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A Class of Nonisothermal Variable Thickness Rotating Disk
Problems Solved by Hypergeometric Functions

Ahmet N. ERASLAN
Middle East Technical University, Department of Engineering Sciences,

Ankara-TURKEY
e-mail: aeraslan@metu.edu.tr

Received 12.04.2005
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Abstract

Exact solutions for nonisothermal variable thickness rotating disks represented by different thickness
profiles are obtained under plane stress assumption. The solutions are based on Tresca’s yield criterion, its
associated flow rule and linear strain hardening material behavior. Five different plastic regimes governed by
different mathematical forms of the yield criterion are considered for each thickness profile. A displacement
formulation is used and the resulting differential equations for the elastic and plastic regions are solved in
terms of hypergeometric functions by the introduction of appropriate transformations.
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Introduction

Theoretical investigation of the stresses in structures
like rotating disks, annular cooling fins and shrink
fits is an important topic due to a large number of ap-
plications in mechanical and structural engineering
(Timoshenko and Goodier, 1970; Rees, 1990; Uğural
and Fenster, 1995). For this reason, interest in this
topic has never ceased. It is known that (Uğural and
Fenster, 1995; Eraslan and Orcan, 2002a) a more
efficient and economical design can be achieved by
allowing not only variation in the thickness of the
disk, but also the deformation into the plastic range.

The aim of this paper is to present the analytical
solutions for nonisothermal variable thickness rotat-
ing disks having different thickness profiles of engi-
neering interest. Elastic-plastic solutions are based
on Tresca’s yield criterion and its associated flow
rule. Five different plastic regimes governed by dif-
ferent forms of the yield condition are considered,
assuming linear strain hardening material behavior.
These plastic regimes are commonly found in cool-
ing fins, rotating disks and shrink fits. A state of

plane stress and infinitesimal deformations are pre-
sumed. The plane stress assumption is valid as long
as the thickness of the disk is small compared to its
diameter (Timoshenko and Goodier, 1970). In the
solutions presented here the expressions do not con-
tain the maximum thickness h0; however, it must be
sufficiently small to justify the plane stress assump-
tion.

The analytical solutions presented in this paper
can be applied to various important problems in en-
gineering. They can be used (1) to analyze defor-
mations of rotating solid and annular disks of vari-
able thickness, (2) to solve some combined material
and topological optimization problems for variable
thickness rotating machinery, (3) to analyze the de-
formations of annular cooling fins of variable thick-
ness with and without rotation, (4) to solve steady
or transient shrink-fit problems including a variable
thickness hub, (5) to solve similar profiles using the
solution procedure presented herein.

The paper is organized as follows. First, the
stress states that occur in cooling fins, rotating disks
and shrink fits are discussed. Later, the stress-
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displacement relations for elastic and plastic defor-
mations are derived. These relations are necessary
to complete the solutions. In the following sections,
the solutions for different profiles represented by 1
or 2 geometric parameters are given. Each solution
begins with the description of the profile and related
literature and is followed by elastic and plastic solu-
tions. Alternate solutions are given if one solution
fails to be finite at the axis of the disk. The applica-
tions of the transformation techniques are explained
in detail for some representative solutions in Appen-
dices A, B and C.

Stress states

In a recent investigation, Eraslan and Akis (2003)
proposed a heat transfer model with a variable heat
transfer coefficient to explain the cooling of a cen-
trally heated thin annular fin subjected to rotation.
This model involves the solution of the differential
equation

d2T

dr2
+

1
r

dT

dr
−
[

2(A +Bωr)
kh0

]
(T − T0) = 0 (1)

where T (r) is the temperature in the fin, T0 the am-
bient temperature, ω the angular velocity, k the ther-
mal conductivity of the material, h0 the thickness of
the disk, and A and B are parameters. For a given
angular velocity ω, the temperature distribution in
the fin was obtained by the analytical solution of
(1). The shapes of the temperature profiles suggest
a simple fit of the form

T (r) = TC

[
1−A

√
ρ

σ0
ωr

] [
1− B

(r
b

)
+ C

(r
b

)2
]

(2)

in which TC represents the centerline temperature, ρ
the mass density, σ0 the yield limit and b the radius
of the disk, and A, B and C are the fit coefficients.
Using the data produced by the analytical solution
of Eq. (1) the fit coefficients are determined to be
A = 0.229, B = 1.19 and C = 0.591. The dimen-
sionless temperature profiles θ = T/TC obtained by
the use of Eq. (2) at different dimensionless angu-
lar velocities Ω2 = ω2b2ρ/σ0 are shown in Figure 1.
Lower edge temperatures and sharper temperature
gradients are obtained as the angular velocity is in-
creased. On the other hand, the expressions for the
elastic stresses σr and σθ, and displacement u for
the nonisothermal thin disk are given by (Eraslan
and Akis, 2003)
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Figure 1. Temperature distributions in a centrally
heated rotating disk at different rotation
speeds.

