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Abstract

Let H be a separable Hilbert space. In this work, we will study the Green
function of the boundary value problem in X = L3(0,00; H) which is formed
by Sturm-Liouville differential equation

4" +Q@)y+py=0 , 0<z<oo
with the boundary condition
y'(0) — hy(0) =0

where h is a complex number, p > 0 is a real number and, for each value of x
in [0;00), Q(x) is the normal operator in H.

M.S.C. 2000: 34105, 47A10.
Key words: Hilbert space, self-adjoint, normal operator, resolvent, spectrum.

1 Introduction

Let Q(z) be the normal operator which is a transformation for each value = € [0, o).
Assume that

1. D of Q(x) is independent from 2 and D = H , where D represents closure
of D in H.

2. The set of the regular points of Q(z) is

A = {largh — 7| < eo, 0<e <m, €0 is constant}.

3. For all z €[0,00), let Q7 !(z) be a completely continous operator in H .

4. Let
H[Q(m) - Q({)]Q‘“(x)H < cz—¢g, ¢ =constant and 0<a < g

where |z —¢] < 1.
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5. Let .
HQ(g)e%\waQﬂz)

where |z —¢&| > 1.

< B, B = constant

6. Let |a1(z)| < |ag(x)] < -+ < |an(x)] < -+ be the eigenvalues of Q(x) in H
o0
for each value of z. Let > W be a convergent series and its sum be
i=1 "

F(z) € L1(0,00) , i.e. we have
/ F(z)dr < 0.
0

In this work, we obtain the Green function of the following boundary value problem
in Ly(0,00; H) :

(1.1) —y" +Q(z)y + py = 0, 0<z< oo,

(1.2) y'(0) — hy(0) =0

where h is a fixed complex number and p > 0 is a real number.

The Green function of Sturm-Liouville In [8], we see, for the first time, the asymp-
totic behaviour of the eigenvalues of our problem described above. Then, the Green
function of Sturm-Liouville differential equation, having unbounded self-adjoint op-
erator coefficient have been studied in [9].

This work have been developped and generalized for many other operator equa-
tions (see [1, 3, 7, 5]).

The Green function of (1.1)-(1.2) above was examined in [4] while Q@ (x) = Q(z) > I
(I is unit operator in H).

The Green function G(z,&; ) of (1.1)-(1.2) is defined as a linear bounded operator
function which is a transformation in H at each value x and £ € [0,00). Assume
that we have:

1. G(z,&, 1) is a continous operator function of z and & in [z,£] = [0, 00).
2. When z # &, %&5’“) is a continous function of (z,¢) and

¢ o B

where [ is the identity operator on H.
When z # £, we have:

o€ — hG(z,0; 1) = 0.
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2  An Integral Equation for the Green Function

In this section, we are looking for G(z,&; 1) as the solution of the following integral
equation by using the parametrix method:

(2.1) G(x,&p) = g(x, & p) — /Ooog(x, 5;11)[Q(s) — Q(2)]G(s, & p)ds .
Here g(z,&;u) is
g(z, & p) = XTA [e X7 =8l — (b — x) (B + x) " te X9

and x is

X = [Q() + pl]'/2.
We want to show that (2.1) has the unique solution and this solution is the Green
function of (1.1)-(1.2) above. For this, we consider the equation given in (2.1) in X»
defined below.
X5 Space :
Let A(z,n) be a Hilbert-Schmidt (H-S) operator function defined on H (0 < x,n <
oo) such that

[ el [ 1@ B an} <o
0 0
by

Here, the norm is defined

1Allx, = ( / dz / ||A(x,n>|§dn> |
0 0

If g(z,& 1) € Xo and N is a contraction operator in Xy which is defined by

NG(z, & 1) = / (a5, 0[Q(s) — Q@)|Cs. & u)ds,

then the solution of the equation given in (2.1) exists and unique. Consider the spaces
X7, XY and X] (p <0;p>0) whose elements are the operator functions A(x,¢)

and
oo

Al = [

0
oo

A s)l3g = [

0

dof [ 14, 9)@7(5)|ds)
0

dof [ 14,9075 35}
0

0<z<oo

JAG, 8)llxp = sup / | Az, 5)Q(s) | ds
0

respectively.

