NOVEMBER 1987

P. J. PHLIPS

2003

A Simple Model of the Wind-Driven Tropical Ocean

P. J. PHLIPS*
Department of Atmospheric Physics, Clarendon Laboratory, Oxford University
(Manuscript received 14 November 1986, in final form 26 May 1987)

ABSTRACT

A simple analytic theory for some aspects of the wind-driven circulation in the tropical oceans is described.
The nearly geostrophic subsurface currents and the pressure field are studied by means of a single-layer model.
The flow is forced by the locally determined pattern of convergence and divergence in the wind-driven surface
boundary layer. Simple zonally symmetric divergence patterns are used. The response consists of long, damped

equatorial waves.

This mechanism is strong enough to account for the strength of observed currents, as well as for typical
patterns. The model’s response to a uniform easterly wind is a strong eastward current centered on the equator,
with weaker westward currents to the north and south. The eastward current at the equator is due to a Kelvin
wave coming from the western boundary to satisfy the mass flux condition there. The model’s undercurrent
shifts south in response to a southerly wind component also at the equator. A band of boundary layer divergence
is associated with the intertropical convergence zone. In the model this causes a trough in the ocean pressure
field, and therefore an eastward equatorial countercurrent on its southern side.

1. Introduction

Ever since the rediscovery earlier this century of the
strong subsurface current at the equator there has been
much interest in the description and modeling of
equatorial currents. The interest increased further when
it became clear that anomalous conditions in the trop-
ical oceans could affect the weather around the globe

_for many months. The equatorial oceans are found to
be largely wind driven, and anomalous winds cause
anomalous sea surface temperatures, which in turn af-
fect the atmospheric circulation. The models developed
to describe the wind-driven equatorial circulation range
from linear analytical models such as those of Lighthill
(1969) and Cane and Sarachik (1976, 1977, 1979) with
a simplified vertical structure to fully nonlinear nu-
merical models such as that of Philander and Paca-
nowski (1980).

The upper tropical oceans are characterized by a
well-mixed layer in which the strongest currents are
found, which is bounded below by a sharp thermocline.
Below the thermocline the currents and pressure gra-
dients are much weaker. It would therefore appear that
the circulation in the upper tropical oceans is well suited
to being described by simple single-layer models.
However, existing simple models, such as Yamagata
and Philander (1985) have had only limited success,
and often miss completely such an important feature
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as the equatorial undercurrent. In this paper, a model
is presented which may be useful in describing the
height field and the nearly geostrophic currents found
below the surface wind-driven boundary layer.

Gill (1975) describes two basic ideas through which
the wind is thought to drive the equatorial oceans. The
first is that at and near the equator the easterly winds
drive some water downwind. This raises the surface in
the western part of the ocean, and the resulting pressure
gradient drives an eastward current. The second idea
is that “the westward wind produces an Ekman flux,
which is directed away from the equator. At the same
time, the pressure gradient set up in response to the
wind produces a geostrophic flow towards the equator
below the surface. Thus the region close to the equator
may be expected to be one of strong upwelling.” There
appears to be a similar correlation between the equa-
torial countercurrent and the region of upwelling as-
sociated with the intertropical convergence zone.

The two basic ideas boil down to the same mecha-
nism. In both there is a wind-driven boundary-layer
flow. In both there is then the idea that the boundary
layer flow may be divergent and hence change the mass
and height fields. The pressure gradients thus set up
cause currents which are also divergent, in order to
compensate the boundary layer divergence.

This suggests that a fruitful approach for simple, lin-
ear models would be to split the flow into a wind-driven
boundary layer flow and a pressure driven interior flow.
To describe the interior flow all one needs then is the
divergence of the boundary layer flow. This is, of
course, exactly the approach used in models of the
midlatitude wind-driven circulation.
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Many authors have followed the approach of Light-
hill (1969) where the wind effect appears as a body
force distributed throughout the depth. Yamagata and
Philander (1985) show the steady state response to such
forcing, consisting of damped long, equatorially
trapped waves. The solution has the expected eastward
pressure gradient but misses out the eastward mass flux
at the equator. Moreover, the patterns of convergence
and divergence are completely wrong.

Cane (1979a,b) developed a model in which the sub-
surface flow is driven by up- and downwelling of the
surface flow, as proposed above. He split the ocean
into a moving upper layer and a deep and denser lower
layer assumed to be at rest. The upper layer of constant
density was divided into a surface layer of constant
thickness driven by the wind stress acting as a body
force, and a second layer of variable thickness driven
by the upwelling and downwelling of the surface flow.
. Cane (1979b) did numerical spinup calculations with
both the nonlinear model and with a linearized version.
The linearized model attains a steady state in which
there is little motion in the subsurface layer and the
uniform wind stress is balanced by a tilting of the ocean
surface. The nonlinear solution was much more real-
istic, with a strong eastward undercurrent at the equa-
tor, and westward currents to the north and south.
Moreover, the nonlinear solution was more damped,
in the sense of reaching a steady state after fewer os-
cillations.