σr =
C1

r2
+C2 −

1
8

(3 + ν)ρω2r2 − 1
2
EαT

+
Eα

2r2

∫ r

s

T ′(ξ) ξ2 dξ (3)

σθ = − C1

r2
+C2 −

1
8

(1 + 3ν)ρω2r2 − 1
2
EαT

− Eα

2r2

∫ r

s

T ′(ξ) ξ2 dξ (4)

u =
1
E

[
−(1 + ν)C1

r
+ (1− ν)C2r −

(1− ν2)ρω2r3

8

]
+

1
2
α(1 + ν)rT − α(1 + ν)

2r

∫ r

s

T ′(ξ) ξ2 dξ (5)

In these equations Ci is an arbitrary integration con-
stant, ν the Poisson’s ratio, E the modulus of elas-
ticity, and α the coefficient of thermal expansion.
The lower limit s in the integrals denotes the inner
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boundary of the elastic region. It should be noted
that∫ y

x

T ′(r) r2 dr =
ATCω

30b2

√
ρ

σ0
[10b2(x3 − y3)

−15bB(x4 − y4) + 18C(x5 − y5)]

+
TC
b

[
B(x3 − y3)

3
− C(x4 − y4)

2b

]
(6)

The purely elastic deformation behavior of the non-
isothermal rotating disks can be evaluated by the
use of Eqs. (3)-(6) and different boundary condi-
tions. For a solid disk (s = 0) C1 has to vanish in
order to obtain finite stresses at the axis of the disk.
If the edge of the disk, r = b, is free of any traction
we have σr(b) = 0. This condition results in

C2 =
1
8

(3 + ν)ρω2b2 +
1
2
EαT (b)− Eα

2b2

∫ b

0

T ′(r) r2 dr

(7)

Note also that for a solid disk

lim
r→0

1
r

∫ r

0

T ′(ξ) ξ2 dξ = lim
r→0

dT

dr
r2 = 0 (8)

The nondimensional stresses, σj = σj/σ0, and dis-
placement, u = uE/σ0b, for isothermal and non-
isothermal solid disks at their corresponding elastic
limit angular velocities, Ω = Ω1, are calculated and
plotted in Figure 2. In this figure, dashed lines rep-
resent the isothermal disk. Yielding commences in
the isothermal disk at the axis with the yield con-
dition σy = σr = σθ. Hence, 2 adjacent plastic re-
gions, one with a corner regime σy = σr = σθ and
the other with a side regime σy = σθ, develop simul-
taneously at the axis of the disk and propagate to-
ward the edge with increasing angular velocities. In
contrast, for the nonisothermal disk yielding begins
somewhere inside the disk not at the axis with the
yield condition σy = σθ. The plastic region formed
here propagates in both radial directions for the an-
gular velocities Ω ≥ Ω1.

For an annular disk of inner radius a having free
boundaries, the boundary conditions read σr(a) = 0
and σr(b) = 0. Accordingly, the integration con-
stants are evaluated as

8(b2 − a2)C1 = −a2b2(b2 − a2)(3 + ν)ρω2

−4a2b2Eα[T (b)− T (a)] + 4a2Eα

∫ b

a

T ′(r)r2dr (9)

8(b2 − a2)C2 = (b4 − a4)(3 + ν)ρω2 + 4Eα[b2T (b)

−a2T (a)]− 4Eα
∫ b

a

T ′(r)r2dr (10)

The stresses, displacement and temperature for an
annular nonisothermal rotating disk with inner ra-
dius a = a/b = 0.2 at the elastic limit angular veloc-
ity Ω1 is plotted in Figure 3. As seen in this figure,
yielding commences at the inner boundary, r = a,
for rotating speeds Ω ≥ Ω1 according to the yield
condition σy = σθ. Moreover, for an annular disk
subjected to internal pressure (shrink fit problem)
the inner boundary condition becomes σr(a) = −P
with P being the applied pressure. In this case, the
constants C1 and C2 are determined to be
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Figure 2. Stresses and displacement in a rotating isother-
mal (dashed lines) and nonisothermal solid
disks.

8(b2 − a2)C1 = −8a2b2P − a2b2(b2 − a2)(3 + ν)ρω2

−4a2b2Eα[T (b)− T (a)] + 4a2Eα

∫ b

a

T ′(r)r2dr

(11)
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8(b2 − a2)C2 = 8a2P + (b4 − a4)(3 + ν)ρω2

+4Eα[b2T (b)− a2T (a)]− 4Eα
∫ b

a

T ′(r)r2dr (12)

Using a = 0.2 and P = P/σ0 = 0.25 the elastic
limit angular velocity for a nonisothermal annular
disk is calculated and the corresponding stresses and
displacement are plotted in Figure 4. At the inner
surface, the principal stress state is σθ > 0 > σr.
Hence, yielding will begin at this location with the
yield condition σy = σθ − σr.
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Figure 3. Stresses and displacement in a rotating non-
isothermal annular disk with free boundaries.

If the annular disk is mounted on a rigid shaft, the
boundary conditions become u(a) = 0 and σr(b) = 0.
The constants C1 and C2 are thus[
a2(1− ν) + b2(1 + ν)

a2b2

]
C1 = −1

8
(1− ν)[a2(1 + ν)

−b2(3 + ν)]ρω2 +
1
2
Eα(1 + ν)T (a)

+
1
2
Eα(1− ν)T (b)− Eα(1− ν)

2b2

∫ b

a

T ′(r) r2 dr

(13)

[
8a2(1− ν) + 8b2(1 + ν)

(1 + ν)

]
C2 = [a4(1− ν)

+b4(3 + ν)]ρω2 − 4a2EαT (a) + 4b2EαT (b)

−4Eα
∫ b

a

T ′(r) r2 dr (14)

The stresses and displacement in this disk at the elas-
tic limit heat load at a relatively low rotation speed
Ω = 0.5 are shown in Figure 5. The largest differ-
ence between the stresses occurs at the inner surface
where σr > 0 > σθ. If the heat load is further in-
creased, yielding begins according to the yield con-
dition σy = σr − σθ. The principal stress state for
an isothermal rotating disk mounted on a rigid shaft
is shown in Figure 6. As seen in this figure, the disk
will yield at the shaft-disk interface with an increase
in Ω according to σy = σr.
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Figure 4. Stresses and displacement in a rotating non-
isothermal annular disk subjected to internal
pressure.

