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Serpil Öztürk Uslu and Mehmet Bayramoğlu

Abstract

Let H be a separable Hilbert space. In this work, we will study the Green
function of the boundary value problem in X = L2(0,∞; H) which is formed
by Sturm-Liouville differential equation

−y′′ + Q(x)y + µy = 0 , 0 ≤ x < ∞
with the boundary condition

y′(0)− hy(0) = 0

where h is a complex number, µ > 0 is a real number and, for each value of x
in [0;∞), Q(x) is the normal operator in H.

M.S.C. 2000: 34L05, 47A10.
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1 Introduction

Let Q(x) be the normal operator which is a transformation for each value x ∈ [0,∞).
Assume that

1. D of Q(x) is independent from x and D = H , where D represents closure
of D in H.

2. The set of the regular points of Q(x) is

Λ = {|argλ− π| < ε0, 0 < ε0 < π, ε0 is constant}.

3. For all x ∈ [0,∞), let Q−1(x) be a completely continous operator in H .

4. Let
∥∥∥[Q(x)−Q(ξ)]Q−a(x)

∥∥∥ ≤ c|x− ξ|, c = constant and 0 < a <
3
2

where |x− ξ| ≤ 1.
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5. Let ∥∥∥Q(ξ)e
−1
2 |x−ξ|Q 1

2 (x)
∥∥∥ < B, B = constant

where |x− ξ| > 1.

6. Let |α1(x)| ≤ |α2(x)| ≤ · · · ≤ |αn(x)| ≤ · · · be the eigenvalues of Q(x) in H

for each value of x. Let
∞∑

i=1

1
|αi(x)|3/2 be a convergent series and its sum be

F (x) ∈ L1(0,∞) , i.e. we have
∫ ∞

0

F (x)dx < ∞.

In this work, we obtain the Green function of the following boundary value problem
in L2(0,∞; H) :

(1.1) −y′′ + Q(x)y + µy = 0, 0 ≤ x < ∞,

(1.2) y′(0)− hy(0) = 0

where h is a fixed complex number and µ > 0 is a real number.
The Green function of Sturm-Liouville In [8], we see, for the first time, the asymp-

totic behaviour of the eigenvalues of our problem described above. Then, the Green
function of Sturm-Liouville differential equation, having unbounded self-adjoint op-
erator coefficient have been studied in [9].

This work have been developped and generalized for many other operator equa-
tions (see [1, 3, 7, 5]).
The Green function of (1.1)-(1.2) above was examined in [4] while Q∗(x) = Q(x) ≥ I
(I is unit operator in H).
The Green function G(x, ξ;µ) of (1.1)-(1.2) is defined as a linear bounded operator
function which is a transformation in H at each value x and ξ ∈ [0,∞). Assume
that we have:

1. G(x, ξ, µ) is a continous operator function of x and ξ in [x, ξ] = [0,∞).

2. When x 6= ξ, ∂G(x,ξ,µ)
∂ξ is a continous function of (x, ξ) and

∂G(x, x + 0, µ)
∂ξ

− ∂G(x, x− 0, µ)
∂ξ

= −I

where I is the identity operator on H.

When x 6= ξ , we have:

3.

−∂2G(x, ξ; µ)
∂ξ2

+ Q(x)G(x, ξ; µ) + µG(x, ξ; µ) = 0.

4.
∂G(x, 0; µ)

∂ξ
− hG(x, 0; µ) = 0.



On the Green function of Sturm-Liouville differential equation 163

2 An Integral Equation for the Green Function

In this section, we are looking for G(x, ξ; µ) as the solution of the following integral
equation by using the parametrix method:

(2.1) G(x, ξ; µ) = g(x, ξ;µ)−
∫ ∞

0

g(x, s; µ)[Q(s)−Q(x)]G(s, ξ; µ)ds .

Here g(x, ξ; µ) is

g(x, ξ; µ) =
χ−1

2
[
e−χ|x−ξ| − (h− χ)(h + χ)−1e−χ(x+ξ)

]

and χ is
χ = [Q(x) + µI]1/2.

