left(\psi_{1} \bar{\psi}_{3}-\psi_{3} \bar{\psi}_{1}-\psi_{2} \bar{\psi}_{4}+\psi_{4} \bar{\psi}_{2}-\psi_{5} \bar{\psi}_{7}+\psi_{7} \bar{\psi}_{5}-\psi_{6} \bar{\psi}_{8}+\psi_{8} \bar{\psi}_{6}\right) \\
F_{12}+F_{34}-F_{56}-F_{78}= \\
\frac{1}{4}\left(\psi_{1} \bar{\psi}_{5}-\psi_{5} \bar{\psi}_{1}-\psi_{2} \bar{\psi}_{6}+\psi_{6} \bar{\psi}_{2}+\psi_{3} \bar{\psi}_{7}-\psi_{7} \bar{\psi}_{3}+\psi_{4} \bar{\psi}_{8}-\psi_{8} \bar{\psi}_{4}\right) \\
F_{16}-F_{25}-F_{38}+F_{47}= \\
\frac{1}{4}\left(\psi_{1} \bar{\psi}_{7}-\psi_{7} \bar{\psi}_{1}+\psi_{2} \bar{\psi}_{8}-\psi_{8} \bar{\psi}_{2}-\psi_{3} \bar{\psi}_{5}+\psi_{5} \bar{\psi}_{3}+\psi_{4} \bar{\psi}_{6}-\psi_{6} \bar{\psi}_{4}\right) \\
F_{13}-F_{24}-F_{57}+F_{68}= \\
\frac{1}{4}\left(\psi_{1} \bar{\psi}_{2}-\psi_{2} \bar{\psi}_{1}+\psi_{3} \bar{\psi}_{4}-\psi_{4} \bar{\psi}_{3}+\psi_{5} \bar{\psi}_{6}-\psi_{6} \bar{\psi}_{5}-\psi_{7} \bar{\psi}_{8}+\psi_{8} \bar{\psi}_{7}\right) \\
F_{17}+F_{28}-F_{35}-F_{46}= \\
\frac{1}{4}\left(\psi_{1} \bar{\psi}_{4}-\psi_{4} \bar{\psi}_{1}+\psi_{2} \bar{\psi}_{3}-\psi_{3} \bar{\psi}_{2}-\psi_{5} \bar{\psi}_{8}+\psi_{8} \bar{\psi}_{5}+\psi_{6} \bar{\psi}_{7}-\psi_{7} \bar{\psi}_{6}\right)
\end{gathered}
$$

$$
\begin{aligned}
& F_{14}+F_{23}-F_{58}-F_{67}= \\
& \frac{1}{4}\left(\psi_{6} \bar{\psi}_{1}-\psi_{1} \bar{\psi}_{6}-\psi_{2} \bar{\psi}_{5}+\psi_{5} \bar{\psi}_{2}-\psi_{3} \bar{\psi}_{8}+\psi_{8} \bar{\psi}_{3}+\psi_{4} \bar{\psi}_{7}-\psi_{7} \bar{\psi}_{4}\right) \\
& F_{18}-F_{27}+F_{36}-F_{45}= \\
& \frac{1}{4}\left(\psi_{1} \bar{\psi}_{8}-\psi_{8} \bar{\psi}_{1}-\psi_{2} \bar{\psi}_{7}+\psi_{7} \bar{\psi}_{2}-\psi_{3} \bar{\psi}_{6}+\psi_{6} \bar{\psi}_{3}-\psi_{4} \bar{\psi}_{5}+\psi_{5} \bar{\psi}_{4}\right)
\end{aligned}
$$

In [1] it is pointed out that if the pair (A, Φ) with

$$
A=\sum_{i=1}^{4} A_{i}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) d x_{i} \text { and } \Phi=\left(\phi_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \phi_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)
$$

is a solution of the 4-dimensional Seiberg-Witten equations, then the pair (B, Ψ) with

$$
B=\sum_{i=1}^{4} A_{i}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) d x_{i}
$$

