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Clara Germanà and Luca Guerrini

Abstract

In this paper we consider the Solow-Swan model with purely labor-augmenting
technological progress in which the labor growth rate follows the generalized lo-
gistic equation. We prove this model to have a dynamic equation of growth
whose solution can be expressed in closed-form via the hypergeometric function

2F1.
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1 Introduction

The earliest mathematical formulation of economic growth theory was made by Domar
[2] and Harrod [3]. In these models input coefficients are fixed and full employment
equilibrium growth is not guaranteed. This undesiderable feature led Solow [5] and
Swan [6] to the formulation of the so-called neoclassical model which allows for factor
substitution and hence full employment equilibrium. The aim of their papers was
to provide a theoretical framework for understanding world-wide growth of output
and the persistence of geographical differences in per capita output. In the Solow-
Swan model, each individual of the population is a member of the labor force and
the growth rate of the population is constant. This assumption was relaxed by Cai
[1], who considered an increasing bounded labor force whose growth rate decreases
monotonically to zero. When the rate of population is given by the logistic equa-
tion, Mingari Scarpello and Ritelli [4] showed that the resulting model has a dynamic
equation of growth whose solution can be integrated in closed-form through the hy-
pergeometric function 2F1. In this paper, we extend their result to the Solow-Swan
model with labor-augmenting technical progress and labor growth rate given by the
generalized logistic equation.

2 The model

Let us assume a closed economy where an homogeneous good is produced accord-
ing to a technology involving three inputs: physical capital, labor and technology.
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102 Clara Germanà and Luca Guerrini

Considering a Cobb-Douglas production we arrive at Y (t) = K(t)α[A(t)L(t)]1−α,
0 < α < 1, where t stands for time, Y (t) is the flow of output, K(t) is the stock
of physical capital, L(t) is the labor force and A(t) is the level of technology. We
assume that A(t) increases over time at the exogenous and constant rate g, that
is

.

A(t)/A(t) = g > 0. Based on the feature of constant returns to scale, we can
specify the economy’s output in terms of effective labor as follows y(t) = k(t)α,
0 < α < 1, where y(t) = Y (t)/[A(t)L(t)] is the output per unit of effective labor
and k(t) = K(t)/[A(t)L(t)] denotes the capital per unit of effective labor. Output is
assumed to be used for consumption c(t), or for investment I(t) in physical capital.
A constant fraction δ of the capital stock depreciates every period. This means that
if, at the beginning of a period, the capital stock equals K(t), then, at the end of it,
δK(t) will have been worn off. Therefore, the net increase in capital at any moment
in time equals gross investment less capital depreciation, that is

.

K(t) = I(t)− δK(t).(2.1)

The output of the economy equals total income, whereas investments equal savings.
Households save a constant fraction of their income, that is the saving rate s satisfies
0 < s < 1. Hence, the following relations hold

I(t) = S(t) = sY (t).(2.2)

Equations (2.1) and (2.2) imply that
.

K(t) = sY (t)− δK(t). To keep our analysis in
terms of effective labor, we divide both sides of this equation by A(t)L(t), and find
that

.

K(t)
A(t)L(t)

=
sY (t)

A(t)L(t)
− δK(t)

A(t)L(t)
= sk(t)α − δk(t).

Consequently, the growth rate of the capital per effective worker writes as

.

k(t) =
d

dt

(
K(t)

A(t)L(t)

)
=

.

K(t)
A(t)L(t)

−
(

g +

.

L(t)
L(t)

)
k(t).

If the labor growth rate
.

L(t)/L(t) is given exogenously and equals a constant n, then
the equations above yield

.

k(t) = sk(t)α − (δ + g + n)k(t). This is known as the
fundamental differential equation of the augmented version of the Solow-Swan model.
If instead we relax the assumption that the labor growth rate is constant, and assume
that it has the form of the generalized logistic equation, that is

.

L(t)/L(t) = a−bL(t)β ,
where β > 0, a > b > 0, L(0) = 1, we obtain the so-called improved labor augmented
Solow-Swan model. The dynamic of per capita capital of this model is described by
the following first-order nonlinear differential equation

.

k(t) = sk(t)α −
(

δ + g +

.

L(t)
L(t)

)
k(t).(2.3)

Theorem 1. Let k(t) be the solution of (2.3). Then

k(t) =
e−(δ+g)t

L(t)

(
k(0)1−α + (1− α)s

∫ t

0

e(1−α)(δ+g)uL(u)1−αdu

) 1
1−α

.(2.4)
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Proof. Equation (2.3) is a Bernoulli type differential equation. Its solution is known
to be found by taking the substitution z = k1−α. This yields a linear differential
equation in z,

.
z = (1− α)s− (1− α)

(
δ + g +

.

L(t)
L(t)

)
z,

which is solved by

z(t) = e
− ∫ t

0 (1−α)

�
δ+g+

.
L(u)
L(u)

�
du

(
z(0) +

∫ t

0

(1− α)s e

∫ u
0 (1−α)

�
δ+g+

.
L(v)
L(v)

�
dv

du

)
.

Since

e
−(1−α)

∫ t
0

�
δ+g+

.
L(u)
L(u)

�
du

= e−(1−α)[(δ+g)u+lnL(u)]t0 = e−(1−α)(δ+g)tL(t)−(1−α),

we obtain

z(t) = e−(1−α)(δ+g)tL(t)−(1−α)

(
z(0) + (1− α)s

∫ t

0

e(1−α)(δ+g)uL(u)1−αdu

)
.