We want to show that (2.1) has the unique solution and this solution is the Green
function of (1.1)-(1.2) above. For this, we consider the equation given in (2.1) in X2

defined below.
X2 Space :
Let A(x, η) be a Hilbert-Schmidt (H-S) operator function defined on H (0 ≤ x, η <
∞) such that

∞∫

0

dx
{ ∞∫

0

‖A(x, η)‖22 dη
}

< ∞.

Here, the norm is defined by

‖A‖X2 =

( ∞∫

0

dx

∞∫

0

‖A(x, η)‖22 dη

) 1
2

.

If g(x, ξ;µ) ∈ X2 and N is a contraction operator in X2 which is defined by

NG(x, ξ;µ) =
∫ ∞

0

g(x, s, µ)[Q(s)−Q(x)]G(s, ξ; µ)ds,

then the solution of the equation given in (2.1) exists and unique. Consider the spaces
Xp

1 , Xp
2 and Xp

4 (p < 0; p > 0) whose elements are the operator functions A(x, ξ)
and

‖A(x, s)‖2Xp
1

=

∞∫

0

dx
{ ∞∫

0

‖A(x, s)Qp(s)‖2ds
}

‖A(x, s)‖2Xp
2

=

∞∫

0

dx
{ ∞∫

0

‖A(x, s)Qp(s)‖22ds
}

‖A(x, s)‖Xp
4

= sup
0≤x<∞

∞∫

0

‖A(x, s)Qp(s)‖ds

respectively.
These spaces are defined by B.M. Levitan in [9] in which he shows that they are

all Banach spaces.
By using [9], we can prove the following lemmas:
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Lemma 2.1 If Q(x) satisfies the (1-6) conditions above then N is a contraction
operator in X1 and X2 both for sufficiently large µ > 0 .

Lemma 2.2 Let Q(x) be a operator function satisfying (1) and (3) above and, in
addition, we have

‖Q−1/2(x)Q1/2(ξ)‖ ≤ c

where |x− ξ| ≤ 1.
In this case, g(x, ξ;µ) belongs to X

(1/2)
4 i.e. we have

sup
0≤x<∞

∞∫

0

‖g(x, ξ;µ)Q1/2(ξ)‖dξ < ∞.

Lemma 2.3 Let Q(x) be a operator function satisfying (1) and (3) above and, in
addition, we have

‖Q1/2(x)Q−1/2(s)‖ ≤ c

where |x− s| ≤ 1.
In this case, we have

∂2g(x, ξ;µ)
∂s2

∈ X
(−1/2)
4 , x 6= s,

i.e. we have

sup
0≤x<∞

∞∫

0

∥∥∥∂2g

∂s2
Q−1/2(s)

∥∥∥ds < ∞.

2.1 First Derivative of the Green Function

Consider the formal derivative of (2.1) according to ξ

∂G(x, ξ;µ)
∂ξ

=
∂g(x, ξ;µ)

∂ξ
−

∫ ∞

0

g(x, s; µ)[Q(s)−Q(x)]
∂G(s, ξ; µ)

∂ξ
ds.

Now consider the following equation in the Banach space X
(p)
3 , (p ≥ 1),

(2.1.1) K(x, ξ;µ) =
∂g(x, ξ; µ)

∂ξ
−

∫ ∞

0

g(x, s;µ)[Q(s)−Q(x)]K(s, ξ; µ)ds

∂g(x,ξ;µ)
∂ξ ∈ X

(p)
3 , i.e. we have

sup
0≤x<∞

∞∫

0

∥∥∥∂g(x, ξ; µ)
∂ξ

∥∥∥
(p)

dξ < ∞.

So, K(x, ξ; µ) ∈ X
(p)
3 and, in particular it is an element of X

(1)
3 ≡ X3 .
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Here,

(2.1.2)
∂g(x, ξ;µ)

∂ξ
=





−1
2 e−χ(ξ−x) + 1

2 (h + χ)−1(h− χ)e−χ(x+ξ), x < ξ

1
2e−χ(x−ξ) + 1

2 (h + χ)−1(h− χ)e−χ(x+ξ), x > ξ.

Assume that ξ < x (note that we can do the same process for ξ > x ). The integration
of (2.1.1) gives us

(2.1.3)

ξ∫

∞
K(x, ξ; µ)dξ = g(x, ξ; µ)−

∫ ∞

0

g(x, s;µ)[Q(s)−Q(x)]

ξ∫

∞
K(s, ξ; µ)dsdξ.