As seen in the above analysis, 5 different plastic
regimes governed by different mathematical forms of
Tresca’s yield criterion may occur in cooling fins,
rotating isothermal and nonisothermal disks and
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shrink fits. Therefore to present a complete set of
solutions, 5 different plastic regions with the yield
criteria: 1. σy = σr = σθ, 2. σy = σθ, 3. σy = σr, 4.
σy = σr − σθ and 5. σy = σθ − σr have to be taken
into consideration.
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Figure 5. Stresses and displacement in a rotating non-
isothermal annular disk mounted on a rigid
shaft.

Stress-Displacement Relations

Elastic region

Total strains

εr =
1
E

(σr − νσθ) + αT (15)

εθ =
1
E

(σθ − νσr) + αT (16)

are substituted in strain-displacement relations εr =
u′ and εθ = u/r and solved for the stresses to yield

σr =
E

1− ν2

[νu
r

+ u′
]
− EαT

1− ν (17)

σθ =
E

1− ν2

[u
r

+ νu′
]
− EαT

1− ν (18)
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Figure 6. Stresses and displacement in a rotating annular
disk mounted on a rigid shaft.

where εj is the normal strain component and T the
radial temperature gradient and a prime denotes dif-
ferentiation with respect to the radial coordinate r.
The radial and circumferential stresses are plugged
in the equation of motion

d

dr
(hrσr)− hσθ = −hρω2r2 (19)

to obtain the governing elastic equation in terms of
the radial displacement. In the equation of motion
(19), h represents the disk thickness function. The
general solution of the radial displacement equation
is obtained in the form

u(r) = C1P (r) +C2Q(r) +R(r) (20)

in which Ci is an arbitrary integration constant, P
and Q the 2 homogeneous solutions of the differen-
tial equation and R the particular integral solution.
R is determined by the method of variation of pa-
rameters. It is assumed to be of the form

R(r) = Û1(r)P (r) + Û2(r)Q(r) (21)
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where

Û1(r) = −
∫ r

0

Q(λ) f(λ)
Wro(λ)

dλ (22)

Û2(r) =
∫ r

0

P (λ) f(λ)
Wro(λ)

dλ (23)

Wro(r) = P (r)Q′(r) −Q(r)P ′(r) (24)

and f(r) represents the nonhomogeneous term of the
differential equation. Since P (r), Q(r) and Wro(r)
are in general polynomials, the integrals (22) and
(23) may be evaluated analytically by expanding the
integrands into Taylor series. If these expansions are
not possible because of the product f(r), accurate
evaluations may nevertheless be accomplished by the
application of the Gaussian Quadrature rule of inte-
gration (Uğural and Fenster, 1995). With the form
(20) of the radial displacement, the stresses become

σr =
E

1− ν2

[
C1

(
νP

r
+ P ′

)
+ C2

(
νQ

r
+Q′

)
+
νR

r
+R′

]
− EαT

1− ν (25)

σθ =
E

1− ν2

[
C1

(
P

r
+ νP ′

)
+C2

(
Q

r
+ νQ′

)
+
R

r
+ νR′

]
− EαT

1− ν (26)

Plastic region I

In this region, the principal stress state corresponds
to a corner regime of Tresca’s hexagon with σr =
σθ > 0. The yield condition is given by

σy = σr = σθ (27)

For a linear strain hardening material behavior, the
yield condition has the form

σy = σ0(1 + η εEQ) (28)

and the inverse relation is

εEQ =
[
σy
σ0
− 1
]

1
η

(29)

In the above, η represents the yield limit of the ma-
terial and εEQ the equivalent plastic strain. Using

σr = σθ the equation of motion (19) is integrated to
give

σr(r) = σθ(r) =
EC3

h(r)
− ρω2

h(r)

∫ r

0

h(ξ)ξdξ (30)

Consideration of the equivalence of plastic work in-
crement, σθ dε

p
θ + σr dε

p
r = σy dεEQ, together with

the yield condition (27) results in εEQ = εpθ + εpr .
The flow rule associated with the yield condition
provides εpz = −(εpθ + εpr). Making use of the strain-
displacement relations, and decomposing the total
strains into their elastic and plastic parts, one ob-
tains

du

dr
+
u

r
= −1

η
+
[

1
ησ0

+
2(1− ν)

E

]
σr + 2αT (31)

and therefrom the displacement

u(r) =
C4

r
− r

2η
+
[

1
ησ0

+
2(1 − ν)

E

] [
1
r

∫ r

0

σr(ξ)ξ dξ
]

+
2α
r

∫ r

0

T (ξ)ξ dξ (32)

It should be noted that

lim
r→0

1
r

∫ r

0

σr(ξ)ξ dξ = 0 (33)

The plastic strain components are obtained by sub-
tracting the elastic parts from the total strains as

εpθ =
u

r
− 1− ν

E
σr − αT (34)

εpr =
[

1
η σ0

+
1− ν
E

]
σr −

u

r
− 1
η

+ αT (35)

Plastic region II

In this region, stresses lie in a side regime of Tresca’s
hexagon with σθ > σr > 0. The yield condition
reads

σy = σθ (36)

The increment of plastic work gives εEQ = εpθ, and
according to the flow rule associated with the yield
condition (36) εpθ = −εpz and εpr = 0. Since the radial
strain is purely elastic and thermal and

εθ =
[
σθ
σ0
− 1
]

1
η

+
1
E

(σθ − νσr) + αT (37)

the strain-displacement relations lead to

246



ERASLAN

σr =
(1−W 2)νσ0

1−W 2ν2
+

E

1−W 2ν2

[W 2νu

r
+ u′

−α(1 +W 2ν)T
]

(38)

σθ =
(1−W 2)σ0

1−W 2ν2
+

EW 2

1−W 2ν2

[u
r

+νu′ − α(1+ν)T
]