The unrealistic linear solutions and the faster damp-
ing of the nonlinear solution can be explained using
the results for damped long waves of Yamagata and
Philander (1985). In the governing equations for the
long waves they have damping terms —eu in the zonal
momentum equation, and —n¢ in the combined con-
tinuity and thermodynamic equation. They show that
the damping of the waves is proportional to (e5)'/, and
that the meridional extent of the flow and the ratio of
potential to kinetic energy both increase as ¢/ in-
creases. The linear solutions of Cane (1979b) corre-
spond to the limit » = 0, as there was no damping
term in the continuity equation, and are well explained
by the theory of Yamagata and Philander.

The present model is described in the next section.
Rather than separate the upper layer into two sublayers,
the dependent variables are divided between a wind-
driven boundary layer and a pressure-driven flow. A
solution for the pressure-driven flow is obtained in
terms of the divergence of the wind-driven boundary
layer flow. To provide a self-contained description of
the wind-driven circulation, and in particular of the
surface velocities, one therefore needs to combine the
present model with a boundary layer model.

In section 3 an analytic solution is obtained for
damped waves in an ocean bounded east and west by
straight boundaries. In section 4 a particular solution
for forcing symmetric about the equator is presented,
such as might result from a uniform easterly wind. This
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simple case already displays the main features of the
observed circulation, namely a strong, narrow eastward
jet at the equator with weaker westward flow to the
north and south, a surface sloping down towards the
cast at the equator, with much stronger ridges of high
pressure in the tropics.

In section 5 the response to simple cases of asymetric
forcing is presented. Meridional winds near the equator
tend to shift the center of the undercurrent upwind,
away from the equator. An intertropical convergence
zone centered some distance from the equator causes
a second narrow eastward jet, representing the North
Equatorial Countercurrent, and a dip in the height field.
It is found that if the preceding three forcing effects are
combined, the linear analytic model is able to repro-
duce the important features of the northern summer
circulation in the tropical Pacific Ocean.

In section 6 an even simpler analytic model is pre-
sented, where the equatorial waves were undamped
and a very simple model of the boundary layer flow is
used. When a uniform easterly wind is applied, this
model reproduces the main features of the zonal ve-
locity and pressure found in the model with damped
waves. We therefore conclude that the main features
of the tropical circulation can be explained by the
combination of nearly geostrophic flow and boundary
layer divergence, and are not due to nonlinearity, par-
ticular damping laws, or other effects. Finally, in section
7 the model is compared with the wind stress forcing
formulation which is sometimes used.

2. The model

Whereas it seems clear and well established that the
tropical circulation is largely driven by the wind and
that it is set up through the action of equatorially
trapped waves, the -point of how to model the mech-
anism whereby the wind excites the waves does not
appear to have been settled. We propose that a useful
way to model the flow is to split it into a wind-driven

“surface boundary layer and a pressure-driven flow,

which is nearly uniform throughout the depth of the
upper layer. On the one hand, this method is not new
inasmuch as this physical mechanism is just the same
as for the midlatitude wind-driven circulation, and
corresponds to that of some other models, such as the
two-layer nonlinear model of Cane (1979b). On the
other hand, the model is new inasmuch as the present
formulation does not appear to have been used before
to describe the equatorial wind-driven circulation. The
present method allows a very simple description of the
mechanism whereby the wind forces the equatorially
trapped waves. To put it succinctly, the equatorial
waves are forced by the divergence of the flow in the
surface boundary layer, which is itself forced directly
by the local wind.

First we shall review why the flow can be separated
into a boundary-layer and a pressure-driven flow. Typ-
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ical profiles of zonal velocity and density near the
equator are sketched in Fig. 1. Since the density is
nearly uniform throughout the depth of the upper layer,
it follows that the pressure too is nearly uniform
throughout the depth of the upper layer. This in turn
implies that the flow associated with the pressure gra-
dient will be nearly uniform throughout the depth of
the upper layer. The profile of zonal velocity, on the
other hand, shows a strong shear at the surface, de-
creasing as one goes down, with a second region of
strong shear at the base of the thermocline. Farther
down the zonal velocities are much smaller. The ve-
locity shear at the base of the thermocline is associated
with the changes in the pressure gradient there, but the
shear near the surface cannot be related to pressure
forces. As previously argued, the pressure gradients
would tend to induce velocities uniform throughout
the upper layer. The velocity shear near the surface is
therefore in direct response to the wind stress applied
at the surface. These two features, namely a strong shear
near a free surface where a stress is applied, and a pres-
sure which varies little through the region of strong
shear, practically constitute a definition of a boundary
layer.

It follows that one can divide the upper-layer velocity
- field into a part which is related to the pressure gradient
and therefore approximately independent of depth in
the upper layer, and a boundary-layer flow related to
the surface wind stress, with strongest velocities at the
surface and strong shear. This split is not only kine-
matic but also dynamic, since large-scale pressure gra-
dients are a major item in the balance of forces for the
first component but not for the second, whereas tur-
bulent Reynolds stresses are a major item for the second
but not for the first.