(i. e. the first four components B_{i} of B coincide with A_{i}, thus not depending on $x_{5}, x_{6}, x_{7}, x_{8}$ and the last four components of B vanish) and

$$
\Psi=\left(0,0, \phi_{1}, \phi_{2}, 0,0, i \phi_{1},-i \phi_{2}\right)
$$

is a solution of the equations $D_{A}(\Psi)=0, \rho^{+}\left(F_{A}^{+}\right)=\left(\Psi \Psi^{*}\right)^{+}$on \mathbb{R}^{8}.
The aim of this work is to modify the equations above on \mathbb{R}^{8}. To do this modification we also consider the subspace S_{2} which is the orthogonal complement of S_{1} , the spaces of self-dual 2 -forms, in $\wedge^{2} \mathbb{R}^{8}$. S_{2} is 21 -dimensional subspace of $\wedge^{2} \mathbb{R}^{8}$. Let $G=\sum_{i<j} G_{i j} d x_{i} \wedge d x_{j}$ be any element of S_{2} then it is orthogonal to each element of S_{1}, in particular it is orthogonal to the basis elements $f_{1}, f_{2}, \ldots, f_{7}$ of S_{1}, that is $\left\langle G, f_{i}\right\rangle=0$ for $i=1, \ldots, 7$. Then we get following equations which determine S_{2} :

$$
\begin{aligned}
& G_{15}+G_{26}+G_{37}+G_{48}=0 \\
& G_{12}+G_{34}-G_{56}-G_{78}=0 \\
& G_{16}-G_{25}-G_{38}+G_{47}=0 \\
& G_{13}-G_{24}-G_{57}+G_{68}=0 \\
& G_{17}+G_{28}-G_{35}-G_{46}=0 \\
& G_{14}+G_{23}-G_{58}-G_{67}=0 \\
& G_{18}-G_{27}+G_{36}-G_{45}=0
\end{aligned}
$$

From these equations we obtain following basis element for S_{2}

$$
\begin{aligned}
g_{1} & =d x_{1} \wedge d x_{2}-d x_{3} \wedge d x_{4} \\
g_{2} & =-d x_{5} \wedge d x_{6}+d x_{7} \wedge d x_{8} \\
g_{3} & =d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{4}+d x_{5} \wedge d x_{6}+d x_{7} \wedge d x_{8} \\
g_{4} & =d x_{1} \wedge d x_{3}+d x_{2} \wedge d x_{4} \\
g_{5} & =-d x_{5} \wedge d x_{7}-d x_{6} \wedge d x_{8} \\
g_{6} & =d x_{1} \wedge d x_{3}-d x_{2} \wedge d x_{4}+d x_{5} \wedge d x_{7}-d x_{6} \wedge d x_{8} \\
g_{7} & =d x_{1} \wedge d x_{4}-d x_{2} \wedge d x_{3} \\
g_{8} & =-d x_{5} \wedge d x_{8}+d x_{6} \wedge d x_{7} \\
g_{9} & =d x_{1} \wedge d x_{4}+d x_{2} \wedge d x_{3}+d x_{5} \wedge d x_{8}+d x_{6} \wedge d x_{7} \\
g_{10} & =d x_{1} \wedge d x_{5}-d x_{2} \wedge d x_{6} \\
g_{11} & =d x_{3} \wedge d x_{7}-d x_{4} \wedge d x_{8} \\
g_{12} & =d x_{1} \wedge d x_{5}+d x_{2} \wedge d x_{6}-d x_{3} \wedge d x_{7}-d x_{4} \wedge d x_{8} \\
g_{13} & =d x_{1} \wedge d x_{6}+d x_{2} \wedge d x_{5} \\
g_{14} & =-d x_{3} \wedge d x_{8}-d x_{4} \wedge d x_{7} \\
g_{15} & =d x_{1} \wedge d x_{6}-d x_{2} \wedge d x_{5}+d x_{3} \wedge d x_{8}-d x_{4} \wedge d x_{7} \\
g_{16} & =d x_{1} \wedge d x_{7}-d x_{2} \wedge d x_{8} \\
g_{17} & =-d x_{3} \wedge d x_{5}+d x_{4} \wedge d x_{6} \\
g_{18} & =d x_{1} \wedge d x_{7}+d x_{2} \wedge d x_{8}+d x_{3} \wedge d x_{5}+d x_{4} \wedge d x_{6} \\
& \\
g_{19} & =d x_{1} \wedge d x_{8}+d x_{2} \wedge d x_{7} \\
g_{20} & =d x_{3} \wedge d x_{6}+d x_{4} \wedge d x_{5} \\
g_{21} & =d x_{1} \wedge d x_{8}-d x_{2} \wedge d x_{7}-d x_{3} \wedge d x_{6}+d x_{4} \wedge d x_{5}
\end{aligned}
$$