(39)

where W 2 = H/(1 + H) with H being the normal-
ized hardening parameter defined by H = ησ0/E.
The governing differential equation for this region is
obtained by substitution of these stresses in the equa-
tion of motion (19). The general solution is obtained
in the form

u(r) = C5P (r) + C6Q(r) + R(r) (40)

The stresses become

σr =
(1−W 2)νσ0

1−W 2ν2
+

E

1−W 2ν2

[
C5

(
W 2νP

r
+ P ′

)
+C6

(
W 2νQ

r
+ Q′

)
+
W 2νR

r
+ R′ − α(1 +W 2ν)T

]
(41)

σθ =
(1−W 2)σ0

1−W 2ν2
+

EW 2

1−W 2ν2

[
C5

(
P

r
+ νP ′

)
+C6

(
Q

r
+νQ′

)
+
R

r
+νR′ − α(1 + ν)T

]
(42)

The plastic strain components are determined from

εpθ = −εpz =
[
σθ
σ0
− 1
]

1
η

, and εpr = 0 (43)

Plastic region III

In this region, stresses lie in another side regime of
Tresca’s hexagon with σr > σθ > 0. The yield con-
dition has the form

σy = σr (44)

The increment of plastic work gives εEQ = εpr , and
according to the flow rule associated with the yield
condition (44), εpr = −εpz and εpθ = 0. Since the cir-
cumferential strain is purely elastic and thermal and

εr =
[
σr
σ0
− 1
]

1
η

+
1
E

(σr − νσθ) + αT (45)

the strain-displacement relations lead to

σr=
(1−W 2)σ0

1−W 2ν2
+

EW 2

1−W 2ν2

[νu
r

+ u′ − α(1 + ν)T
]

(46)

σθ =
(1−W 2)νσ0

1−W 2ν2
+

E

1−W 2ν2

[u
r

+W 2νu′

−α(1 + W 2ν)T
]

(47)

The governing equation for the radial displacement
is obtained by the substitution of these stresses in
the equation of motion (19). The general solution is
obtained in the form

u(r) = C7P (r) +C8Q(r) +R(r) (48)

Hence,

σr =
(1−W 2)σ0

1−W 2ν2
+

EW 2

1−W 2ν2

[
C7

(
νP

r
+ P ′

)
+C8

(
νQ

r
+ Q′

)
+
νR

r
+R′ − α(1 + ν)T

]
(49)

σθ =
(1−W 2)νσ0

1−W 2ν2
+

E

1−W 2ν2

[
C7

(
P

r
+ W 2νP ′

)
+C8

(
Q

r
+ W 2νQ′

)
+
R

r
+ W 2νR′−α(1+W 2ν)T

]
(50)

The plastic strain components for this region are
evaluated from

εpr = −εpz =
[
σr
σ0
− 1
]

1
η

, and εpθ = 0 (51)

Plastic region IV

In this region, stresses lie in another side regime of
Tresca’s hexagon with σr > 0 > σθ. The yield con-
dition reads

σy = σr − σθ (52)

The increment of plastic work gives εEQ = εpr , and
according to the flow rule εpr = −εpθ and εpz = 0. Since

εpr = −εpθ =
[
σr − σθ
σ0

− 1
]

1
η

(53)
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the strain-displacement relations result in

σr =
(1−W 2)σ0

2−W 2(1− ν)
+

E

(1− ν)[2−W 2(1− ν)]

[
[1−W 2(1− ν)]u

r
+ u′

]
− EαT

1− ν (54)

σθ = − (1−W 2)σ0

2−W 2(1− ν)
+

E

(1− ν)[2−W 2(1− ν)]

[u
r

+ [1−W 2(1− ν)]u′
]
− EαT

1− ν (55)

The governing differential equation for the radial displacement is obtained by the substitution of the stresses in
the equation of motion. The general solution is obtained in the form

u(r) = C9P (r) +C10Q(r) + R(r) (56)

Hence,

σr =
(1−W 2)σ0

2−W 2(1− ν)
+

E

(1− ν)[2−W 2(1− ν)]

[
C9

(
[1−W 2(1− ν)]P

r
+ P ′

)
+ C10

(
[1−W 2(1− ν)]Q

r
+ Q′

)
+

[1−W 2(1− ν)]R
r

+R′
]
− EαT

1− ν (57)

σθ = − (1 −W 2)σ0

2−W 2(1 − ν)
+

E

(1− ν)[2−W 2(1− ν)]

[
C9

(
P

r
+ [1−W 2(1− ν)]P ′

)
+ C10

(
Q

r
+ [1−W 2(1− ν)]Q′

)
+
R

r
+ [1−W 2(1− ν)]R′

]
− EαT

1− ν (58)

The plastic strain components are obtained from

εpr = −εpθ =
[
σr − σθ
σ0

− 1
]

1
η

, and εpz = 0 (59)

Plastic region V

In this region, stresses lie in another side regime of Tresca’s hexagon with σθ > 0 > σr. The yield condition is

σy = σθ − σr (60)

The increment of plastic work gives εEQ = εpθ, and according to the flow rule εpθ = −εpr and εpz = 0. Since

εpθ = −εpr =
[
σθ − σr
σ0

− 1
]

1
η

(61)

the strain-displacement relations lead to

σr = − (1−W 2)σ0

2−W 2(1− ν)
+

E

(1− ν)[2−W 2(1− ν)]

[
[1−W 2(1− ν)]u

r
+ u′

]
− EαT

1− ν (62)

σθ =
(1 −W 2)σ0

2−W 2(1 − ν)
+

E

(1− ν)[2−W 2(1− ν)]

[u
r

+ [1−W 2(1− ν)]u′
]
− EαT

1− ν (63)

The governing differential equation for the radial displacement is obtained by the substitution of the stresses in
the equation of motion. The general solution is obtained in the form

u(r) = C11P (r) +C12Q(r) + R(r) (64)
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Hence,