Another consequence of the preceding argument is
that the stress applied at the surface does not project
uniformly throughout the upper layer, but is taken up
- more strongly near the surface by the shear and tur-
bulence associated with the surface boundary layer.
One cannot, therefore, expect a direct balance between
wind stress and pressure gradient at each point on the
ocean surface.
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Circulations consisting of a pressure-driven flow and
a surface boundary layer can also be seen in other
models. These models may be classified according to
the amount of vertical resolution they provide: single-
layer models with wind stress forcing (Cane and Sar-
achik, 1976, 1977, 1979; Yamagata and Philander,
1985), two-layer models (Cane 1979a, 1979b), and
continuous models (McCreary, 1981; McPhaden,
1981). In the continuous models one solves for the
boundary layer and pressure driven parts of the cir-
culation simultaneously, but the two parts can still be
clearly distinguished. In a latitude/depth section of
McCreary’s solution, for example, one can clearly see
that the surface flow at the equator is poleward and
divergent, whereas the subsurface flow is equatorward
and convergent.

The two-layer nonlinear model of Cane (1979b) also
provided a realistic set of currents and height field. In
this model, the mixed layer of the ocean was split into
two layers, with the wind stress acting as a body force
in the upper layer. The governing equations for this
model were nonlinear and solved numerically. Cane
showed that the pressure in the two layers is nearly the
same. It follows that the difference between the upper
and lower-layer velocities is due to the wind force in
the upper layer.

The velocity difference is therefore a simple repre-
sentation of the boundary-layer flow. Since the upper-
level flow is divergent, the pressure-driven flow must
have a compensating convergence. We see, therefore,
that Cane’s model also contains the mechanism of a
divergent boundary layer driving the subsurface flow,
but the central importance of this mechanism is, per-
haps, masked by the complications arising from the
presence of two layers, nonlinearity, and a numerical
method of solution. In this paper we shall establish the
importance of the boundary-layer divergence forcing
by obtaining essentially similar circulations with this
forcing in single-layer, linear, analytic, damped, and
inviscid models.

The single-layer models in which the wind stress acts
as a body force distributed over the upper layer have
not been very successful at describing the steady state
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FIiG. 1. Sketch of a typical velocity profile at the equator (A). This is taken to be the sum of a
wind-driven surface boundary layer (B), and a pressure-driven flow (C). The pressure-driven flow
is nearly uniform down to the thermocline because the upper layer is well mixed (D).
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flow. With these models the main response to a uniform
zonal wind is limited to a sloping surface over the whole
basin, thus missing completely the typical equatorial
current system and the dip in the surface height near
the equator relative to the tropics. In view of the pre-
vious discussion it might seem that the single-layer
model misses a large part of the gbserved features of
the tropical ocean because, by definition, it does not
include a surface boundary layer. A more detailed dis-
cussion in section 7 will show that the single-layer stress
models are equivalent to models forced by boundary-
layer divergence, but only if the boundary-layer mass
flux can be described by the Ekman relation. This is
not the case near the equator.

We shall now derive the equations for the present
model. The model ocean has a simplified vertical
structure with a moving upper layer of density p and
depth A, and a deep lower layer at rest and with a den-
sity p + Ap. The pressure-driven flow is assumed to be
small enough that nonlinear effects are fairly weak, so
that in a simple model the equations may be linearized
about a state of rest as a first approximation. In the
absence of friction the momentum equations for the
pressure-driven flow would then be

u' ,_ 1dp
a Byv 5 ax (1)
av’ 1dp
__+ = -
Ey Byu b3y 03]

where u' and v’ are the zonal and meridional pressure-
driven velocities. The continuity equation for the upper
layer is
- oh @ 3
—+—Wh+Up)+—@Wh+Vg)=0 3)
ot  px dy
where U and V7 are the zonal and meridional trans-
ports in the wind-driven boundary layer flow. The layer
thickness 4 is the sum of its mean thickness H, the
surface displacement ¢, and the thermocline displace-
ment 7. As the lower layer is at rest, the thermocline
displacement is proportional to, and much larger than,
the surface displacement, 4
_ P
"'—_Z—f’ n>§. 4)
Vil
If we work with the geopotential ¢ instead of surface
displacement and pressure we have

¢=g{=plp,
and the linearized equation may be written

6¢> du' v’ Ap aUE OVE
AP L D Y R -1 FS
at c(ax ay) p S\ox 6y)’ ©)

&)

where ¢ = (Ap/p)gH and c is the speed of long internal
gravity waves.
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From now on the divergence of the boundary-layer
flow will simply be considered as a known quantity
We. Equations (1), (2) and (6) are nondimensionalized
using, as length scale, the equatorial Rossby radius «
= (¢/2B8)""? and the corresponding time scale (28¢)~/2,
With a wave speed O(2.5) m s~!, the Rossby radius is
0O(250) km and the time scale O(1) day. The zonal
velocity scale is given by (a/H)dVg/dy. The divergence
at the equator does not appear to be very well known,
but typical estimates given upwelling velocities of the
order of a few meters per day. If, for the sake of defi-
niteness, we take dVg/dy ~ 3 X 10° m s~! and H
=~ 150 m, then the zonal velocity scale is 5 cm s™.