Among the above basis elements $g_{3}, g_{6}, g_{9}, g_{12}, g_{15}, g_{18}, g_{21}$ are each non-degenerate and moreover the associated skew-symmetric matrices of these 2 -forms constitute a Radon-Hurwitz family of matrices.

Let V^{-}be the complexification of the subspace of S_{2} which is spanned by $\left\{g_{3}, g_{6}\right.$, $\left.g_{9}, g_{12}, g_{15}, g_{18}, g_{21}\right\}$ and F_{A}^{-}be the projection of F_{A} on to the subspace V^{-}. The image $\rho^{+}\left(V^{-}\right)$is a subspace of $\operatorname{End}\left(W^{+}\right)$. We know that for any $\Psi \in C^{\infty}\left(\mathbb{R}^{8}, W^{+}\right)$ associates the endomorphism $\Psi \Psi^{*} \in \operatorname{End}\left(W^{+}\right)$. We project $\Psi \Psi^{*}$ on to the subspace $\rho^{+}\left(V^{-}\right)$and denote by $\left(\Psi \Psi^{*}\right)^{-}$. Hence we consider the (new) equation $\rho^{+}\left(F_{A}^{-}\right)=$ $\left(\Psi \Psi^{*}\right)^{-}$. With the last modification, the monopole equations on \mathbb{R}^{8} take the following form:

$$
\begin{array}{ccc}
D_{A} \Psi & = & 0 \\
\rho^{+}\left(F_{A}^{+}\right) & = & \left(\Psi \Psi^{*}\right)^{+} \tag{4.3}\\
\rho^{+}\left(F_{A}^{-}\right) & = & \left(\Psi \Psi^{*}\right)^{-}
\end{array}
$$

The explicit form of the third equation with respect to above constant spin^{c}-structure Γ is:

$$
\begin{aligned}
& F_{15}+F_{26}-F_{37}-F_{48}= \\
& \\
& \quad \frac{1}{4}\left(\psi_{1} \bar{\psi}_{3}-\psi_{3} \bar{\psi}_{1}+\psi_{2} \bar{\psi}_{4}-\psi_{4} \bar{\psi}_{2}-\psi_{5} \bar{\psi}_{7}+\psi_{7} \bar{\psi}_{5}+\psi_{6} \bar{\psi}_{8}-\psi_{8} \bar{\psi}_{6}\right)
\end{aligned}
$$