σr = − (1−W 2)σ0

2−W 2(1− ν)
+

E

(1− ν)[2−W 2(1− ν)]

[
C11

(
[1−W 2(1− ν)]P

r
+ P ′

)
+ C12

(
[1−W 2(1− ν)]Q

r
+ Q′

)
+

[1−W 2(1− ν)]R
r

+R′
]
− EαT

1− ν (65)

σθ =
(1−W 2)σ0

2−W 2(1− ν)
+

E

(1− ν)[2−W 2(1− ν)]

[
C11

(
P

r
+ [1−W 2(1− ν)]P ′

)
+ C12

(
Q

r
+ [1−W 2(1− ν)]Q′

)
+
R

r
+ [1−W 2(1− ν)]R′

]
− EαT

1− ν (66)

The plastic strain components are evaluated from

εpθ = −εpr =
[
σθ − σr
σ0

− 1
]

1
η

, and εpz = 0 (67)

Disk Profiles with One Geometric Parameter

Elliptic profile

The elliptic disk profile is described by

h(r) = h0

√
1− n

(r
b

)2

(68)

where n is geometrical parameter (0 ≤ n < 1), b is
the radius of the disk and h0 is the thickness at the
axis of the disk. With this form of the disk profile
function, a uniform thickness disk is obtained by set-
ting n = 0. For n > 0 the thickness profile is always
convex.

This thickness profile was introduced by the au-
thor (Eraslan, 2005). Isothermal solutions for the
elastic region and plastic regions I, II and III were
obtained to analyze elastic-plastic behavior of rotat-
ing elliptic solid and annular disks in comparison
with the solution obtained by the von Mises yield
condition. Closed form solutions of the plastic re-
gions IV and V have not appeared in the literature.
Nonisothermal solutions for the elastic and 5 plastic
regions are presented next. It should be noted that
without having the form of T (r) it is not possible to
obtain the general solution of the governing differen-
tial equation. However, as indicated before a series
solution for R(r) may generally be obtained.

Elastic Solutions: Governing differential equa-
tion:

r2(b2 − nr2)
d2u

dr2
+ r(b2 − 2nr2)

du

dr

−[b2 − (1− ν)nr2] u = −(b2 − nr2)(1− ν2)ρω2r3

E

−nα(1 + ν)r3T + α(b2 − nr2)(1 + ν)r2dT

dr
(69)

The homogeneous solution is obtained by introduc-
ing a new variable z = b2− nr2 and using the trans-
formation u(r) = ry(z). The result is

P (r) = rF

(
α, β, δ; 1− n

(r
b

)2
)

(70)

Q(r) = r
√
b2 − nr2F

(
α− δ + 1, β − δ + 1, 2− δ;

1− n
(
r

b

)2
)

(71)

In these equations F (α, β, δ; z) is the hypergeometric
function defined by (Abramowitz and Stegun, 1966;
Zhang and Jin, 1996)

F (α, β, δ; z) = 1 +
αβ

δ1!
z +

α(α+ 1)β(β + 1)
δ(δ + 1)2!

z2

+
α(α+ 1)(α+ 2)β(β + 1)(β + 2)

δ(δ + 1)(δ + 2)3!
z3 + · · · (72)

The arguments α, β and δ in Eqs.(70)-(71) have the
following meanings:

α =
3
4
− 1

4
√

5− 4ν (73)
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β =
3
4

+
1
4

√
5− 4ν (74)

δ =
1
2

(75)

This solution is not finite at the axis of the disk.

Alternate solution: The solution given below is
finite at the axis of the disk.

P (r) = r F

(
α, β, δ;n

(r
b

)2
)

(76)

Q(r) = P (r)
∫

dr

r3
√
b2 − nr2

[
F (α, β, δ;n( rb )2)

]2
(77)

where α and β are given by Eqs.(73)-(74) and δ = 2.
The details of these solutions are presented in Ap-
pendices A and B, respectively.

Plastic region I: The stresses:

σr(r) = σθ(r) =
EC3√
b2 − nr2

+
(b2 − nr2)ρω2

3n
(78)

The displacement:

u(r)=
C4

r
− r

2 η
+
[

1
η σ0

+
2(1− ν)

E

] [
(2b2 − nr2)ρω2r

12n

−EC3

√
b2 − nr2

nr

]
+

2α
r

∫ r

0

T (ξ)ξ dξ (79)

This equation is valid for r > 0 and in view of Eq.
(33) u(0) = 0 since C4 has to vanish if this plastic
region begins at r = 0.

Plastic region II: Governing differential equation:

r2(b2 − nr2)
d2u

dr2
+ r(b2 − 2nr2)

du

dr
−W 2[b2

−(1− ν)nr2] u = −(b2 − nr2)(1−W 2ν2)ρω2r3

E

+
(1 −W 2)[b2(1− ν)− (1 − 2ν)nr2]σ0r

E

−α
{

[2−W 2(1− ν)]nr2 − b2(1−W 2)
}
rT

+α(b2 − nr2)(1 +W 2ν)r2dT

dr
(80)

Homogeneous solution:

P (r) = r−WF

(
α, β, δ;n

(r
b

)2
)

(81)

Q(r) = rWF

(
α− δ + 1, β − δ + 1, 2− δ;n

(r
b

)2
)

(82)

where

α =
1
4
− W

2
− 1

4

√
1 + 4W 2(1− ν) (83)

β =
1
4
− W

2
+

1
4

√
1 + 4W 2(1 − ν) (84)

δ = 1−W (85)