This is same as the equation (2.1) and we have

ξ∫

∞
K(s, ξ;µ)dξ = G(x, ξ;µ)

since (2.1) has the unique solution.
Now, we will show that the operator function K(x, ξ; µ) is continous with respect

to ξ 6= x,
‖K(x, ξ + h; µ)−K(x, ξ; µ)‖ −→ 0

when h −→ 0 .
For this reason, we write the equation (2.1.1) as below:

(2.1.4) K(x, ξ;µ)− ∂g(x, ξ; µ)
∂ξ

= −
∫ ∞

0

g(x, s; µ)[Q(s)−Q(x)]
∂g(s, ξ; µ)

∂ξ
ds−

−
∞∫

0

{g(x, s;µ)[Q(s)−Q(x)]}{K(s, ξ; µ)− ∂g(s, ξ; µ)
∂ξ

}ds.

Let

L(x, ξ; µ) = K(x, ξ; µ)− ∂g(x, ξ; µ)
∂ξ

and

l(x, ξ;µ) =
∫ ∞

0

g(x, s;µ)[Q(s)−Q(x)]
∂g(s, ξ; µ)

∂ξ
ds.

Hence (2.1.4) becomes

(2.1.5) L(x, ξ;µ) = l(x, ξ; µ)−
∫ ∞

0

g(x, s;µ)[Q(s)−Q(x)]L(s, ξ;µ)ds.

If we denote
∆L(x, ξ; µ) = L(x, ξ + h; µ)− L(x, ξ; µ)

and
∆l(x, ξ; µ) = l(x, ξ + h;µ)− l(x, ξ;µ)
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then, by (2.1.5), we obtain

(2.1.6) ∆L = ∆l −N(∆L).

We study the equation (2.1.6) in the space X5. We know from [9] that X5 is
Banach space of operator functions A(x, ξ), (0 ≤ x; ξ < ∞), defined on H with

‖A(x, ξ)‖X5 = sup
0≤x<∞

sup
0≤ξ<∞

‖A(x, ξ)‖H

As in Lemma 2.1, it can be seen that N is a contraction operator for sufficiently
large µ > 0 in X5.

According to this, (I +N)−1 exist and is bounded inX5. Let ‖(I +N)−1‖X5 = A.
In this case, we have

(2.1.7) ‖∆L‖X5 ≤ A‖∆l‖X5 .

Lemma 2.4 For arbitrary ε > 0 , when |h| < t there exists δ > 0 such that

(2.1.8) ‖L(x, ξ + h; µ)− L(x, ξ; µ)‖X5 < ε

when |h| < t.

So, the operator function K(x, ξ; µ)− ∂g(x,ξ;µ)
∂ξ is continous with respect to ξ. More-

over,
K(x, ξ;µ) = ∂G(x,ξ;µ)

∂ξ is continous for ξ 6= x . Let us see that ∂g
∂ξ is continous with

respect to ξ when ξ 6= x.

∂g(x, ξ; µ)
∂ξ

=





−1
2 e−χ(ξ−x) + 1

2 (h + χ)−1(h− χ)e−χ(x+ξ), x < ξ

1
2e−χ(x−ξ) + 1

2 (h + χ)−1(h− χ)e−χ(x+ξ), x > ξ

Let ξ < x . In this case, we have

∂g

∂ξ
=

1
2
e−χ(x−ξ) +

1
2
(h + χ)−1(h− χ)e−χ(x+ξ).

Put x− ξ = t . Assume that h is a smaller number. We can show that

‖∂g(x, ξ + h; µ)
∂ξ

− ∂g(x, ξ; µ)
∂ξ

‖ −→ 0

when h −→ 0. With respect to the spectral expansion formula, we can write

‖e−χ(t−h) − e−χt‖H = sup
‖f‖=1

∣∣∣∣∣
∫

σ

(e−
√

λ+µ(t−h) − e−
√

λ+µt)d(Eλf, f)

∣∣∣∣∣ ≤

≤ sup
‖f‖=1

∫

σ

∣∣(e−
√

λ+µ(t−h) − e−
√

λ+µt)
∣∣d(Eλf, f)

