旋转机械故障交叉项时频诊断方法*

杨龙兴 王强锋 贾民平

【摘要】 首先分析了调幅信号 Wigner - Ville 分布的交叉项分布特征,提出了使用交叉项"虚互谱能量"诊断调幅型机械故障的新方法,并利用设计的带通核函数,提取了理论调幅信号的交叉项"虚互谱能量",最后使用具有调幅故障的实际齿轮数据,验证了方法在实际应用中的有效性。

关键词:调幅型机械 带通核函数 交叉项"虚互谱能量" 故障诊断 中图分类号: TN911: TP206⁺.3 文献标识码: A

Rotating Machinery Faults Making Using Time-frequency Cross-terms

Yang Longxing¹ Wang Qiangfeng¹ Jia Minping² (1. Jiangsu Teacher's University of Technology, Changzhou 213001, China 2. Southeast University, Nanjing 210096, China)

Abstract

Based of Wigner – Ville cross-terms distribution properties of amplitude modulation signals, an approach of cross-terms false spectral energy to diagnose machinery faults was presented firstly, and then the transmission band core function was designed to extract the cross-terms false spectral energy of amplitude modulation signals. Finally, the real life gear data was provided in order to show the availability of the approach.

Key words Amplitude modulation machinery, Transmission band core function, Cross-terms false spectral energy, Failure analysis

引言

传统的 Fourier 变换是一种全域变换,揭示了平 稳信号在整个频域的分布情况,但却不能反映非平 稳信号统计量的变化。Wigner - Ville 分布对时变 和瞬态信号的分布却十分有效,它提供了时变非平 稳信号在时频平面上的能量分布,对单频率非平稳 信号的分析具有分辨率高、能量集中、能跟踪瞬时频 率的变化等特性^[1],但这种二次型时频分布对多频 率信号的分析存在固有的交叉项干扰缺陷,因此如 何保留自项成分,抑制交叉项成了多频率信号 Wigner - Ville 分布追求的目标,并由此提出了 Cohen 类双线性时频分布、仿射类双线性时频分布等 6 种时频分布类型;也有采用数字滤波提取单个信号 分量,再利用 Wigner - Ville 分布诊断旋转机械故 障,但当信号源众多,信号频率波动规律较复杂时, 将无法取得满意的分析效果^[2~3];还有将调制信号 的离散时频分布,分别依据离散信号的相位差加频 窗和时窗,抑制多分量分布的交叉项,达到功率和频 率估计的目的^[4],但由于窗的截断没有考虑信号周 期,易造成谱泄漏,且滤波和加窗的方法破坏了多分 量信号在时频平面上所呈现的"全息"时频信息,抑 制干扰项也只是折中方案。在旋转机械的故障诊断 中,既可以通过抑制交叉项得到信号项的时频分布, 展示信号的特征信息,也可以利用特征时频点交叉 项的存在与否对故障进行辨识和诊断,因为机械故

收稿日期: 2007-08-13

^{*} 国家自然科学基金资助项目(项目编号:50475078)和江苏省高校自然科学基金资助项目(项目编号:07KJB460026)

杨龙兴 江苏技术师范学院机械工程学院 教授 博士,213001 常州市

王强锋 江苏技术师范学院机械工程学院 硕士生

贾民平 东南大学机械工程学院 教授 博士生导师, 210096 南京市

障的检测只需知道是否在特定位置存在具有故障特征的交叉项,并不要求了解信号在时频域分布的全貌。本文以调幅类(含载波和调制两种频率)机械故障为例,首先对齿轮调幅信号时频分布进行研究,然后使用带通核函数滤波提取带有故障特征的时频交叉项,提出交叉项能量比值法对故障进行监测和诊断,最后通过仿真和实例分析说明方法的有效性。

1 调幅信号的 Wigner - Ville 分布特征分析

调幅信号的数学模型可表示为

$$S(t) = A(1 + \beta \cos(\omega_r t)) \cos(\omega_m t) \qquad (1)$$

式中 β----幅值调制系数

ω_r——调制圆频率

$$\omega_m$$
——载波圆频率, $\omega_r \ll \omega_m$

式(1)以实信号为实部,以信号的 Hilbert 变换 为虚部构成的信号解析式为

$$Z(t) = A(1 + \beta \cos(\omega_r t)) e^{-j\omega_m t}$$
(2)