$$
\begin{gathered}
F_{12}+F_{34}+F_{56}+F_{78}= \\
\frac{1}{4}\left(\psi_{5} \bar{\psi}_{1}-\psi_{1} \bar{\psi}_{5}+\psi_{2} \bar{\psi}_{6}-\psi_{6} \bar{\psi}_{2}+\psi_{3} \bar{\psi}_{7}-\psi_{7} \bar{\psi}_{3}+\psi_{4} \bar{\psi}_{8}-\psi_{8} \bar{\psi}_{4}\right) \\
F_{16}-F_{25}+F_{38}-F_{47}= \\
\frac{1}{4}\left(\psi_{1} \bar{\psi}_{7}-\psi_{7} \bar{\psi}_{1}-\psi_{2} \bar{\psi}_{8}+\psi_{8} \bar{\psi}_{2}-\psi_{3} \bar{\psi}_{5}+\psi_{5} \bar{\psi}_{3}-\psi_{4} \bar{\psi}_{6}+\psi_{6} \bar{\psi}_{4}\right) \\
F_{13}-F_{24}+F_{57}-F_{68}= \\
\frac{1}{4}\left(\psi_{2} \bar{\psi}_{1}-\psi_{1} \bar{\psi}_{2}+\psi_{3} \bar{\psi}_{4}-\psi_{4} \bar{\psi}_{3}-\psi_{5} \bar{\psi}_{6}+\psi_{6} \bar{\psi}_{5}-\psi_{7} \bar{\psi}_{8}+\psi_{8} \bar{\psi}_{7}\right) \\
F_{17}+F_{28}+F_{35}+F_{46}= \\
\frac{1}{4}\left(\psi_{1} \bar{\psi}_{4}-\psi_{4} \bar{\psi}_{1}-\psi_{2} \bar{\psi}_{3}+\psi_{3} \bar{\psi}_{2}-\psi_{5} \bar{\psi}_{8}+\psi_{8} \bar{\psi}_{5}-\psi_{6} \bar{\psi}_{7}+\psi_{7} \bar{\psi}_{6}\right) \\
F_{14}+F_{23}+F_{58}+F_{67}= \\
\frac{1}{4}\left(\psi_{1} \bar{\psi}_{6}-\psi_{6} \bar{\psi}_{1}+\psi_{2} \bar{\psi}_{5}-\psi_{5} \bar{\psi}_{2}-\psi_{3} \bar{\psi}_{8}+\psi_{8} \bar{\psi}_{3}+\psi_{4} \bar{\psi}_{7}-\psi_{7} \bar{\psi}_{4}\right) \\
\frac{1}{4}\left(\psi_{1} \bar{\psi}_{8}-\psi_{8} \bar{\psi}_{1}+\psi_{2} \bar{\psi}_{7}-\psi_{7} \bar{\psi}_{2}+\psi_{3} \bar{\psi}_{6}-\psi_{6} \bar{\psi}_{3}-\psi_{4} \bar{\psi}_{5}+\psi_{5} \bar{\psi}_{4}\right)
\end{gathered}
$$

It can be easily checked that the pair (B, Ψ) which is solution to (4.2) is also a solution to(4.3).

References

[1] A. H. Bilge, T. Dereli, Ş. Koçak, Monopole equations on 8-manifolds with spin(7) holonomy, Communications in Mathematical Physics 203(1) 1999.
[2] A. H. Bilge, T. Dereli, Ş. Koçak, Seiberg-Witten Equations on \mathbb{R}^{8}, Proceedings of Gökova Geometry-Topology Conference 1996, 87-92.
[3] Y. H. Gao, G. Tian, Instantons and the monopole-like equations in eight dimensions, Journal of High Energy Physics, (5) 2000.
[4] H. B. Lawson, M-L. Michelsohn, Spin Geometry, Princeton University Press, 1989.
[5] J. W. Morgan, Seiberg-Witten Equations and Topology of Smooth Four Manifolds, Princeton University Press, 1996.
[6] D. Salamon, Seiberg-Witten Invariants and Spin Geometry, preprint.

Authors' addresses:
Nedim Değirmenci
Mathematics Department, Science Faculty, Anadolu University, 26470, Eskisehir, Turkey
e-mail: ndegirmenci@anadolu.edu.tr
Nülifer Özdemir Mathematics Department, Science Faculty, Anadolu University, 26470, Eskisehir, Turkey
e-mail: nozdemir@anadolu.edu.tr

[^0]: Applied Sciences, Vol.7, 2005, pp. 62-71.
 © Balkan Society of Geometers, Geometry Balkan Press 2005.