Plastic region III: Governing differential equa-
tion:

r2W 2(b2 − nr2)
d2u

dr2
+ rW 2(b2 − 2nr2)

du

dr
− [b2

−(1−W 2ν)nr2] u = −(b2 − nr2)(1−W 2ν2)ρω2r3

E

−(1−W 2)[b2(1− ν)− (2− ν)nr2]σ0r

E

−α
{
b2(1−W 2) − nr2[1−W 2(2 + ν)]

}
rT

+αW 2(b2 − nr2)(1 + ν)r2dT

dr
(86)

Homogeneous solution:

P (r) = r−1/WF

(
α, β, δ;n

(r
b

)2
)

(87)

Q(r) = r1/WF

(
α− δ + 1, β − δ + 1, 2− δ;n

(r
b

)2
)

(88)

where

α =
1
4
− 1

2W
− 1

4W

√
4 + W 2(1− 4ν) (89)

β =
1
4
− 1

2W
+

1
4W

√
4 + W 2(1− 4ν) (90)

δ = 1− 1
W

(91)
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Plastic region IV: Governing differential equa-
tion:

r2(b2 − nr2)
d2u

dr2
+ r(b2 − 2nr2)

du

dr
− [b2

−W 2nr2(1− ν)] u

= −(b2 − nr2)(1− ν)[2−W 2(1− ν)]ρω2r3

E

−(2b2 − 3nr2)(1− ν)(1−W 2)σ0r

E
− nα[2

−W 2(1− ν)]r3T + α(b2 − nr2)[2−W 2(1− ν)]r2dT

dr
(92)

Homogeneous solution:

P (r) = rF

(
α, β, δ; 1− n

(r
b

)2
)

(93)

Q(r) = r
√
b2 − nr2F

(
α− δ + 1, β − δ + 1, 2− δ;

1− n
(r
b

)2)
(94)

where

α =
3
4
− 1

4

√
1 + 4W 2(1− ν) (95)

β =
3
4

+
1
4

√
1 + 4W 2(1− ν) (96)

δ =
1
2

(97)

Alternate solution:

P (r) = rF

(
α, β, δ;n

(r
b

)2
)

(98)

Q(r) = P (r)
∫

dr

r3
√
b2 − nr2

[
F (α, β, δ;n( r

b
)2)
]2
(99)

where α and β are given by Eqs. (95)-(96) and δ = 2.

Plastic region V: Governing differential equation:

r2(b2 − nr2)
d2u

dr2
+ r(b2 − 2nr2)

du

dr

−[b2 −W 2nr2(1− ν)] u

= −(b2 − nr2)(1− ν)[2−W 2(1− ν)]ρω2r3

E

+
(2b2 − 3nr2)(1−W 2)(1− ν)σ0r

E

−nα[2−W 2(1− ν)]r3T + α(b2 − nr2)[2

−W 2(1− ν)]r2dT

dr
(100)

Homogeneous solution: same as in plastic region
IV.

Hyperbolic profile

The hyperbolic disk profile is given by

h(r) = h0

(
b+ r

b

)−k
(101)

where k is a geometrical parameter (k > 0). With
this form of the disk profile function, a uniform thick-
ness disk is obtained by setting k = 0. For k > 0 the
profile is always concave. The form of the hyper-
bolic profile h(r) = h0(r/b)−k commonly used by
researchers (see for example Güven, 1998a) is not as
convenient since h is not finite as r → 0.

This thickness profile was proposed by the author
(Eraslan, 2004). Isothermal solutions were obtained
for the elastic region and plastic regions I, II and III.
These solutions were used to study elastic-plastic de-
formations of rotating solid disks in the absence of a
radial temperature gradient. Solutions of the plastic
regions IV and V have not appeared in the literature.
Homogeneous solutions and nonhomogeneous terms
of the elastic and 5 plastic regions are given below.

Elastic solutions: Governing differential equa-
tion:

r2 d
2u

dr2
+
(

r

b+ r

)
[b+ r(1− k)]

du

dr
− b+ r(1 + kν)

b+ r
u

= −(1− ν2)ρω2r3

E
− kα(1 + ν)r2T

b+ r
+ α(1 + ν)r2dT

dr
(102)

The homogeneous solution is obtained by introduc-
ing a new variable z = [b/(r + b)] and using the
transformation u(r) = ry(z). The result is

P (r) = r

(
b

r + b

)α
F

(
α, β, δ;

(
b

r + b

))
(103)

Q(r) = r

(
b

r + b

)α−δ+1

×F
(
α− δ + 1, β − δ + 1, 2− δ;

(
b

r + b

))
(104)
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where

α = 1− k

2
− 1

2

√
k2 + 4(1 + kν) (105)

β = 2 +
k

2
− 1

2

√
k2 + 4(1 + kν) (106)

δ = 1−
√
k2 + 4(1 + kν) (107)

This solution is not finite at the axis of the disk.

Alternate solution: The solution given below is
finite at the axis of the disk.

P (r) = r F (α, β, δ;−r
b
) = r

(
1 +

r

b

)−α
F

(
α, δ − β, δ; r

b+ r

)
(108)

Q(r) = P (r)
∫

(b+ r)kdr

r3
[
F (α, β, δ;− rb )

]2 (109)

where

α = 1− k

2
− 1

2

√
k2 + 4(1 + kν) (110)

β = 1− k

2
+

1
2

√
k2 + 4(1 + kν) (111)

δ = 3 (112)

Plastic region I: The stresses:

σr(r) = σθ(r) = EC3(b + r)k +
(b+ r)[b− (1− k)r]ρω2

(1− k)(2 − k)
(113)

The displacement:

u(r) =
C4

r
− r

2 η
+
[

1
η σ0

+
2(1− ν)

E

] [
[6b2 + 4bkr− 3(1− k)r2]ρω2r

12(1− k)(2− k)

+
EC3

(1 + k)(2 + k)r
{

(b+ r)1+k[(1 + k)r − b] + b2+k
}]