信号的 Wigner - Ville 分布为

将式(2)代人式(3)并注意到关系式 $\cos(\omega_r t) = \frac{1}{2} (e^{j\omega_r t} + e^{-j\omega_r t})$ 积分得

$$W_{z}(t,\omega) = 2\pi A^{2} \{ \delta(\omega - \omega_{m}) + \frac{\beta^{2}}{4} \delta(\omega - \omega_{m} - \omega_{r}) + \frac{\beta^{2}}{4} \delta(\omega - \omega_{m} + \omega_{r}) + \beta \delta\left(\omega - \omega_{m} - \frac{\omega_{r}}{2}\right) \cos(\omega_{r}t) + \beta \delta\left(\omega - \omega_{m} + \frac{\omega_{r}}{2}\right) \cos(\omega_{r}t) + \frac{\beta^{2}}{2} \cos(2\omega_{r}t) \delta(\omega - \omega_{m}) \}$$
(4)

式(4)中,前三项为信号的自谱项,窗长无限的情况 下为冲击线谱,其能量分别集中分布在 $\omega_m, \omega_m + \omega_r$ 和 $\omega_m - \omega_r$ 处,其中在 ω_m 处与 A^2 成正比,在 $\omega_m + \omega_r$ 和 $\omega_m - \omega_r$ 处与调幅幅值A和调制系数 β 乘积的 平方成正比。后三项为信号的交叉项,谱幅值虽然 仍与 A^2 和 β 成正比,还按一定的频率上下波动,其 频率位于上述三自谱频率两两相互连线的几何中 心,即 $\omega_m + \frac{\omega_r}{2}, \omega_m, \omega_m - \frac{\omega_r}{2}$ 频率处,且在 (t, ω) 平 面上两自谱项相距越远,幅值波动频率越快。从能 量角度看,这些交叉项并不真正具有信号能量,姑且 将这种交叉谱能量称为"虚互谱能量",式(4)中取 $A=1, \beta=1, \omega_m=1000$ Hz, $\omega_r=100$ Hz 的 Wigner – Ville 时频分布图形如图 1 所示。

2 交叉项"虚互谱能量"的提取与仿真分析

2.1 "虚互谱能量"的提取

Wigner – Ville 分布是核函数 $\Phi(\tau, v) = 1$ 的 Cohen 类时频分布,移不变能量化 Cohen 类时频分 布可以借助时频卷积,由 Wigner – Ville 分布导出, 因此可将式(3)写为 Cohen 类时频分布形式为

$$P(t, \omega) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} Z\left(u + \frac{\tau}{2}\right) Z^*\left(u - \frac{\tau}{2}\right) \cdot \phi(\tau, v) e^{-j(vt + \omega\tau - uv)} dv du d\tau$$

式中,关于时延 τ 和圆频偏v 的函数项 $\phi(\tau,v)$ 称为 核函数。基于广义自模糊函数域信号的自项成分主 要集中在原点附近,而交叉项则是远离原点一定距 离^[5],通常情况下核函数设计为模糊域(τ,v)的低 通函数,而本文方法是保留带有故障特征的交叉项, 抑制自谱项,因而需设计带通核函数。将式(4)改写 为 Cohen 类时频分布形式为

$$P(t,\omega) = A^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[e^{j\omega_{m}\tau} + \frac{\beta^{2}}{4} e^{j(\omega_{m}+\omega_{r})\tau} + \frac{\beta^{2}}{4} e^{j(\omega_{m}-\omega_{r})\tau} + \beta e^{j\left(\omega_{m}+\frac{\omega_{r}}{2}\right)\tau} \cos(\omega_{r}u) + \beta e^{j\left(\omega_{m}-\frac{\omega_{r}}{2}\right)\tau} \cos(\omega_{r}u) + \frac{\beta^{2}}{2} e^{j\omega_{m}\tau} \cos(2\omega_{r}u) \left] \cdot \frac{\phi(\tau,u)e^{-j(\omega t+\omega \tau - uv)}}{2} du du d\tau$$
(5)

抑制自项,保留其中的交叉项作为故障特征项, 则带通核可设计为

$$\phi(\tau, v) = \frac{2}{\sqrt{\pi}} \tau v e^{-v^2 - \sigma \tau^2} \tag{6}$$

式中 σ 为可变常数,用于改变通带的形状。显然 $\phi(\tau, v)$ 表达式(6)满足作为核函数所希望的非负 性、实值性、与时间及频率无关性、时间边缘特性、有 限频率支撑等特性。式(6)代入式(5)可得