= sup
‖f‖=1

( ∫

σ∩KR

∣∣(e−
√

λ+µ(t−h) − e−
√

λ+µt)
∣∣
)

d(Eλf, f) +

+
∫

σ∩K′
R

∣∣(e−
√

λ+µ(t−h) − e−
√

λ+µt)
∣∣d(Eλf, f)

= I1 + I2
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Here, KR is a circle with center at origin and radius R , K ′
R is the exterior of the

circle KR and Eλ = Eλ(x) is a resolution of the identity corresponding to Q(x)
[12].
Let ε > 0 be an arbitrary positive number. Assume that |h| < t . We can choose a
sufficiently large R for |λ + µ| > R. We have

∣∣e−
√

λ+µ(t−h) − e−
√

λ+µt
∣∣ <

ε

2

In this case, we have
I2 <

ε

2
.

Now, let R be in I2 . We can choose a sufficiently small δ > 0 such that |h| < δ
for |λ + µ| < R

∣∣e−
√

λ+µ(t−h) − e−
√

λ+µt
∣∣ =

∣∣e−
√

λ+µt(e−
√

λ+µh − 1)
∣∣ <

ε

2

Similarly, we have
I1 <

ε

2
.

Therefore, there are δ > 0 such that

‖e−χ(t−h) − e−χt‖H < ε

when |h| < δ . Recall that we can repeat the same process for the case ξ > x.
We can show that ∂g

∂ξ has a jump at the x = ξ:
Since, in (2.1.2), the second terms are continous with respect to ξ we need to see

the first terms. Assume that h > 0. We have

∂g

∂ξ

∣∣∣∣∣
ξ=x+h

= −1
2
e−hχ ,

∂g

∂ξ

∣∣∣∣∣
ξ=x−h

=
1
2
e−hχ

[
∂g

∂ξ

∣∣∣∣∣
ξ=x+h

+
1
2
I

]
χ−2 =

1
2
(e−hχ − I)χ−2 = α(x, ξ, h)

‖α(x, ξ, h)‖ = sup
‖f‖=1

∣∣∣∣∣
∫

σ

−1
2

1
λ + µ

[e−h
√

λ+µ − 1]d(Eλf, f)

∣∣∣∣∣

≤ sup
‖f‖=1

∫

σ

∣∣∣∣∣
1

λ + µ
[e−h

√
λ+µ − 1]

∣∣∣∣∣d(Eλf, f)

= sup
‖f‖=1

∫

σ∩KR

∣∣∣∣∣
1

λ + µ
[e−h

√
λ+µ − 1]

∣∣∣∣∣d(Eλf, f) +

+ sup
‖f‖=1

∫

σ∩K′
R

∣∣∣∣∣
1

λ + µ
[e−h

√
λ+µ − 1]

∣∣∣∣∣d(Eλf, f)

= I1 + I2



168 Serpil Öztürk Uslu and Mehmet Bayramoğlu

For I2 : Let ε > 0 be an arbitrary number. We can choose R such that we have

λ ∈ σ ∩K ′
R with

∣∣∣∣ 1
λ+µ

∣∣∣∣ < ε
4 . In this case, I2 < ε

2 .

For I1 : Let R be as in I2. We can choose δ > 0 and h < δ such that λ ∈ σ ∩KR

and
∣∣∣∣ 1
λ+µ (e−h

√
λ+µ − 1)

∣∣∣∣ < ε
2 . In this case, I1 < ε

2 .

So, for ε > 0 , there exists δ > 0 such that h < δ such that ‖α(x, ξ;µ)‖H < ε .
Thus, we obtain

∥∥∥∥∥

[
∂g(x, ξ; µ)

∂ξ

∣∣∣∣∣
ξ=x+h

− 1
2
I

]
χ−2

∥∥∥∥∥
H

-
h → 0

0

By the same way, we can see that
∥∥∥∥∥

[
∂g(x, ξ;µ)

∂ξ

∣∣∣∣∣
ξ=x−h

+
1
2
I

]
χ−2

∥∥∥∥∥
H

-
h → 0

0

Hence, we have
∥∥∥∥∥

[
∂g(x, ξ;µ)