These spaces are defined by B.M. Levitan in [9] in which he shows that they are
all Banach spaces.

By using [9], we can prove the following lemmas:
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Lemma 2.1 If Q(z) satisfies the (1-6) conditions above then N is a contraction
operator in X1 and Xs both for sufficiently large p > 0.

Lemma 2.2 Let Q(x) be a operator function satisfying (1) and (3) above and, in
addition, we have

Q@)@ (©)| < ¢
where | —¢&] < 1.

In this case, g(x,&;p) belongs to Xil/m

i.e. we have

sup / lg (e, € 1) QY2 (€) |de < oc.
0

0<z<o0o

Lemma 2.3 Let Q(x) be a operator function satisfying (1) and (3) above and, in
addition, we have
Q2 (2)Q™?(s)|| < ¢

where |z — s| < 1.
In this case, we have

g(x, & 1)

952 € Xifl/Q), T # s,

i.e. we have

sup /OOHngQ_l/2(S)HdS < 00.
0

0<z<o0o

2.1 First Derivative of the Green Function

Consider the formal derivative of (2.1) according to &

0G(@.&p) _ dg@.&im) [ 0G(s,€: 1)
o o —/O 9(z, 5 m)[Q(s) — Q)] =57 ds.

Now consider the following equation in the Banach space X?(,p ), (p>1),

dg(x,&; 1)

eL)  K@ew =

- / gl 0)[Q(s) — Q@)K (5, & 1)

%ﬁl‘) c Xép), i.e. we have

ogsffooO]oH ag(fg;; 14) H(”)dg < 0.

So, K(x,& ) € Xg(,p) and, in particular it is an element of Xél) =X;3.
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Here,

dg(x, & )

23

FeXED) 4 L(h+x)TH(h = x)e X, < ¢
(2.1.2) =

N[

e @O £ Lh+x) T (h = x)e X,z > ¢

Assume that £ < z (note that we can do the same process for £ > x ). The integration
of (2.1.1) gives us

£ £
@13) [ K&t = gl = [ glesmlQ() - Q)] [ K(s.& s

This is same as the equation (2.1) and we have

3
/K@SM%:GW&M

since (2.1) has the unique solution.
Now, we will show that the operator function K (z,&; u) is continous with respect
to € # x,

when h — 0.
For this reason, we write the equation (2.1.1) as below:

214) Ko - 2 [ 100 - @) 25 ds-
- [t smIQEs) — QK (&0 — 55 yas
0
Let 5 .
L(z,&p) = K(z, &) — g(g’;’#)
and

Wz, & p) = /Uoog(z,s;u)[Q(s) - Q(z)]ag(ggg?“)d&

Hence (2.1.4) becomes

(215) L(xag;ﬂ) = l(w,f,u) - /Ooog(xvs;,u')[Q(s) - Q(z)]L(s,g,u)ds
If we denote
AL(z,&p) = L(z, €+ hyp) — L(z, & 1)

and
Al(z, & p) = Uz, &+ hyp) — Uz, & p)
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then, by (2.1.5), we obtain
(2.1.6) AL = Al — N(AL).

We study the equation (2.1.6) in the space X5. We know from [9] that X5 is
Banach space of operator functions A(z,§), (0 < x;& < 00), defined on H with

[A(z,&)llx; = sup sup [[A(z.§)lln
0<z<00 0<E<00

As in Lemma 2.1, it can be seen that N is a contraction operator for sufficiently
large >0 in Xs.

According to this, (I+N)~! exist and is bounded in X5. Let ||[(I+N)~ ! x, = A.
In this case, we have

(2.1.7) ALl xs < AlJAlx,-

Lemma 2.4 For arbitrary € >0, when |h| <t there existsd >0 such that
(2.1.8) 1L, &+ hi p) = L2, & p)l| x5 <€

when |h| < t.

So, the operator function K(x,&; u) — %’;;”)
over,

K(z,&p) = %&5;“) is continous for £ # x . Let us see that g—g is continous with
respect to £ when £ # x.