The statement follows by rewriting this equation in terms of k.

3 The model solution expressed via the hypergeo-
metric function 2F1

The aim of this section is to write the model solution k(t) stated in Theorem 1 in
terms of the hypergeometric function 2F1. For this purpose, first we recall that 2F1

has the integral representation (see Watson and Whittaker [8])

2F1(c1, c2, c3; z) =
Γ(c3)

Γ(c1)Γ(c3 − c1)

1∫

0

tc1−1(1− t)
c3−c1−1

(1− zt)−c2dt,(3.5)

where z ∈ C, c1, c2, c3 ∈ C are such that Re(c1) > 0, Re(c3 − c1) > 0, and Γ
is the Euler gamma function. Next, we remind that the generalized logistic law
.

L(t) = aL(t) − bL(t)1+β is a Bernoulli type differential equation, and so its solution
can be found to be given by

L(t) = eat

(
1− b

a
+

b

a
eβat

)− 1
β

.(3.6)

This growth law is a generalization of the logistic equation as it can be seen by taking
β = 1 in (3.6) (see Tsoularis [7] for an analysis of logistic growth models).
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Theorem 2. Let γ1 = (1 − α)(δ + g + a) > 0, γ2 = βa > 0, γ3 = (1− α)/β > 0,
and B = b/(b− a) < 0. Let 2F1 be the hypergeometric function. The solution k(t) of
(2.3) writes in closed-form as

k(t) = e−(δ+g)tL(t)
−1

{
k(0)1−α + (1− α)s

(
1− b

a

)− 1−α
β 1

γ1
·

·
[
eγ1t

2F1

(
γ1

γ2
, γ3, 1 +

γ1

γ2
; Beγ2t

)
− 2F1

(
γ1

γ2
, γ3, 1 +

γ1

γ2
; B

)]} 1
1−α

.

Proof. The statement will follow by writing the integral in the statement of Theorem
1 in terms of the function 2F1. Let start replacing L(t) with its expression written in
(3.6). This yields

∫ t

0

e(1−α)(δ+g)uL(u)1−αdu

=
∫ t

0

e(1−α)(δ+g)ue(1−α)au

(
1− b

a
+

b

a
eβau

)− 1−α
β

du,

=
(

1− b

a

)− 1−α
β

∫ t

0

e(1−α)(δ+g+a)u

(
1− b

b− a
eβau

)− 1−α
β

du.

Operating the change of variable x = eγ2u, and using the definition of γ1, γ2, γ3 and
B, the above integral writes

∫ t

0

e(1−α)(δ+g+a)u

(
1− b

b− a
eβau

)− 1−α
β

du =
∫ t

0

eγ1u (1−Beγ2u)−γ3 du,

=
1
γ2

∫ eγ2t

1

x
γ1
γ2
−1 (1−Bx)−γ3 dx,

=
1
γ2

(∫ eγ2t

0

x
γ1
γ2
−1 (1−Bx)−γ3 dx−

∫ 1

0

x
γ1
γ2
−1 (1−Bx)−γ3 dx

)
.(3.7)

As γ1/γ2 > 0, the integrals in (3.7) are convergent since

∫ v

0

x
γ1
γ2
−1 (1−Bx)−γ3 dx ∼

∫ v

0

x
γ1
γ2
−1dx, for v ≥ 1.
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Setting r = e−γ2tx, by (3.5) the first integral in (3.7) writes

∫ eγ2t

0

x
γ1
γ2
−1 (1−Bx)−γ3 dx = eγ1t

∫ 1

0

r
γ1
γ2
−1 (

1−Beγ2tr
)−γ3 (1− r)0dr

= eγ1t

Γ
(

γ1

γ2

)
Γ(1)

Γ
(

1 +
γ1

γ2

) 2F1

(
γ1

γ2
, γ3, 1 +

γ1

γ2
; Beγ2t

)
.

Since Γ(1) = 1 and Γ(v + 1) = v Γ(v), for any v > 0, it follows

∫ eγ2t

0

x
γ1
γ2
−1 (1−Bx)−γ3 dx = eγ1t γ2

γ1
2F1

(
γ1

γ2
, γ3, 1 +

γ1

γ2
; Beγ2t

)
.

Using again (3.5), the second integral in (3.7) becomes
∫ 1

0

x
γ1
γ2
−1 (1−Bx)−γ3 dx =

∫ 1

0

x
γ1
γ2
−1 (1−Bx)−γ3 (1− x)0 dx,

=
Γ

(
γ1

γ2

)
Γ(1)

Γ
(

1 +
γ1

γ2

) 2F1

(
γ1

γ2
, γ3, 1 +

γ1

γ2
; B

)
,

Hence
∫ 1

0

x
γ1
γ2
−1 (1−Bx)−γ3 dx =

γ2

γ1
2F1

(
γ1

γ2
, γ3, 1 +

γ1

γ2
; B

)
.

In conclusion, we have found that

∫ t

0

e(1−α)(δ+g)uL(u)1−αdu =
(

1− b

a

)− 1−α
γ 1

γ1
·

·
[
eγ1t

2F1

(
γ1

γ2
, γ3, 1 +

γ1

γ2
; Beγ2t

)
− 2F1

(
γ1

γ2
, γ3, 1 +

γ1

γ2
;B

)]
.

The statement now follows immediately from Theorem 1.
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