The effects of friction and mixing may be represented
most simply and crudely by linear damping laws; i.e.,
by replacing the time derivatives (3/d¢) by (3/9t + e).
Moreover, as the zonal scale of the motions is much
longer than the meridional scale, we can make the long
wave approximation (see Gill and Clarke, 1974; Gill
and Phlips, 1986), so that the meridional momentum
equation reduces to a geostrophic balance. With these
scalings and approximations, (1), (2) and (6) become

(a—t+e)u—§yv=—5x- (7)
0 ov ou

(5+6)¢ o ax E ®
d

%yu=—£. ©)

The problem, as set up in (7)-(9), is now formally
identical with the model of Gill (1980) for the atmo-
spheric circulation driven by deep convection in the
tropics. This model has been extensively studied; Gill
(1980) and Gill and Phlips (1986) have given simple
solutions and the basic dynamics, Heckley and Gill
(1984) have studied the initial adjustment, and Gill
and Phlips (1986) have looked at nonlinear effects. The
formal similarity between the equations for the at-
mospheric large-scale circulation and the oceanic large-

‘scale circulation is not a coincidence but results from

the close similarities in the physics. Whereas in the
oceanic case the divergence of the large-scale flow is
forced by the boundary-layer divergence, in the at-
mospheric case the divergence of the large-scale flow
is forced by mass transfer between the lower and upper
atmosphere in deep convection. In both cases the forc-
ing function is not a direct function of the large-scale
flow variables, and can be externally specified in simple
theoretical models.

3. Steady state solutions

In this section steady state solutions of the governing
equations (7)-(9) will be obtained. It is found more
convenient to work with new dependent variables g
and r,

(10)

g=¢+u r=¢—u
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The sum and difference of (7) and (8) and (9) then
become

dq 1

d
eq+a+(5—5y)v——WE (1)
or 6
Jd 1 d 1
—+ylg+|{—+= = 1
(ay zy)q (ay+2y)r 0, (13)

in the steady state. In (11)~(13) we see the index-raising
and index-lowering operators for the parabolic cylinder
functions D(y) (Abramowitz and Stegun, 1965). These
functions satisfy

dD, dD,

1 = _— =
dy +'2’yDn nDn—l, dy 2yDn Dn+l (14)
and the first three functions are
Dy 1 .
(D)=( y )exp(—zyz). (15)
D, y2 -1

Equations (11)—(13) are found to have modal solutions,
4 = Gn+1(X)Dps1(y)
v = v(x)Du(y) s
r = ra-1()Dn-1(¥)

where it is understood that quantmes with a negative
index are zero.

In order to be able to solve the problem, some specific
assumptions about the distribution of the boundary
layer divergence have to be made. It will be assumed
that the divergence can be written in a separable form

oo}
W= F(x) 22 W,Dy). (17)

n=0
The observations of Wyrtki and Meyers (1976) show
that the regions of boundary-layer divergence are con-
fined to thin strips, mainly concentrated in the Pacific
at the equator and near 10°N in July. As a first ap-
proximation in a simple model we shall take it that the
regions of convergence and divergence are zonally
symmetric, so that F(x) = 1, and W may be described
by superposition of distributions

We = Dola(y = yo)l, (18)

where ), is the latitude of maximum divergence and
a~! determines the width of the region of divergence.
This expression may be put (Phlips and Gill, 1986) in

the form (17)
I o
)'” e"p(‘ 2 my)

=-1,0,1,2,---, (16)

2
W —3
0 (l+oz2

_ L [{izet,, 2
_n+l[<l+a2) ”"+(1+ )y"W]' (19)

n+l
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If (11)~(13) are now separated into modes using (14),
(16) and (17) we find

(i) Kelvin mode (n = —1)

eqo+%i——W0, v=r=0. (20)
(ii) Mixed mode (n = 0)
v0=le q=r=0- (21)
(iii) Planetary modes (n = 1)
9qy,
@+ Deguai =t = ~(Wr 4 1) (22)
V= [Wyoi+(n+ DWo ]+ 2(n+ Degnry (23)
Fpo1 =+ 1)gpsr. (24)

The particular solutions to these equations are simply

Kelvin mode:

go" = —Wole. (25)
Mixed mode:
vof =Wy, (26)
Planetary modes:
05+1 = —(Wp-1+n0W,1)/(2n+ 1)e
it =—[Waoi—(n+ D)W, 1]/2n+1)
rE ==+ D)Wy +nW,0))/2u+De. 27)

To complete the solution it remains to satisfy the
boundary conditions at the eastern and western ends
of the basin. The boundaries are taken to be straight
lines, the western boundary being defined by x = 0 and
the eastern boundary by x = L.

At the eastern boundary the condition u = 0 gives
the relation '

— g /n+1) at x=L, (28)

since the g and r are related by (24). For the mixed
mode ¢, = 0, it follows by (28) that all the antisym-
metric modes must be zero at x = L.

At the western boundary we also have the condition
that the zonal velocity must be zero. But by making
the long-wave approximation, we have filtered out of
the governing equations the eastward-propagating short
planetary waves making up the western boundary layer.
As a result, we cannot satisfy the condition at the
boundary itself, but we can assure that the effect of the
boundary condition on the interior flow is satisfied.
That is, the total mass flux normal to the boundary
must be zero at the longitude of the boundary,
[52, u(0)dy = 0, which gives

Po=@+1X(gs+3X(gs+5

X(gg+---)) at x=0. (29)
This gives the amplitude of the reflected Kelvin wave
in terms of the incident planetary waves.

dn+1
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The free solutions of (20) and (22)-(24) needed to
complete the solution are

() Kelvin mode:

do = Qo exp(—ex). (30)
(ii) Planetary modes: ‘
Gn+1= One1 expl2n+ De(x— L))
U,=2(n+ 1)edp+
Fae1 = (14 1)gns1. (31)

If (30) and (31) are used in (28) and (29) we find that
the amplitude of the reflected Kelvin wave is given by

—del 1 —8eL 3 —12¢L
—_— — — e
( I=3e ¢ T

1

: )Qo=qu(—1 +3

e—BsL .

