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Abstract

Geometric optic gives a good approximation to obtain the focus generated by
convergent lenses in the case that their physical characteristics do not give aber-
rations. However, some refractive devices present aberrations due to their in-
herent characteristics. Sonic lenses constructed from Sonic Band Gaps (SBG)
materials provide a suitable example. In this paper we present a mathematical
model, based on the theory of conformal mappings and valid for airbonesound,
to predict the “focal area” generated by any kind of wave lenses with aberration
problems. Furthermore, we present an abstract approach to describe the focal
phenomena with the help of normed monoids.

M.S.C. 2000: 30C35, 53Z05, 54H99, 82-05.
Key words: convergent lenses, focal phenomena, conformal mapping, normed monoid.

§1. Introduction

In the last decade, the problem of wave propagation in composite periodic media
has increased interest. Now, it is well known that for these materials multiple scattered
interfere to open frequency gaps (range of frequencies) where propagation is forbbiden,
like happen with electrons inside crystalline materials. This behavior appears in any
kind of wave: electromagnetic, elastic or acoustic. First, several authors ([11], [4])
showed that a material transparent for electromagnetic waves, can become opaque for
certain range of frequencies. These materials were called Photonic Band Gaps (PBG)
by analogy to the behavior of electrons in semiconductor materials.

In acoustic waves, the existence of this kind of materials was predicted theoretically
at the beginning of 1990s ([2]), but the first experimental results appear at 1995 ([6]).
These materials, that can stop the transmission of some range of acoustic frequencies,
are called Sonic Band Gap (SBG) materials. It is interesting to remark that nearly all
of experiments and physical models have been done with two-dimensional composite
samples i.e., the periodicity of these composite materials appears in two dimensions
([9], [5], [8]). A typical system is made with rigid cylinders in air.

Recently ([1]) it has been obtained, theoretic an experimentally, a new property of
the SBG materials: the possibility of construct refractive devices for airborne sound.
The authors show the physical realization of two devices commonly used in optics:
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a Fabry-Perot interferometer and a convergent lens (Figure 1). The authors present
sound level maps for each frequency showing the acoustic focus in each case for the
convergent lenses.

The convergent acoustic lenses present aberrations due the physical characteristics
of these composite systems. The anisotropy of the velocities inside the system and
the discontinuity of the external shape are determinant to obtain a focal zone (not a
focal point) using SBG materials like convergent lenses. In order to use these lenses
in acoustic technology, it is necessary to carry out a mathematical model that allow
us to predict the “focal area” depending on the external shape of the lense.

In this paper we give a mathematical method based on the classical theory of
conformal mappings in a complex variable, to obtain this aim.

Furthermore, we show that the structure of a normed monoid provides an appro-
priate setting to describe focal phenomena in an abstract approach. Therefore, it
is possible to employ this general method in others convergent phenomena obtained
with other kind of waves.

Figure 1:

§2. A geometric method for focal phenomena

Based on SBG materials, we describe in this section the “focal area” produced by
acoustic waves propagation in convergent lenses for each frequency.

Our main reference for functions of a complex variable is [10].
Denote by E the ellipse, in the complex plane, given by

E = {z = u + iv ∈ C :
u2

a2
+

v2

b2
= 1},

with a > b > 0.
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First, we consider a typical convergence lense: plane-convex lense whose external
shape can be considered as the semiellipse E0, where

E0 = {z ∈ E : v ≥ 0}.
It is known (see for instance [10], Chapter 8) that the holomorphic function f

given by

f(z) =
1
2
[(a− b)z +

a + b

z
]

is a one-to-one transformation from the unit circle |z| = 1 onto the ellipse E , in such
a way that the semicircle S = {z = u + iv ∈ C : |z| = 1, v ≤ 0} is transformed in the
semiellipse E0.

Furthermore f transforms the circle |z| = r, where r = [a+b
a−b ]

1/2, in the segment
[−(a2 − b2)1/2, (a2 − b2)1/2], as follows:

f(reit) =
1
2
[(a− b)r +

a + b

r
] cos(t) = (a2 − b2)1/2 cos(t)

for all t ∈ [0, 2π].
It easy to see that f is a conformal mapping from the open set A = {z ∈ C : 1 <

|z| < r} onto the bounded open set B = {z = u + iv : u2

a2 + v2

b2 < 1}, and that the
unit disk is transformed onto the open set C\(B ∪ FrB), i.e. on “the outside” of the
ellipse E .

Clearly the restriction of f to the closed set

A0 = {z = u + iv : 1 ≤ |z| ≤ r, v ≤ 0}
is a one-to-one holomorphic function and its inverse g is given by

g(w) =
w − [w2 − (a2 − b2)]

a− b
.