∂ξ

∣∣∣∣∣
ξ=x+h

− ∂g(x, ξ;µ)
∂ξ

∣∣∣∣∣
ξ=x−h

+ I

]
χ−2

∥∥∥∥∥
H

=

=

∥∥∥∥∥

[
−∂g(x, ξ;µ)

∂ξ

∣∣∣∣∣
ξ=x+h

− 1
2
I

]
χ−2 +

[
∂g(x, ξ; µ)

∂ξ

∣∣∣∣∣
ξ=x−h

+
1
2
I

]
χ−2

∥∥∥∥∥
H

≤

≤
∥∥∥∥∥

[
∂g(x, ξ; µ)

∂ξ

∣∣∣∣∣
ξ=x+h

− 1
2
I

]
χ−2

∥∥∥∥∥
H

+

∥∥∥∥∥

[
−∂g(x, ξ;µ)

∂ξ

∣∣∣∣∣
ξ=x−h

+
1
2
I

]
χ−2

∥∥∥∥∥
H

-
h → 0

0

If we consider the remaining terms in ∂g
∂ξ which are continous with respect to ξ then

we have
∥∥∥∥∥

[
∂g(x, ξ;µ)

∂ξ

∣∣∣∣∣
ξ=x+h

− ∂g(x, ξ;µ)
∂ξ

∣∣∣∣∣
ξ=x−h

+ I

]
χ−2

∥∥∥∥∥
H

-
h → 0

0

Since, ∂G
∂ξ has the same jump as ∂g

∂ξ for ξ = x the operator function ∂G
∂ξ − ∂g

∂ξ is
continous for ξ = x .

Thus, we obtain

(2.1.9)

∥∥∥∥∥

[
∂G(x, ξ;µ)

∂ξ

∣∣∣∣∣
ξ=x+h

− ∂G(x, ξ; µ)
∂ξ

∣∣∣∣∣
ξ=x−h

+ I

]
χ−2

∥∥∥∥∥
H

-
h → 0

0
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Let f ∈ D = D[Q(x)] . Obviously, f belongs to the domain of definition of the
operator [Q(x) + µI] . This gives [Q(x) + µI]f = g . Then we obtain

∥∥∥∥∥

[
∂G

∂ξ

∣∣∣∣∣
ξ=x+h

− ∂G

∂ξ

∣∣∣∣∣
ξ=x−h

+ I

]
f

∥∥∥∥∥

≤
∥∥∥∥∥

[
∂G

∂ξ

∣∣∣∣∣
ξ=x+h

− ∂G

∂ξ

∣∣∣∣∣
ξ=x−h

+ I

]
χ−2

∥∥∥∥∥
H

‖g(x)‖H <

< ε‖g(x)‖H

for small values of h.
Furthermore, we have

[G′ξ(x, x + 0, µ)−G′ξ(x, x− 0, µ)]f = −f

for ξ = x .
Thus, we obtain that G(x, ξ; µ) has a jump at ξ = x and this jump equals to

−I, that is,
[G′ξ(x, x + 0; µ)−G′ξ(x, x− 0; µ)] = −I.

2.2 Second Derivative of the Green Function

Consider

(2.2.1)
∂G(x, ξ;µ)

∂ξ
=

∂g(x, ξ;µ)
∂ξ

−
∫ ∞

0

g(x, s, µ)[Q(s)−Q(x)]
∂G(s, ξ; µ)

∂ξ
ds.

Let us write (2.2.1) as

(2.2.2)
∂G

∂ξ
− ∂g

∂ξ
= −

∫ ∞

0

g(x, s;µ)[Q(s)−Q(x)]
∂g(s, ξ;µ)

∂ξ
ds−

−
∫ ∞

0

{g(x, s;µ)[Q(s)−Q(x)]}
[

∂G

∂ξ
− ∂g

∂ξ

]
ds.

Let
L(x, ξ; µ) =

∂G

∂ξ
− ∂g

∂ξ

and

l(x, ξ; µ) = −
∫ ∞

0

g(x, s; µ)[Q(s)−Q(x)]
∂g(s, ξ;µ)

∂ξ
ds.