Sre X 4 5 “L(h — y)e-x(@+6)
dg(x,&; 1) g e~ +5(h+x)" (h—x)e™X . x <&

o Le X0 L L (h4 ) (h—)e XEH), > ¢

is continous with respect to £&. More-

Let & < z. In this case, we have

99 _ 1 x@-e 1 -1 ~x(@+€)
85—26 —|—2(h+x) (h—x)e .
Put x — & =1t. Assume that h is a smaller number. We can show that
||<9g(x,£+ hip)  9g(x, & 1) H
o€ 0¢

when h — 0. With respect to the spectral expansion formula, we can write

— 0

e X ey = sup | (VAT VA )| <
[IflI=1
< sup /|(e*\/)‘+“(t7h)—67\/)‘+”t)|d(E)\faf)
Hfl\zlg
— swp ( / |(em VTR e\/”’“)od(Exf,fH
[IflI=1
NKgr

. / |(e= VATRIR) _ o=V/A%0t) | q(E, £, f)
oNK1,

I+ 1
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Here, Kg is a circle with center at origin and radius R, K} is the exterior of the
circle Kr and FE) = E)(x) is a resolution of the identity corresponding to Q(x)
(12].

Let € > 0 be an arbitrary positive number. Assume that |h| < t. We can choose a
sufficiently large R for |\ + p| > R. We have

’eﬂ/,\Jm(tfh) o eﬂ/,\+#t| < %

In this case, we have

€
IQ<§.

Now, let R bein I. We can choose a sufficiently small ¢ > 0 such that |h| <6
for A4 ul <R
|e—,/x+u(t—h) . e—\/>\+ut‘ _ {e—\/k-i-ut(e—\/)\—i-uh . 1)| < €
2
Similarly, we have

€
Il<§.

Therefore, there are § > 0 such that
He—x(t—h) —e Xy <e

when |h| < 0. Recall that we can repeat the same process for the case £ > x.

We can show that g—g has a jump at the x = &:

Since, in (2.1.2), the second terms are continous with respect to & we need to see
the first terms. Assume that h > 0. We have

99 _ Lo 99 Lo
k|, 2 k|, 2
o ~ ~ _
[3!; + oI x P =s(e™ =Dy ?=ax,¢h)
E=xz+h
la@ &l = sup | =3 fe VA d(Esf.£)
Ifi=] ) 2Atp
1
< sup / e VA _1)|d(Exf, £)
Ipi=r) (At
L /ot
= sup / ——|e m—1]|d(Exf, f) +
IF1=1 A+
oNKpgr
1
b swp / e~V 1] d(By £, )
=1 S (At

= Lh+1D
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For 1I,:
A€ oNK}p with )\+
For I,: Let R beasin Is.
'w(e >\+#—1)‘ <§

So, for € > 0, there exists

and

Thus, we obtain
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Let € > 0 be an arbitrary number. We can choose R such that we have
‘ < 7. In this case, Iy < 5.

We can choose 6 >0 and h < § such that A € cNKpg
In this case, Iy < 5.

d > 0 such that h < d such that [Ja(z,&p)||lp <e€.

89 (z §, 1 9
- —_—
¢=z+h H
By the same way, we can see that
9g(z, & 1) 2
27 —_—
‘ [ 3 * X h—0
§=x—h H
Hence, we have
H [39(3365; 1) N 39(1565;@ 1ly? =
E=x+h E=xz—h H
_ —0g(x,&; ) 1, e dg(x,&; 1) el <
o€ 2 o0&
L E=z+h E=x—h H
S ag(xagaﬂ) _ 1]— sz
193 2
- E=x+h H
[—0g(x, & ) L
4 —_—
" o€ R T3 h—0

If we consider the remaining terms in
we have

gg which are continous with respect to £ then

99(x,& 1) 9g(x,& 1) || —
_ e I
H l o€ X h—0
E=x+h E=xz—h
Since, %—? has the same jump as %Z for £ = x the operator function %—? — %Z is
continous for £ =z .
Thus, we obtain
9G(z,& 1) G (z, & 1) ol
2.1.9 _— - I
(2.1.9) H [ € ¢ X h— 0
&=z+h §=xz—h
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Let f € D = D[Q(x)]. Obviously, f belongs to the domain of definition of the
operator [Q(x)+ wpl]. This gives [Q(z) + pl]f = g. Then we obtain

oG
- +I|f
23
E=z+h E=z—h
oG oG _
H S-S | @i <
¢
E=z+h E=xz—h H
< ellg@)u

for small values of h.
Furthermore, we have

[Gé((E,IL‘ +0, 1) — G/E(LC,LU - Ovﬂ)]f =—f

for E=x.
Thus, we obtain that G(z,&;u) has a jump at £ = z and this jump equals to
—1I, that is,
(G, + 0 1) — Gl — 05 )] = —1.