On the other hand, if we consider the family of concentric circles

C(r) = {Cs : s ∈]1, r[},
where Cs is the circle |z| = s and the family of ellipses

Γ(r) = {Es : s ∈]1, r[},
where Es is the ellipse with equation

u2

a2
s

+
v2

b2
s

= 1,

where

as =
1
2
[(a− b)s +

(a + b)
s

] and bs =
1
2
[(a− b)s− (a + b)

s
].

Then f transforms each circle Cs on the ellipse Es, for all s ∈]1, r[ (see Figure 2).
In the sequel, we will say that two ellipses Ei, Ej , with i 6= j, are concentric if there

is r > 1 such that Ei, Ej ∈ Γ(r).
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Figure 2:

This method can be applied to the more general case that the circle |z| = ε, where
ε is an arbitrarily small positive real number, is conformally transformed onto the
ellipse E . In this situation, the holomorphic function fε defined by

fε(z) =
1
2
[
(a− b)

ε
z +

(a + b)ε
z

]

carries out the transformation in the same way as described above. Moreover, the
holomorphic function gε defined by gε(w) = ε · g(w) is the inverse of fε.

Hence we may propose the function gε, where ε is a parameter that depends from
frequency of acustic wave, as a suitable tool to describe the “focal area”, because it
transforms the compact region

B0 = {z = u + iv ∈ B ∪ FrB : v ≥ 0}

onto the compact region

Aε = {z = u + iv : ε ≤ |z| ≤ 1, v ≤ 0},

which reproduces the sound level map for acoustic frequency associated to the para-
meter ε (Figure 3). Finally, the “focal zone” is the compact region

{z = u + iv : |z| ≤ ε, v ≤ 0}.

Consequently, the corresponding “focal area” of convergent phenomena is πε2/2.
This method is valid for any convergent lense. In particular, for a biconvex lense (see
Figure 1 above).

In Figure 4 we present the tendency of the parameter ε with respect to the acoustic
frequency, which has been obtained from experimental data.

§3. An abstract approach to focal phenomena

In this section we show that a certain structure of Topological Algebra, namely
normed monoids, provides an appropriate setting to describe the general convergent
phenomena.
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Figure 3:

Figure 4:
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The letter R+ will denote the set of nonnegative real numbers. In order to fix the
terminology let us recall a few concepts.

A monoid is a semigroup (X, +) with neutral element e. An homomorphism from
a monoid (X, +) to a monoid (Y,⊗) is a function f : X → Y such that f(x + y) =
f(x)⊗ f(y).

Let us recall ([7]) that a norm on a monoid (X, +) is a function p : X → R+ such
that (i) p(x) = e ⇔ x = e, and (ii) p(x + y) ≤ p(x) + p(y).

A normed monoid is a pair (X, p) such that X is a monoid and p is a norm on X.
Let (X, p) and (Y, q) be two normed monoids. An isometry from (X, p) to (Y, q)

is an homomorphism f such that q(f(x)) = p(x) for all x ∈ X. (X, p) and (Y, q) are
called isometric if there is a bijective isometry f from (X, p) onto (Y, q).

Although the application of our abstract approach to the method given in the
above section can be made in the realm of metric spaces, we will construct this
theory in the more general setting of quasi-metric spaces, because it provides a suitable
context to explain some processes that appear in some fields of Theoretical Computer
Science; they will be not discussed here.

Our main reference to quasi-metric spaces is [3].
A quasi-metric on a set X is a nonnegative real-valued function d defined on X×X

such that for all x, y, z ∈ X :

(i) d(x, y) = 0 if and only if x = y.

(ii) d(x, y) ≤ d(x, z) + d(y, z).

A quasi-metric space is a pair (X, d) such that X is a (nonempty) set and d is a
quasi-metric on X.

Let (X, d) be a quasi-metric space such that d satisfies the following condition:

(i) Given r ∈ R+ and x ∈ X, exists y ∈ X such that d(x, y) = r.

Let a, b two elements of R+ such that a > b > 0 and let r = [a+b
a−b ]

1/2.

We define the function a : [0, r] → [(a2 − b2)1/2,+∞] by

a(s) = as :=
1
2
[(a− b)s +

(a + b)
s

].

where we assume that a(0) = +∞.

Consider F1 ∈ X and (a2 − b2)1/2 ∈ R+. By condition (i), there exists F2 ∈ X
such that

d(F1, F2) = (a2 − b2)1/2.