$$P(t,\omega) = A^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[e^{j\omega_{m}\tau} + \frac{\beta^{2}}{4} e^{j(\omega_{m}+\omega_{r})\tau} + \frac{\beta^{2}}{4} e^{j(\omega_{m}-\omega_{r})\tau} + \beta e^{j\left(\omega_{m}+\frac{\omega_{r}}{2}\right)\tau} \cos(\omega_{r}u) + \frac{\beta^{2}}{2} e^{j\omega_{m}\tau} \cos(2\omega_{r}u) + \frac{\beta^{2}}{2} e^{j\omega_{m}\tau} \cos(2\omega_{r}u) \right] \cdot \frac{2}{\sqrt{\pi}} \tau v e^{-\sigma\tau^{2}-v^{2}} e^{-j(vt+\omega\tau-uv)} dv du d\tau = \frac{1}{\sigma^{3/2}} \pi A^{2} \beta \omega_{r} \sin(\omega_{r}t) \left[\left(\omega - \frac{\omega_{r}}{2} - \omega_{m}\right) \right] \cdot e^{-\frac{1}{4\sigma} \left(\omega - \frac{\omega_{r}}{2} - \omega_{m}\right)^{2} - \omega_{r}^{2}} + \left(\omega - \omega_{m} + \frac{\omega_{r}}{2}\right) e^{-\frac{1}{4\sigma} \left(\omega - \omega_{m} + \frac{\omega_{r}}{2}\right)^{2} - \omega_{r}^{2}} + 2\beta \left(\omega - \omega_{m}\right) e^{-\frac{1}{4\sigma} \left(\omega - \omega_{m}\right)^{2} - 4\omega_{r}^{2}} \cos(\omega_{r}t) \right]$$
(7)

155

上述积分中用到积分式

$$\int_{0}^{\infty} \omega \mathrm{e}^{-\frac{\omega^{2}}{4}} \sin(\omega t) \mathrm{d}\omega = 2\sqrt{\pi} t \mathrm{e}^{-t}$$

式(7)中除 $\omega_m + \frac{\omega_r}{2}, \omega_m - \frac{\omega_r}{2}, \omega_m$ 处的交叉函数外, 其余函数项已消失,得到了有效的抑制。

2.2 "虚互谱能量"的仿真分析

式(3)乘核函数后得到的 $P(t,\omega)$ 中,取 A=1, $\beta=1,\omega_m=1000$ Hz, $\omega_r=100$ Hz, $\sigma=10$,仿真得到 $P(t,\omega)$ 时频分布如图 2 所示。从图中可以看出,交 叉项"虚互谱能量"得到了有效的提取,其余项得到 了有效的抑制,波动的位置没有改变,在 (t,ω) 平面 上波动的规律仍然是两自谱项相距越远,幅值波动 频率越快,但幅值在 $\beta=1$ 的情况下随 ω 的增大而 增大,且单个波形沿频率轴截面的形状也由直线变 为两边指数形状。

extracted from the signal

3 齿轮故障特点及"虚互谱能量"提取诊断

以齿轮为例说明这种交叉能量在故障监测与诊 断中的作用。

3.1 齿轮故障的特点

一对无故障正常啮合工作的齿轮,其振动信号 模型为啮合频率及其谐波之和

$$X(t) = \sum_{m=0}^{M} X_m \cos(\omega_m t + \varphi_m)$$
(8)

式中 M-----啮合谐波的最高阶数

X_m—— m 次谐波振幅

 $\varphi_m - m$ 次谐波初相位

在齿轮出现偏心、齿轮轴弯曲等故障时,啮合振 动产生以啮合频率及其谐波为载波、轴转频及其谐 波为边频调制波的调幅振动信号为

$$Y(t) = \sum_{m=0}^{M} X_m \left(1 + \sum_{n=0}^{N} \beta_{m,n} \cos(\omega_{r,n} t) \right) \cdot \cos(\omega_m t + \varphi_m)$$
(9)

式中 N----边频调制谐波的最高阶数

 $\beta_{m,n}$ ——*m*次谐波幅值调制系数

ω_{r,n}——缺陷轴的转动圆频率

为方便计算,滤波取其中一组谐波信号进行分 析,此时无故障齿轮信号成为单频信号,没有交叉 项,调幅故障齿轮信号为

 $Y_n(t) = X_m(1 + \beta_{m,n}\cos(\omega_{r,n}t))\cos(\omega_m t + \varphi_m)$ (10)

不考虑相位的影响,式(10)与式(1)给出的调幅模型 一致。因为啮合频率及轴转频的相对固定不变,这 种简化并不影响实际信号的时频分布特征,得出的 结论同样适合实际信号。

3.2 "虚互谱能量"的提取诊断

图 3 为某轴频 $f_r = 160$ Hz,啮合频率为 $f_z = 1260$ Hz的故障齿轮实例数据 Wigner – Ville 谱图,这里使用了 Wigner – Ville 谱代替上述的 Wigner – Ville 分布,即取其期望形式,由于信号经过了对称延时二次变换,其交叉项中的噪声干扰得到较大的衰减,交叉项"虚互谱能量"仍然以在时轴方向正负波动的形式出现,其波动规律与仿真相同,但出现了一些干扰项,并且由于实际调幅数据的一些波动,使得自项中也存在负能量谱现象,但这些并不影响"虚互谱能量"的提取。