In this case, (2.2.2) becomes

L(x, ξ;µ) = l(x, ξ; µ)−
∫ ∞

0

g(x, s;µ)[Q(s)−Q(x)]L(s, ξ;µ)ds.

Differentiating formally each side of this equation with respect to ξ , we obtain

∂L(x, ξ; µ)
∂ξ

=
∂l(x, ξ; µ)

∂ξ
−

∫ ∞

0

g(x, s;µ)[Q(s)−Q(x)]
∂L
∂ξ

ds
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By using the fact that

∂g(x, x + 0; µ)
∂ξ

− ∂g(x, x− 0;µ)
∂ξ

= −I

and

l(x, s; µ) =
∫ ξ−0

0

g(x, s; µ)[Q(s)−Q(x)]
∂g(s, ξ;µ)

∂ξ
ds−

−
∫ ∞

ξ+0

g(x, s; µ)[Q(s)−Q(x)]
∂g(s, ξ; µ)

∂ξ
ds,

we obtain

∂l

∂ξ
= −

∫ ∞

0

g(x, s;µ)[Q(s)−Q(x)]
∂2g(s, ξ; µ)

∂ξ2
ds +

+ g(x, ξ;µ)[Q(ξ)−Q(x)]

{
∂g(ξ + 0, ξ; µ)

∂ξ
− ∂g(ξ − 0, ξ; µ)

∂ξ

}
.

∂l

∂ξ
= −g(x, ξ; µ)[Q(ξ)−Q(x)]−

∫ ∞

0

g(x, s;µ)[Q(s)−Q(x)]
∂2g(s, ξ; µ)

∂ξ2
ds

∂l

∂ξ
= l1(x, ξ; µ).

Lemma 2.5 If the operator function Q(x) satisfies the conditions of Lemma 2.1 then
N is a contraction operator in X

(s)
1 , X

(s)
2 and X

(s)
4 for large values of µ > 0.

Since there is a unique solution of

(2.2.3) M(x, ξ;µ) = l1(x, ξ; µ)−
∫ ∞

0

g(x, s;µ)[Q(s)−Q(x)]M(s, ξ;µ)ds

and this solution belongs to X
(−1/2)
4 , l1 belongs to X

(−1/2)
4 according to Lemma 4.1.

If f ∈ D{Q(x)} is a solution of (2.2.3) we can show that f satisfies

∂L
∂ξ

(f) = M(f) (s 6= ξ).

Let f ∈ D{Q(x)} = D. Then, (2.2.3) becomes

M(f) = l1(f)−
∫ ∞

0

g[Q(s)−Q(x)]M(s, ξ; µ)(f)ds.

The integration from ξ0 to ξ

ξ∫

ξ0

M(f)dξ =

ξ∫

ξ0

l1(f)dξ −
∫ ∞

0

g[Q(s)−Q(x)]

( ξ∫

ξ0

M(s, ξ; µ)(f)dξ

)
ds
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gives

(2.2.4) [L(x, ξ;µ)− L(x, ξ0; µ)] = [l(x, ξ; µ)− l(x, ξ0; µ)]f−

−
∫ ∞

0

g[Q(s)−Q(x)][L(s, ξ;µ)− L(s, ξ0; µ)]f ds.

If we show
ξ∫

ξ0

l1(x, ξ;µ)(f)dξ = [l(x, ξ;µ)− l(x, ξ0;µ)]f

we can obtain the following equation from the uniqueness of the solution of (2.2.4):

ξ∫

ξ0

M(x, ξ; µ)(f)dξ = [L(x, ξ;µ)− L(x, ξ0;µ)](f)

i.e. we have

(2.2.5) M(x, ξ; µ)(f) =
∂L
∂ξ

(f)

since

L(x, ξ;µ) =
∂G(x, ξ; µ)

∂ξ
− ∂g(x, ξ;µ)

∂ξ
.

Hence, ∂2G(s,ξ;µ)
∂ξ2 exists and belongs to X

(−1/2)
4 at s 6= ξ. So we need to prove (2.2.5).

For this, consider

l(x, ξ; µ) = −
∫ ∞

0

g(x, s; µ)[Q(s)−Q(x)]
∂g(s, ξ;µ)

∂ξ
ds.