1 e 3 -na 3-5
t33¢ t246¢ 2.4-6:8
+CI2F(1 _e——3¢L)+q4F(1 __e——7eL)+3_q6F(1 _e—lleL)

+3:5-gF(1—e7 ). .., (32)

and the amplitudes of the reflected symmetric planetary
waves are given by :

e—lS(L+ .. .)

1 .
= —(I2F+§(¢10F+ Qoe™H)

1 —e
Qs=—q+ 3.3 (90" + Qoe™H)

1
2-4-6

Os=—qo" + (g6" + Qoe™ D), (33)

etc., whereas the amplitudes of the reflected antisym-
metric waves are simply

Os=—q5", Os=-¢s,
This completes the solution.

Qr=—g¢/". (34

4. Response to uniform easterly winds

The first result is for strong boundary-layer diver-
gence at the equator with.convergence to the north and
south, which is much more spread out. Mathematically,
we take '

- We=D(35) ~ s Do(¥/3). (35)
The integrated convergence and divergence are then
equal. The pattern (35) is meant to represent the fact
that for a uniform easterly wind the meridional Ekman
flux goes from zero at the equator to a maximum a
few hundred kilometers away from the equator, and
then slowly decreases as one proceeds to higher lati-
tudes.
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The flow is shown in Fig. 2 for a damping constant
¢ = 0.01 corresponding to a damping time of order of
100 days, a value chosen to give reasonable magnitudes
for the velocities. The zonal and meridional distances
are in Rossby radii. The length of the basin is 40 Rossby
radii, which is of the order of 10* km. The lines are
pressure contours and the arrows current vectors. The
flow has a strong eastward current at the equator with
weaker westward currents to the north and south. These
westward currents are nearly geostrophic. The eastward
undercurrent is also in geostrophic balance in the me-
ridional direction. This implies that the meridional
pressure gradient reverses near the equator, as can be
seen from the 2 shaped equatorial contours in Fig. -2,
or directly in the midbasin meridional section in Fig.
3. Figures 2 and 3 also show that the thermocline will
be deepest in the western half of the basin, about four
Rossby radii from the equator.

In the model the eastward current at the equator
flows from high pressure to low, as is observed. This
can be seen in Fig. 4, which is a zonal section along
the equator. The eastward current and the pressure
gradient go to zero at the eastern boundary [not exactly,
because only a finite number of modes (38) is used in
the calculation]. As the damping is reduced, the am-
plitudes of the pressure and velocities increase, although
not quite inversely proportionally (Fig. 5). The flow
pattern is unchanged, though. The strongest velocities
in Figs. 2, 3 and 4 are about 70 cm s™!, which is typical
of observed speeds in the undercurrent. The magni-
tudes of the surface heights, on the other hand, are
much smaller than are observed. This could easily be
remedied by. generalizing the model to have weaker
damping in the continuity equation and stronger
damping in the zonal momentum equation. It was
shown by Yamagata and Philander (1985) that the only
modification compared to the method of section 3 is
that each variable has an additional scaling parameter
in powers of the ratio of the two damping constants.

The pattern of eastward and westward currents may
be explained by dynamical similarity with the atmo-
spheric Hadley circulation. In the present model the
subsurface flow is divergent away from the equator and
strongly convergent at the equator. This is also found
in the continuous models of McCreary (1981) and
McPhaden (1981). It is also similar to the low-level
branch of the Hadley circulation. Hadley argued that
the equatorward motion would lead to easterly winds,
or westward currents here. Since the eastward velocity
of the earth’s surface is higher at the equator than to
the north and south, a parcel of water starting in the
tropics and moving equatorward weuld find itself
moving more slowly than the earth’s surface. Relative
to the earth’s surface one would then observe westward
currents. _

Figure 6 shows meridional sections of pressure and
velocity for the solution (25)-(27) in the absence of
lateral boundaries. One finds westward currents in both
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FIG. 2. Solution for symmetric forcing with boundary layer divergence at the equator and weak

convergence to the north and south. Zonal and

meridional distances are in Rossby radii O(250)

km. The arrows are current vectors and the lines are pressure contours (solid contours positive,
dashed zero, and broken negative) at intervals of ten units. The damping constant ¢ = 0.01
corresponds to a damping time constant O(100) days. There is strong eastward flow at the equator,

with weaker westward flow to the north and south.

The equator is an area of low pressure throughout

the basin, although at the equator itself the pressure drops towards the east.

hemispheres going to zero at the equator. It is inter-
esting to imagine how such a flow is set up if the winds
are suddenly “switched on” over an ocean at rest. The
boundary layer divergence at the equator causes the
surface to drop and the thermocline to rise there. Con-
versely, convergence away from the equator causes the
surface to rise and the thermocline to deepen, as can
be seen in Fig. 6. The resulting pressure gradients cause
westward currents by geostrophy, both to the north
and south of the equator. There is then a net zonal
flow towards the western boundary, so that the surface
will rise near the boundary. This in turn will cause an
eastward, down-pressure current at the equator, also
known as the reflected Kelvin wave, or as the equatorial
undercurrent.