图 4 为乘以设计的带通核函数后,抑制自项分 布只留交叉项"虚互谱能量"的谱图。从图中可以看

图 3 实例数据的 Wigner - Ville 谱图 Fig. 3 Wigner - Ville spectral of the real life data

出虽然仍然存在干扰波形,幅值大小稍有变化外,波 形及波动情况与仿真图形大致相同。选取交叉项位 置上的能量和绝对值大小作为诊断故障存在的依 据,依据经验选取诊断阈值即可判断故障的存在。 图中由于交叉项明显,通过对比历史数据,可认定调 幅故障的存在,这与功率谱在啮合频率 f_z=1260 Hz

图 4 实例数据提取得到的交叉项"虚互谱能量"图 Fig. 4 Cross-terms false spectral energy extracted by the real life data

两边出现边频带的调幅故障现象一致。

4 结束语

从理论调幅信号的 Wigner - Ville 分布特征分 析出发,讨论了调幅信号的交叉项分布的特征,设计 和推导了用于交叉项提取和抑制自项分布的带通核 函数,对理论调幅信号的交叉项"虚互谱能量"进行 了提取,最后在研究齿轮故障信号特征的基础上,使 用具有调幅故障的实际齿轮数据,滤波取其中一组 谐波信号,分析提取交叉项"虚互谱能量",根据交叉 项位置上的能量和绝对值大小判断故障的存在。与 抑制交叉项提取自项相比,在探测故障是否存在方 面,更加明显。但由于本文以调幅型故障为例进行 核函数的推导,其他类型故障该核函数的提取效果 将会减弱,可以根据该类型故障的特点,使用提取自 项的方法或设计新的提取交叉项核函数,进行故障 诊断。

- 参考文献
- 1 Boashash B, Victor Sucic. Resolution measure criteria for the objective assessment of the performance of quadratic time-frequency distributions [J]. IEEE Trans. on Signal Processing, 2003,51(5):1253~1263.
- 2 Mirela Bianu, Isar A. The reduction of interference terms in the time-frequency plane [J]. IEEE Trans. on Signal Processing, 2003, 35(3):461~464.
- 3 William J Pielemeier, Gregory H Wakefield. Multi-component power and frequency estimation for a discrete TFD[C] // Time-frequency and time-scale analysis, 1994, Processings of the IEE SP International Symposium, 1994:620~623.
- 4 Barkat B, Boashash B, Stankovie L J. Adaptive window in the PWVD for the IF estimation of FM signals in additive Gaussian noise[J]. IEEE Signal Processing Letters, 1999,5(7):1317~1320.
- 5 邹红星,周小波,李衍达. 时频分析:回溯与前瞻[J]. 电子学报,2000,28(9):78~84. Zou Hongxing, Zhou Xiaobo, Li Yanda. Which time-frequency analysis: a survey [J]. Acta Electronica Sinica, 2000, 28(9):78~84. (in Chinese)

(上接第 17 页)

- 1 Ackermann J. Robust decoupling, ideal steering dynamics and yaw stabilization of 4WS cars [J]. Automatica, 1994, 30(11): 1 761~1 768.
- 2 Khargonekar P, Rotea M. Mixed H_2/H_{∞} control: a convex optimization approach [J]. IEEE Trans. Autom. Contr., 1991, 36(7): 824~836.
- 3 Yu S H, Moskwa J J. A global approach to vehicle control: coordination of four wheel steering and wheel torques[J]. ASME J. Dynam. Syst. Meas. Contr., 1994, 116(4): 659~667.
- 4 You S S, Chai Y H. Multi-objective control synthesis: an application to 4WS passenger vehicles[J]. Mechatronics, 1999, 9(4): 363~390.
- 5 Abdellahi E, Mehdi D, M'Saad M. On the design of active suspension system by H_{∞} and mixed $H_2/H_{\infty}[C]//Proceedings$ of the American Control Conference, 2000: 4 041~4 045.
- 6 俞立.鲁棒控制——线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
- 7 张孝祖. 车辆控制理论基础及应用[M]. 北京:化学工业出版社,2007.
- 8 张孝祖,黄少华. 鲁棒 μ 控制的半主动悬架[J]. 农业机械学报,2007,38(6):19~22. Zhang Xiaozu, Huang Shaohua. Semi-active suspensions with robust μ control[J]. Transactions of the Chinese Society for Agricultural Machinery,2007,38(6):19~22. (in Chinese)