Let us choose arbitrary ξ in (ξ0, ξ). Then Q−1(ξ)Q(ξ) is bounded operator in H.
Indeed, let ξ > ξ . In this case, we can write ξ = ξ + k + r ( k integer 0 < r < 1).
Assume that ‖Q(x)Q−1(ξ)‖ < c when |x− ξ| ≤ 1. Obviously,

Q−1(ξ).Q(ξ) = Q−1(ξ)Q(ξ − 1)Q−1(ξ − 1) · · ·Q−1(ξ + r)Q(ξ).

Consequently,

‖Q−1(ξ).Q(ξ)‖ ≤
≤ ‖Q−1(ξ)Q(ξ − 1)‖‖Q−1(ξ − 1)Q(ξ − 2)‖ · · · ‖Q−1(ξ + r)Q(ξn)‖ ≤ c.

This says that Q−1(ξ).Q(ξ) is a bounded operator.
Applying l to f

l(x, ξ;µ)(f) =
∫ ∞

0

g(x, s;µ)[Q(s)−Q(x)]
∂g(s, ξ; µ)

∂ξ
(f)ds

=
∫

|x−s|≤1

g(x, s;µ)[Q(s)−Q(x)]
∂g(s, ξ; µ)

∂ξ
(f)ds +

+
∫

|x−s|>1

g(x, s;µ)[Q(s)−Q(x)]
∂g(s, ξ; µ)

∂ξ
(f)ds

= a1 + a2
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Let us examine the a1(x, ξ; µ) in two cases [9]:
1) When |x− ξ| > 2,

|s− ξ| ≥ |x− ξ| − |x− s| > 1

is the function under the integral and its derivative with respect to ξ is a bounded
operator.
2) When |x − ξ| < 2: Let f = Q−1(ξ)h, h ∈ H. In this case, we have the integral
which is itself under integral and its derivative with respect to ξ are bounded operator.

Let us examine a2(x, ξ; µ):

a2(x, ξ; µ) =
∫

|s−ξ|>1

g(x, s;µ)[Q(s)−Q(x)]
∂g(s, ξ; µ)

∂ξ
(f)ds

Here, the function, under the integral, is bounded operator function because of the
multiplier g(x, ξ; µ) and the condition 5). In addition, a2(x, ξ;µ) can be differentiated
under the integral sign similiar with bounded operator. This integral is bounded
operator when it is derived with respect to ξ.
Indeed, it is clear when |s− ξ| < γ > 0. We take the element f as
f = Q−1(s)[Q(s)Q−1(ξ)]Q(ξ)f for the value of s− ξ which is near zero.
Therefore the operator function, under the integral, can be differentiated with respect
to ξ as in bounded operator. We obtain equation (2.2.3) that is the formal derivation
written for ∂l

∂ξ .

2.3 The Case that Green Function Satisfies the Third Condi-
tion

The derivation of the following equation with respect to ξ

∂G

∂ξ
=

∂g(x, ξ; µ)
∂ξ

−
∫ ∞

0

g(x, s; µ)[Q(s)−Q(x)]
∂G(s, ξ; µ)

∂ξ
ds

gives
∂2G

∂ξ2
= G(x, ξ; µ)[Q(ξ) + µI]

We have

(2.3.1)
∂2G

∂ξ2
= g[Q(ξ) + µI]−

∫ ∞

0

g(x, s; µ)[Q(s)−Q(x)]
∂2G(s, ξ; µ)

∂ξ2
ds

For f ∈ D ( D is the definition set of Q(x) ) we have

(2.3.2)
∂2G

∂ξ2
(f) = g[Q(ξ) + µI](f)−

−
∫ ∞

0

g(x, s;µ)[Q(s)−Q(x)]
∂2G(s, ξ;µ)

∂ξ2
(f)ds.

Let [Q(ξ) + µI](f) = α . According to this, (2.3.2) can be rewritten as

(2.3.3)
∂2G

∂ξ2
[Q(ξ) + µI]−1α = g(x, ξ;µ)α−
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−
∫ ∞

0

g(x, s; µ)[Q(s)−Q(x)]
∂2G(s, ξ; µ)

∂ξ2
[Q(ξ) + µI]−1αds.