+
2α
r

∫ r

0

T (ξ)ξ dξ (114)

Plastic region II: Governing differential equation:

r2 d
2u

dr2
+
(

r

b+ r

)
[b+ r(1− k)]

du

dr
− W 2[b+ r(1 + kν)]

b+ r
u =

−(1−W 2ν2)ρω2r3

E
+

(1−W 2) {b(1− ν) + [1− (1− k)ν ]r}σ0r

E(b+ r)

+
α
{
b(1−W 2) + r[1− k −W 2(1 + kν)]

}
rT

b+ r
+ α(1 +W 2ν)r2dT

dr
(115)

Homogeneous solution:

P (r) = r−WF
(
α, β, δ;−r

b

)
(116)
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Q(r) = rWF
(
α− δ + 1, β − δ + 1, 2− δ;−r

b

)
(117)

α = −k
2
−W − 1

2

√
k2 + 4W 2(1 + kν) (118)

β = −k
2
−W +

1
2

√
k2 + 4W 2(1 + kν) (119)

δ = 1− 2W (120)

Plastic region III: Governing differential equation:

W 2r2 d
2u

dr2
+
(
W 2r

b+ r

)
[b+ r(1− k)]

du

dr
− b+ r(1 + kW 2ν)

b+ r
u =

−(1−W 2ν2)ρω2r3

E
− (1−W 2)[b(1− ν) + (1− k − ν)r]σ0r

E(b+ r)

−α
{
b(1−W 2) + r[1−W 2(1− k − kν)]

}
rT

b+ r
+ W 2α(1 + ν)r2dT

dr
(121)

Homogeneous solution:

P (r) = r−1/WF
(
α, β, δ;−r

b

)
(122)

Q(r) = r1/WF
(
α− δ + 1, β − δ + 1, 2− δ;−r

b

)
(123)

where

α = −k
2
− 1
W
− 1

2W

√
k2W 2 + 4(1 + kW 2ν) (124)

β = −k
2
− 1
W

+
1

2W

√
k2W 2 + 4(1 + kW 2ν) (125)

δ = 1− 2
W

(126)

Plastic region IV: Governing differential equation:

r2d
2u

dr2
+
(

r

b+ r

)
[b+ r(1− k)]

du

dr
− b+ r

{
1 + k[1−W 2(1− ν)]

}
b+ r

u =

− [2−W 2(1− ν)](1− ν)ρω2r3

E
− [2b+ r(2− k)](1−W 2)(1− ν)σ0r

E(b+ r)

−kα[2−W 2(1 − ν)]r2T

b+ r
+ α[2−W 2(1 − ν)]r2dT

dr
(127)

Homogeneous solution:

P (r) = r

(
b

r + b

)α
F

(
α, β, δ;

(
b

r + b

))
(128)
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Q(r) = r

(
b

r + b

)α−δ+1

F

(
α− δ + 1, β − δ + 1, 2− δ;

(
b

r + b

))
(129)

where

α = 1− k

2
− 1

2

√
4 + k2 + 4k[1−W 2(1 − ν)] (130)

β = 2 +
k

2
− 1

2

√
4 + k2 + 4k[1−W 2(1− ν)] (131)

δ = 1−
√

4 + k2 + 4k[1−W 2(1− ν)] (132)

Alternate solution:

P (r) = r F (α, β, δ;−r
b
) (133)

Q(r) = P (r)
∫

(b+ r)kdr

r3
[
F (α, β, δ;− rb )

]2 (134)

where

α = 1− k

2
− 1

2

√
4 + k2 + 4k[1−W 2(1 − ν)] (135)

β = 1− k

2
+

1
2

√
4 + k2 + 4k[1−W 2(1− ν)] (136)

δ = 3 (137)

Plastic region V: Governing differential equation:

r2d
2u

dr2
+
(

r

b+ r

)
[b+ r(1− k)]

du

dr
− b+ r

{
1 + k[1−W 2(1− ν)]

}
b+ r

u =

− [2−W 2(1− ν)](1− ν)ρω2r3

E
+

[2b+ r(2− k)](1−W 2)(1− ν)σ0r

E(b+ r)

−kα[2−W 2(1 − ν)]r2T

b+ r
+ α[2−W 2(1 − ν)]r2dT

dr
(138)

Homogeneous solution: same as in plastic region IV.

Disk Profiles with Two Geometric Parameters

Exponential profile

The exponential disk profile is described by the thick-
ness function

h(r) = h0e
−n( rb )k (139)

where n and k are geometrical parameters. The pa-
rameter n determines the thickness at the edge of
the disk relative to h0 while k determines the shape
of the profile.

This thickness profile was first introduced by
Güven (1995a) and has also been used by other re-
searchers. Isothermal solutions for the elastic region
and plastic regions I and II were obtained by Eraslan
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and Orcan (2002a). A solution of plastic region III
was obtained and used for the stress analysis of rotat-
ing concave exponential solid disks (Eraslan and Or-
can, 2002b). The solutions of plastic regions I and II
were used by the author (Eraslan, 2002a) to compare
the predictions of Tresca and von Mises yield crite-
ria in estimating the stress distribution for rotating
exponential solid disks in the fully plastic state. In
a later work, the author (Eraslan 2002b) used this
profile to analyze the deformation behavior of non-

linearly hardening rotating annular disks mounted
on rigid shafts. This numerical analysis was based
on von the Mises yield condition, deformation theory
of plasticity and Swift’s hardening law. Nonisother-
mal solutions for the elastic and plastic regions I, II
and III have not appeared in the literature. Further-
more, the solutions for the plastic regions IV and V
are original. These solutions are presented next.