5. The response to asymmetric forcing

The components of the divergence forcing which are
asymmetric about the equator can have an important
effect on the currents and on the pressure and mass
fields. Gill (1982) discusses two such situations. The
first is where a southerly wind component at the equa-
tor causes boundary-layer divergence south of the

equator, and convergence north of the equator. The
equatorial undercurrent is found to move southwards
in response to this. The second case concerns the equa-
torial countercurrent and the trough in the ocean pres-
sure field around 10°N which appear to be associated
with a region of boundary layer divergence, which, in
turn, is associated with the intertropical convergence
zone. We shall investigate how the model reproduces
these features.

Away from the equator the Ekman mass flux asso-
ciated with a southerly wind is zonal. At the equator,
however, the boundary-layer mass flux will be down-
wind, i.e., northward. There will therefore be boundary-
layer divergence just south of the equator, and equal
and opposite convergence just north of it. We shall
model this using a divergence distribution

We=—D\(3y) = —3yDy(3y), (36)
so that the coefficients W, can still be computed using
(19). The resulting flow (Fig. 7) consists of a narrow
eastward current south of the equator, and an opposite
westward current north of the equator. The effect of a
meridional wind is thus to shift the undercurrent up-
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FIG. 3. Meridional midbasin (x = 20) section for the flow shown in Fig. 2. Shown are the
pressure (left), the zonal velocity (center), and the boundary layer divergence forcing the flow

(right). Damping constant ¢ = 0.01.
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FIG. 4. Zonal section along the equator for the flow shown in Fig. 2. Shown are the pressure
(top) and the zonal velocity (above).

wind off the equator, as discussed by Gill (1982) and
as found in the model of McCreary (1981).

The other interesting question is whether a narrow
band of divergence some distance north of the equator
can cause the equatorial countercurrent and the as-

15 -

sociated pressure trough. To model this situation we
force the model with a narrow divergence distribution
located four Rossby radii north of the equator, and
equal and opposite but broadly distributed conver-
gence,

WE=%{3Dols(y—4)1—%Do(y/s)} @37

for which the coefficients W, can again be computed
using (19). Note that the divergence is only one-fifth
of that used in the symmetric case of Figs. 2, 3 and 4.
The flow, shown in Fig. 8, was computed using the
same damping, ¢ = 0.01, as for the symmetric and
antisymmetric cases. One finds a trough at the latitude
of the divergence, with eastward currents on the south-
ern side of the trough, and somewhat weaker westward
currents on the northern side.

Finally, the three cases studied above are combined
as a rough representation of the situation one might
expect to find in the Pacific Ocean. The flow shown in

15 - 15 b
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FiG. 5. Meridional midbasin sections for the same forcing as in
Figs. 2, 3 and 4, but with weaker damping ¢ = 0.005 (top), and
stronger damping ¢ = 0.02 (above). Pressure on the left and zonal
velocity on the right should be compared with Fig. 3 where ¢ = 0.01.

-4 o 4 Y -4 Q 4 Y

FIG. 6. Solution in the absence of basin boundaries. The pressure
(left) and zonal velocity (right) are computed for the same forcing as
in Figs. (2)-(5) and with a damping constant ¢ = 0.02 (see Fig. S,
bottom).
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FiG. 7. Meridional midbasin sections for forcing asymmetric about the equator. Shown are the
pressure (left), zonal velocity (center), and boundary layer divergence (right). Damping constant

e=0.01].

Fig. 9 thus corresponds to large-scale easterly winds,
with a southerly component at the equator, and an
intertropical convergence zone near 10°N. One finds
an eastward equatorial undercurrent, weaker westward
currents to the north and south, and an equatorial
countercurrent near 10°N, in good general agreement
with the observed current structure. If the pressure dis-
tribution is compared with maps of dynamic height of
the sea surface relative to 1000 db for the Pacific Ocean
(Reid and Arthur, 1975, Wyrtki, 1975) one finds re-
markably good qualitative agreement. In the Southern
Hemisphere tropics there is a large ridge, sloping down
towards the east. By comparison the equatorial band
is a trough with a tiny ridge right on the equator. In
the Northern Hemisphere is a second ridge between

the equator and the intertropical convergence zone,
another trough at the ITCZ, and another ridge pole-
ward of it.

6. Analytic solution for undamped equatorial waves

We shall now study the solution when the damping
of the long waves vanishes. This inviscid solution is
useful not only because it shows what tends to happen
as the wave damping becomes small, but also because
it will make it possible to compare the present model
with a commonly used model in which the effect of
the wind appears as a body force. In the limit of van-
ishing wave damping the model (7)-(9) becomes, in
the steady state,

— —— — - - -
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FIG. 8. Solution for a zonally symmetric band of boundary layer divergence centered four
Rossby radii north of the equator, with weak, broadly spread, convergence. The divergence forcing
is only one-fifth as strong as in Fig. 2. Damping constant e = 0.01. The boundary layer divergence
causes a trough in the ocean pressure field, with an eastward equatorial countercurrent to the

south.
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F1G. 9. Solution for the combined forcings of Figs. 2, 7 and 8. The flow is due to the combined
effects of a large-scale easterly wind, a southerly component at the equator, and an intertropical

convergence zone near 10°N. The damping constant is ¢

= 0.01. There is a strong eastward

undercurrent shifted slightly south of the equator, and an eastward equatorial countercurrent
near y = 4. Elsewhere the flow is fairly weak and westward.