2.2 Second Derivative of the Green Function

Consider
21)  SEEEN GEEN [Py 0lae) - Q) G
Let us write (2.2.1) as
222 SE-% o [ gl - Q) 25E gy
= , G dg
*/0 {9(z, s 1)[Q(s) — Q(z)]} [ag - 851 d
Let R
dg
Lz, & p) = % o
and

te.gi) = [ gt iQ(s) - Q) 25 E g

In this case, (2.2.2) becomes
L, € 1) = U € 1) — / oz, 5 Q(s) — Q) L(s, & w)ds

Differentiating formally each side of this equation with respect to &, we obtain

OL(x,& ) Ol(x,& p) o0 . oL
et = S [ gt s0lQes) - Q)] s




170 Serpil Oztiirk Uslu and Mehmet Bayramoglu

By using the fact that

dg(z,z +0;pu)  Jg(x,r —0;p)

T
and
§—0 s
Y . ) — Ofx dg(s,&; ) .
[ st siee) - @G s
we obtain
or _ - : 8g(s,& p)
= | swsiee - e i s
- g &R - Q(@]{ag“ Lot Qo) }
o _ ; ~ : g(s,& p)
ge =~ I@EWIQE) ~ Q@) - / o) [Qs) — Q)] =7 gy s
ol
375 = l1(.13,§;/,&).

Lemma 2.5 If the operator function Q(z) satisfies the conditions of Lemma 2.1 then
N is a contraction operator in Xl(s), XQ(S) and XAES) for large values of p > 0.

Since there is a unique solution of

(223)  M(n.&p) = (@& p) - / " g, IQS) — Q)M (s, & p)ds

and this solution belongs to Xifl/z), 1 belongs to Xifl/z) according to Lemma 4.1.

If feD{Q(z)} is a solution of (2.2.3) we can show that f satisfies

oL

afé(f) =M(f) (s #9).

Let f € D{Q(z)} = D. Then, (2.2.3) becomes

The integration from &y to &

13

£ 3
/ M(f)de = / L (f)de — /0 91Q(s) — Q@) ( / M(s,s;m(f)df)ds
&o

o o
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gives
- / " 01Q(s) — Q@)[L(s. & 1) — L(s, €0 )1 f ds.
If we show
3
/ b (2, & ) (f)dE = [1(x, & 1) — Uz €03 )] f
&o

we can obtain the following equation from the uniqueness of the solution of (2.2.4):

3

/ M (e, & ) (£)dE = [L(x & ) — Lz, &0: 1)) (f)
&o
i.e. we have
(2.25) M(e, & 1)(f) = %é(f)
L6 p) = 26@E0 99,860

0¢ 0¢

Hence, % exists and belongs to XY a s # £. So we need to prove (2.2.5).
For this, consider

Uz, & p) = /Ooog(m,s;u)[Q(s) _ Q(x)]ag(gg;u) s,

Let us choose arbitrary & in (&,€). Then Q’l(@Q(E) is bounded operator in H.
Indeed, let £ > ¢ . In this case, we can write { =&+ k+r (k integer 0 <7 < 1).
Assume that [|Q(z)Q~1(&)|| < ¢ when |z —¢| < 1. Obviously,

Q7HE)-QE) =Q7HOQE-1)QT (¢~ 1) - Q7 E+ Q).
Consequently,
I~ (©) Q@) < )
< QTHOQE-DIQTHE-DQE - 2)I- QT (E+ Q&) < .
)

This says that Q~1(£).Q(€) is a bounded operator.
Applying [ to f

o) = [ alwsiee - @) 2EE (fas
= [ ot i - e PGED (s +
) _ o) — (e 29 ER)
o [ ssmiee) - e EE

a1+a2
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Let us examine the aq(z,&; 1) in two cases [9]:
1) When |z —¢&| > 2,
ls =& =]z =&l —|z—s[>1

is the function under the integral and its derivative with respect to £ is a bounded

operator.