Let us compare (2.3.3) and (2.1). If (2.1) has a unique solution, we obtain

(2.3.4)
∂2G

∂ξ2
[Q(ξ) + µI]−1α = G(x, ξ; µ)α.

If [Q(ξ) + µI]−1α = f and α = [Q(ξ) + µI]f then (2.3.4) can be rewritten as

∂2G

∂ξ2
f = G(x, ξ;µ)[Q(ξ) + µI]f.

Since the set of the elements f is dense in H for every ξ ≥ 0, we have (consider
D = H )

−∂2G

∂ξ2
+ G(x, ξ; µ)[Q(ξ) + µI] = 0, (ξ 6= x).

2.4 To Satisfy the Boundary Condition

We will show that G(x, ξ;µ) satisfies the boundary condition

(2.4.1)
∂G(x, ξ;µ)

∂ξ

∣∣∣∣∣
ξ=0

− hG(x, ξ;µ)

∣∣∣∣∣
ξ=0

= 0.

The derivative of the equation

G(x, ξ; µ) = g(x, ξ;µ)−
∫ ∞

0

g(x, s; µ)[Q(s)−Q(x)]G(s, ξ; µ)ds

at ξ = 0 is

(2.4.2)
∂G(x, ξ; µ)

∂ξ

∣∣∣∣∣
ξ=0

=
∂g(x, ξ; µ)

∂ξ

∣∣∣∣∣
ξ=0

−

−
∫ ∞

0

g(x, s;µ)[Q(s)−Q(x)]
∂G(x, ξ; µ)

∂ξ

∣∣∣∣∣
ξ=0

ds

(2.4.3) hG(x, ξ;µ)

∣∣∣∣∣
ξ=0

= g(x, ξ;µ)h−

−
∫ ∞

0

g(x, s; µ)[Q(s)−Q(x)]G(s, ξ;µ)

∣∣∣∣∣
ξ=0

hds.
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Replace (2.4.2) and (2.4.3) in (2.4.1)

∂G(x, ξ;µ)
∂ξ

∣∣∣∣∣
ξ=0

− hG(x, ξ; µ)

∣∣∣∣∣
ξ=0

=
∂g(x, ξ; µ)

∂ξ

∣∣∣∣∣
ξ=0

−

−
∫ ∞

0

g(x, s; µ)[Q(s)−Q(x)]
∂G(s, ξ; µ)

∂ξ

∣∣∣∣∣
ξ=0

ds−

− g(s, ξ;µ)h +

+
∫ ∞

0

g(x, s; µ)[Q(s)−Q(x)]hG(s, ξ; µ)

∣∣∣∣∣
ξ=0

ds.

This can be rewritten as

∂G

∂ξ

∣∣∣∣∣
ξ=0

− hG

∣∣∣∣∣
ξ=0

= −
∫ ∞

0

g(x, s;µ)[Q(s)−Q(x)]
∂G(s, ξ;µ)

∂ξ

∣∣∣∣∣
ξ=0

ds +

+
∫ ∞

0

g(x, s;µ)[Q(s)−Q(x)]hG(s, ξ; µ)

∣∣∣∣∣
ξ=0

ds

since ∂g
∂ξ

∣∣
ξ=0

− hg
∣∣
ξ=0

= 0. Thus, we obtain

[
∂G

∂ξ
− hG

]

ξ=0

=

= −
∫ ∞

0

g(x, s;µ)[Q(s)−Q(x)]

[
∂G(s, ξ;µ)

∂ξ
− hG(s, ξ; µ)

]

ξ=0

ds.

Since N is a contraction operator the homogenous equation obtained above has only
the zero solution. This gives

∂G

∂ξ
− hG

∣∣∣∣∣
ξ=0

= 0.

If we construct the integral operator in H1

Aµf =

∞∫

0

G(x, ξ; µ)f(ξ)dξ, µ > 0

by using the obtained Green function, then Aµ is an operator of Hilbert-Schmidt
type in H1 since

∞∫

0

∞∫

0

‖G(x, ξ; µ)‖22dxdξ < ∞.

By using the Green function, one can examine the boundary value problem of the
non-homegeneous equation

−y′′ + Q(x)y + µy = 0, f(x) ∈ L2(0,∞; H),

y′(0)− hy(0) = 0.
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