~9/3x, 3 yu=—0¢/dy

Ou/dx + dv/dy = ~ Wy

o
V=
(38)

with an eastern boundary at x = 0 and a western
boundary at x = L. At the eastern boundary we require
the zonal velocity to be zero, at the western boundary
the total zonal mass flux must be zero. The solution
to this set of equations was given by Cane and Sarachik
(1977), although with a different interpretation. The
solution for u, v and ¢ may be written

u=M()x—L), v=Ny), ¢=P)x—L)+P
(39
in the case where W is independent of x, and
M(y)=-Q2Wg+ ydWg/dy)
N(yy=yWg
P())=3V*Wr. (40)

We shall now compute a specific solution for the
fundamental problem of a uniform zonal wind blowing
over a tropical ocean. We need a simple model of the
boundary layer mass flow, which reproduces the two
important features that the mass flow is downwind at
the equator where the Coriolis forces vanish, and per-

pendicular to the wind at high latitudes where the Co-
riolis forces are important. The simplest model with
these features has a three-way balance of forces between
the wind stress, the Coriolis forces, and a simple drag
law. The x and y momentum equations for this bound-
ary layer model are

SU—yV =1, OV +3yU=0 (41)
where 7 is the zonal wind stress, and has the solution
1 7 -Y 7
= ————— = - 4
1+Y%§’ 14+Y%6 (42)

in terms of the scaled variable Y = y/26. At the equator
the mass flux is downwind and its amount inversely
proportional to 8. At high latitudes, here defined as Y?
> 1, we have the Ekman solution of flow at right angle
to the wind and independent of 4, which may be seen
by writing V as

I
) y 1+Y
The boundary layer divergence dV/dy is shown in Fig.
10, and is very similar in shape to that used in the
viscous model (Fig. 3).
With this boundary-layer model the interior flow is
given by

(43)
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1-2y*-v*
M=y T
-7
1-¥?
P(y)=— yz[——(l - Yz)z]"- (44)

The functions M and P for the geostrophic zonal flow
and the pressure are shown in Fig. 11. One can see
that the qualitative features of a meridional section are
identical to the viscous model results shown in Fig. 3.
We can therefore conclude that the flows and height
fields obtained earlier were not artifacts of the particular
damping law used, but result fundamentally from the
combination of nearly geostrophic flow and forcing by
the boundary-layer divergence.

The major difference between the inviscid and the
viscous solutions is that whereas in the inviscid solution
the zonal currents and the pressure grow linearly as
one goes west from the eastern boundary, in the viscous
solution the growth rate rapidly diminishes, so that the
zonal currents and the pressure are nearly independent
of x over a large part of the basin. Near the eastern
boundary the two solutions are very similar, and the
extent of the region where they are similar will increase
as the wave damping decreases.

The asymptotic properties of the solution very close
to and very far from the equator are easily obtained
from (44). For the zonal velocity field we have

Yi» 1, M~ —7/8°Y*=—47/y? 45)
Y2<1l, M~(1-5Y)7/6>=(1—5y%/46%7/8% (46)

Near the equator we have a jet which gets stronger but
narrower as 8 decreases. At high latitudes there is a
return flow which is approximately independent of é.
For the meridional velocity we find

Y?>1, N~71/6Y=21]y
Y2<1, N~-—Yr/6=—y7/26%

(47)
(48)

In the inviscid solution the divergence of the meridional
geostrophic velocity at the equator has the same sign
and magnitude as the divergence of the boundary-layer
flow. The compensating convergence of the zonal ve-
locity is therefore twice the boundary-layer divergence.
At high latitudes the pressure-driven meridional flow
is just minus the boundary-layer flow. For the pressure
we find

Y?> 1,
Y2«1,

P~7
P~—-Y?%= —y2%1/48°.

(49)
(50)

In the case of an easterly wind we find two small dips
in the surface level, north and south of the equator.
They make it possible for the eastward equatorial jet
to be in geostrophic equilibrium. Then as one proceeds
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to higher latitudes the surface rises, until at high lati-
tudes the surface slope balances the wind stress.

7. Comparison with a model forced by wind stress

We shall compare the present model with a com-
monly used single-layer model in which the wind stress
acts directly upon the flow in the upper layer. In its
time-dependent, inviscid form this model has been
studied, among others by Lighthill (1969) and Cane
and Sarachik (1976, 1977, 1979), and the effects of
damping were studied by Yamagata and Philander
(1985). We shall study this model in its steady, inviscid
form so it can be compared with the inviscid model of
the previous section. Using the same notation we have

=1 yv,=—09/dx+, 3yu=—0/dy
du,/0x + 0vs/0y =0 (62))

for a zonal wind. The velocities u; and v, are to be
interpreted as vertical mean velocities in the upper
layer. Cane and Sarachik (1977) have shown that for
a uniform wind the solution of (51) has zero currents
and a balance between the tilt of the surface and the
wind stress,

U;=0,=0, 9¢/Ix=r. (52)
This model is clearly unsatisfactory as it misses out the
most striking feature of the equatorial circulation,
namely the strong equatorial current and the weaker
return flows to the north and south. Moreover, the
height field is not very good either as it gives a surface
slope independent of latitude, whereas the present
model and the observations for the Pacific Ocean show
that the height is much lower in a band of latitudes
about the equator.