On the other hand, let
Cs = {x ∈ X : d(0, x) = s}

and
ξs = {x ∈ X : d(F1,x) + d(F2, x) = 2as},

where s, as ∈ R+. If s > 0 the set ξs will be called the ellipse with focus F1 and F2

and Cs will be called the circle with center 0 and radius s.
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Set C(r) = {Cs : s ∈ [0, r]}. For each Cs, Ct in C(r), put Cs + Ct = Cs∧t. It is
easy to see that the addition operation + is well-defined on C(r). Now set Γ(r) = {ξs :
s ∈ [0, r]}. For each ξs, ξt in Γ(r), put ξs + ξt = ξs∧t. It easy to see that the addition
operation + is well-defined on Γ(r).

Clearly (C(r), +) and (Γ(r), +) are Abelian monoid with neutral element Cr and
ξr, respectively.

Now we define a function p : C(r) → R+ by p(Cs) = r − s.

Proposition 1. p is a norm on C(r).

Proof. Suppose that p(Cs) = 0, then r − s = 0. Thus r = s. Therefore p(Cs) = 0
if only if Cs = Cr.

On the other hand,

p(Cs + Ct) = p(Cs∧t) = r − (s ∧ t) ≤ (r − s) + (r − t) = p(Cs) + p(Ct)

for all t, s ∈ [0, r].

Let us recall that a quasi-metric Abelian monoid ([7]) is a pair (X, d) such that X
is an Abelian monoid and d is a subinvariant quasi-metric on X, i.e. d(x+ z, y + z) ≤
d(x, y) for all x, y, z ∈ X.

Define dp on C(r)× C(r) as follows:

dp(Cs, Ct) =
{

min{p(Ch) : Ct = Cs + Ch} ∧ r
r

if Cs ∈ C(r) and Ct ∈ Cs + C(r)
if Cs ∈ C(r) and Ct /∈ Cs + C(r) .

Thus

dp(Cs, Ct) =





p(Ct)
r
0

if t < s
if t > s
if t = s

.

From the above definition and Proposition 1 in [7], we deduce that (C(r), dp) is a
quasi-metric Abelian monoid.

Next we define a function q : Γ(r) → R+ by q(ξs) = r − s.

Proposition 2. q is a norm on Γ(r).

Proof. Suppose that q(ξs) = 0, then r − s = 0. Thus r = s. Therefore q(ξs) = 0 if
only if ξs = ξr.

On the other hand,

q(ξs + ξt) = q(ξs∧t) = r − (s ∧ t) ≤ (r − s) + (r − t) = q(ξs) + q(ξt)

for all t, s ∈ [0, r].
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Since, by Proposition 2 and Proposition 1 in [7], q induces a quasi-metric dq on
Γ(r), which is defined as follows:

dq(ξs, ξt) =
{

min{q(ξh) : ξt = ξs + ξh} ∧ r
r

if ξs ∈ Γ(r) and ξt ∈ ξs + Γ(r)
if ξs ∈ Γ(r) and ξt /∈ ξs + Γ(r) .

Then

dq(ξs, ξt) =





q(ξt)
r
0

if t < s
if t > s
if t = s.

Now we define Φ : (C(r), p) → (Γ(r), q) by Φ(Cs) = ξs for all s ∈ [0, r].

The following result shows that (C(r), p) and (Γ(r), q) are isometric normed monoid.

Proposition 3. Φ is a bijective isometry.

Proof. Let Cs ∈ C(r), then

q(Φ(Cs)) = q(ξs) = r − s = p(Cs).

Hence q(Φ(Cs)) = p(Cs) for all s ∈ [0, r].
Let Cs, Ct be two elements of C(r), then

Φ(Cs + Ct) = Φ(Cs∧t) = ξs∧t = ξs + ξt = Φ(Cs) + Φ(Ct).

So Φ is a homomorphism on C(r).
Next we show that Φ is bijective on C(r). Indeed, let Cs, Ct ∈ C(r) such that

Φ(Cs) = Φ(Ct), then ξs = ξt. Consequently s = t and Cs = Ct.

Clearly, Φ is a surjective function on C(r).

Remark. Note that if X is the Euclidean plane R2, then for a fixed r > 1 and
each s ∈ [1, r], Cs and ξs are the circle |z| = s and the ellipse u2

a2
s
+ v2

b2s
= 1, respectively,

where as and bs are the semiaxis defined in Section 2. Therefore the family of circles
and ellipses of the preceding section constitute a particular case of the construction
made here.
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Universidad Politécnica de Valencia, 46071 Valencia, Spain.

E-mail: sromague@mat.upv.es

O. Valero,
Escuela de Caminos, Departamento de Matemática Aplicada,
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