2) When |z —¢| < 2: Let f=Q *(&)h, h € H. In this case, we have the integral

which is itself under integral and its derivative with respect to & are bounded operator.
Let us examine as(x,&; p):

&= [ ot smia -G s

Here, the function, under the integral, is bounded operator function because of the
multiplier g(z,&; u) and the condition 5). In addition, as(x,&; 1) can be differentiated
under the integral sign similiar with bounded operator. This integral is bounded
operator when it is derived with respect to &.

Indeed, it is clear when |s —¢&| <y > 0. We take the element f as

F=071()[Q(5)Q71(E)]Q(E)f for the value of s — ¢ which is near zero.

Therefore the operator function, under the integral, can be differentiated with respect

to & as in bounded operator. We obtain equation (2.2.3) that is the formal derivation

written for % .

2.3 The Case that Green Function Satisfies the Third Condi-
tion

The derivation of the following equation with respect to &

= SN [Tyt sl - Q) 25
gives e
ez~ G &mIRE) + ]
We have
e31) G5 =dQ©@+an- [ e smiee) - Q)T as

For f € D (D is the definition set of Q(z) ) we have

0?°G

(2.3.2) e

(f) = glQ(&) + uI)(f)—

- [T ate s i) - QI as.
0

Let [Q(&) + pI](f) = a. According to this, (2.3.2) can be rewritten as

0*°G

(2.3.3) e

Q) + ul] ' = g(z,& p)a—
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- / " g5 m(QUs) - Q(z)}‘mng“)[cg@ 4l ads.
0

Let us compare (2.3.3) and (2.1). If (2.1) has a unique solution, we obtain

0*°G

(2.3.4) o

[Q(€) + ul] ™ o = G(z,& p)a.

If [Q&)+pl]ta=f and a=[Q(£)+ pl]f then (2.3.4) can be rewritten as

2
%f = G(z, & p[QE) + pllf.

Since the set of the elements f is dense in H for every & > 0, we have (consider
D=H)
0%G

—aTQJrG(x’f;M)[Q(f)JrM]:Ov (§ # ).

2.4  To Satisfy the Boundary Condition

We will show that G(z,&; 1) satisfies the boundary condition

(2.4.1) aG(‘g’;;") = 0.

£=0

£=0

The derivative of the equation

Gz, & p) = g2, & 1) — /Ooog(:v, 5;1)[Q(s) — Q(2)]G(s,&; pu)ds

at £ =0 is
G (x,&; 1) _ 0g(x, & )

(2.4.2) 5 =

£€=0 £=0

> oG ;

- [Tatwsmien) - QunZEEL g,

0 =0
(2.4.3) hG(z,& )| = g(@,& p)h—

=0
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Replace (2.4.2) and (2.4.3) in (2.4.1)

9G(z,&; 1) , _ gz, &)
£=0 £=0 £=0
> G (s, &;
- [ ot smiae) - @@ XSS g
0 =0
- 9(s,§p)h+
b [ gl s wlQe) - QNG )| ds,
0 £=0
This can be rewritten as
oG > 0G(s,&; 1)
—| -mG| = - 9(@,50)[Q(s) — Q)| —5x 7| ds+
% |,_, o /0 % |,
b oesnlQe) - QG )| ds
0 =0
since g—g|§=0 — hg|£=0 = 0. Thus, we obtain
oG
= _ha
l@ﬁ £=0
i oG ;
- -/ MaauWXQ—Quﬂ[fg“”—hG@auﬂ ds.
£=0

Since N is a contraction operator the homogenous equation obtained above has only
the zero solution. This gives
oG

a—g—hG

= 0.
£=0

If we construct the integral operator in H;

%f=/GmQMﬂO%, j>0
0

by using the obtained Green function, then A, is an operator of Hilbert-Schmidt
type in H; since

/007||G(I,€;u)|§d$d€ < oo0.
00

By using the Green function, one can examine the boundary value problem of the
non-homegeneous equation

-y +Q@)y+py=0,  f(zx)e Ly(0,00; H),
y'(0) — hy(0) = 0.
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