As the stress-forcing model is often very valuable
and is commonly used, it is of interest to examine its
relation to the present model and to see why it is less
successful for the equatorial ocean. The obvious area
of application of the single-layer, stress-forcing model
is in cases where all properties are fairly uniform
throughout depth of the layer, for example storm surges
in shallow, well-mixed seas. This does not apply in the
equatorial ocean. It is true that the pressure is nearly
uniform in the upper layer, but the velocities are
strongly sheared and nonuniform, as sketched in Fig.
1, indicating that there is a surface boundary layer.
This in turn indicates indirectly that the wind stress is
taken up nonuniformly in the upper layer.

In cases where there is a surface boundary layer the
stress-forcing model can still be very useful provided
the mass flux in the boundary layer satisfies a special
condition, namely, that it satisfies the Ekman relation.
We can show this very simply by dividing the total flow
U, vs1n (51) into a geostrophic flow «, v and a boundary
layer flow V, satisfying
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FIG. 10. The divergence of the boundary layer flow, —26%(dV/dy)/
7, for an easterly wind and the simple boundary layer model developed
in section 6. The flow is divergent in a narrow region centered on
the equator, and convergent polewards. The dashed curve shows the
divergence that would be found if the boundary-layer flow was gov-
erned by the Ekman relation. The two models are equivalent at higher
latitudes, but near the equator the Ekman relation gives unrealistic
convergence.

1 ,
—3y0=—00/0x, Jyu=—0/9y

(53)
du/dx+dv/dy = —3V/dy
V=-271/y. (54)
P 1,04
054
-054
% 2 0 ? .
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The stress-forcing model is thus equivalent to
the boundary-layer divergence model, provided the
boundary-layer mass flux is given by the Ekman rela-
tion. In midlatitudes, where this is the case, the two
formulations are equivalent, and the original paper by
Stommel (1948) on the midlatitude circulation, for ex-
ample, was in the stress formulation.

In the equatorial ocean the Ekman relation does not
provide a good description of the boundary-layer mass
flux, and we cannot, therefore, expect the two models
to be equivalent. If we compare the stress model (53),
(54) with the inviscid boundary-layer divergence model
(38), (43), we see that the only difference between them
lies in the form of the boundary-layer mass flux. The
simple model of section 6 reproduces the main features
of the observed boundary-layer divergence, whereas the
Ekman relation does not (Fig. 10). The observed
boundary-layer divergence for an easterly wind is
strongly divergent in a narrow region centered on the
equator and convergent polewards, whereas the Ekman
flux is everywhere convergent, infinitely so at the
equator.

It might be argued that the stress formulation model
could be valid in the equatorial ocean by accommo-
dating two different balances: a balance between stress
and Ekman flux away from the equator, and a balance
between stress and pressure gradient near the equator.
That this does not happen in reality is amply dem-
onstrated by the fact that the model misses the equa-
torial-current field completely, and does not provide a
good description of the pressure field either. The wind-
stress model solution is perhaps best thought of as the
outer-limit component of the inviscid boundary-layer

-4 -2 0 2 4

Y

FIG. 11. Meridional sections of pressure (left, P(y)/r) and zonal velocity (right, ?M(y)/7) for the undamped analytic model of
section 6 with the forcing of Fig. 10. The sections are very similar to those for the damped model, shown in Fig. 3, With an
easterly wind theré€ is a narrow eastward equatorial current and weaker westward currents to the north and south. In the undamped
model the pressure has the same value on the equator as along the western boundary. At high latitudes P/r — 1, so that the

surface slope balances the wind stress.
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divergence model presented in the previous section.
_ The Ekman flux divergence tends to the model’s di-
vergence at large Y (Fig. 10), and similarly the stress
formulation solution corresponds to the large y limits
(47) and (49) of the boundary layer divergence model:
surface slope balancing the stress, and geostrophic me-
ridional flow balancing the meridional Ekman flow.

8. Conclusion

In this paper we have presented and discussed a con-
ceptual model of the wind-driven circulation in the
upper tropical oceans. The conceptual model is that
the subsurface currents and the pressure field are nearly
in geostrophic balance, and are driven by the divergence
of the surface boundary layer flow. Given a very sim-
plified representation of the forcing, the simple, linear,
analytic model is able to reproduce the gross features
of the current and pressure fields. Since it is possibie
to describe the gross features of the tropical circulation
without invoking nonlinearity, particular .damping
laws, or thermodynamic effects, we conclude that these
effects may be important if a detailed representation
of the circulation is required, but are not of funda-
mental importance in understanding the basic flow.

The proposed conceptual model for the upper trop-
ical oceans is, of course, just that which is thought to
govern the midlatitude oceans. It would appear, there-
fore, that a single conceptual model may help to un-
derstand and describe both the midlatitude and the
tropical oceans.
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