Elastic solution: Governing differential equation:

r2 d
2u

dr2
+ r

[
1− k n

(r
b

)k] du
dr
−
[
1 + knν

(r
b

)k]
u = −(1− ν2)ρω2r3

E

−knα
(r
b

)k
(1 + ν)rT + α(1 + ν)r2dT

dr
(140)

The homogeneous solution is obtained by introducing a new variable z = n(r/b)k and using the transformation
u(r) = ry(z). The result is

P (r) = r FC

(
α, β;n

(r
b

)k)
(141)

Q(r) =
1
r
FC

(
α− β + 1, 2− β;n

(r
b

)k)
(142)

where FC(α, β; z) is the confluent hypergeometric function given by (Abramowitz and Stegun, 1966)

FC(α, β; z) = 1 +
α

β 1!
z +

α (α+ 1)
β (β + 1) 2!

z2 +
α (α+ 1) (α+ 2)
β (β + 1) (β + 2) 3!

z3 + · · · (143)

and the arguments are defined by

α =
1
k

+
ν

k
(144)

β = 1 +
2
k

(145)

The details of this solution are presented in Appendix C.

Plastic region I: The stresses:

σr(r) = σθ(r) = EC3e
n( rb )k − ρω2en( rb )k

∫ r

0

e−n(ξb )kξ dξ (146)

The displacement:

u(r) =
C4

r
− r

2η
+
[

1
ησ0

+
2(1− ν)

E

] [
EC3

r

∫ r

0

en( ξb )kξ dξ

−ρω
2

r

∫ r

0

∫ ϕ

0

e−n( ξb )ken(ϕb )kξdξϕdϕ

]
+

2α
r

∫ r

0

T (ξ)ξ dξ (147)
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Note that

lim
r→0

∫ r
0
en( ξb )kξdξ

r
= 0 (148)

lim
r→0

∫ r
0

∫ ϕ
0 e−n(ξb )ken(ϕb )kξdξϕdϕ

r
= 0 (149)

The integrals in Eqs. (146) and (147) may be evaluated analytically if n, b and k are assigned numerical values.
For example, if n = 1/2, b = 1 and k = 2 one finds by expanding the integrand into Taylor series∫ r

0

en( ξb )kξdξ =
r2

2

[
1 +

r2

4
+
r4

24
+

r6

192
+

r8

1920
+

r10

23040
+ · · ·

]
(150)

Plastic region II: Governing differential equation:

r2 d
2u

dr2
+ r

[
1− k n

(r
b

)k] du
dr
−W 2

[
1 + knν

(r
b

)k]
u = −(1 −W 2ν2)ρω2r3

E

+
(1 −W 2)

{
1− ν

[
1− kn

(
r
b

)k]}
σ0r

E
+ α

[
1−W 2 − (1 + W 2ν)kn

(r
b

)k]
rT + α(1 +W 2ν)r2dT

dr
(151)

Homogeneous solution:

P (r) = r−W FC

(
α, β;n

(r
b

)k)
(152)

Q(r) = rW FC

(
α− β + 1, 2− β;n

(r
b

)k)
(153)

where

α = −W
k

+
W 2ν

k
(154)

β = 1− 2W
k

(155)

Plastic region III: Governing differential equation:

W 2r2d
2u

dr2
+ W 2r

[
1− k n

(r
b

)k] du
dr
−
[
1 + knνW 2

(r
b

)k]
u = −(1−W 2ν2)ρω2r3

E

−
(1 −W 2)

[
1− ν − kn

(
r
b

)k]
σ0r

E
− α

[
1−W 2 + knW 2

(r
b

)k
(1 + ν)

]
rT + αW 2(1 + ν)r2dT

dr
(156)

Homogeneous solution:

P (r) = r−1/W FC

(
α, β;n

(r
b

)k)
(157)

Q(r) = r1/W FC

(
α− β + 1, 2− β;n

(r
b

)k)
(158)
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where

α = − 1
kW

+
ν

k
(159)

β = 1− 2
kW

(160)

Plastic region IV: Governing differential equation:

r2d
2u

dr2
+ r

[
1− k n

(r
b

)k] du
dr
−
{

1 + kn[1−W 2(1− ν)]
(r
b

)k}
u =

− [2−W 2(1− ν)](1− ν)ρω2r3

E
−

[
2− kn

(
r
b

)k] (1−W 2)(1− ν)σ0r

E

−αkn[2−W 2(1− ν)]
(r
b

)k
rT + α[2−W 2(1 − ν)]r2dT

dr
(161)

Homogeneous solution:

P (r) = rFC

(
α, β;n

(r
b

)k)
(162)

Q(r) =
1
r
FC

(
α− β + 1, 2− β;n

(r
b

)k)
(163)

where

α =
2
k
− W 2(1− ν)

k
(164)

β = 1 +
2
k

(165)

Plastic region V: Governing differential equation:

r2d
2u

dr2
+ r

[
1− k n

(r
b

)k] du
dr
−
{

1 + kn[1−W 2(1− ν)]
(r
b

)k}
u =

− [2−W 2(1− ν)](1− ν)ρω2r3

E
+

[
2− kn

(
r
b

)k] (1−W 2)(1− ν)σ0r

E

−α[2−W 2(1− ν)]kn
(r
b

)k
rT + α[2−W 2(1 − ν)]r2dT

dr
(166)

Homogeneous solution: same as in plastic region IV.

Disk profile in a power function form

The disk profile is described by

h(r) = h0

[
1− n

(r
b

)]k
(167)

where n and k are geometrical parameters 0 ≤ n < 1.
The parameter n determines the thickness at the
edge of the disk while k determines the shape of the
profile. Based on the values of the parameter k the
profile may be convex, linear or concave.
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The power function profile in the form h(r) =
h0 [1− nr]k was proposed by Güven (1995b). Or-
can and Eraslan (2002) used Güven’s profile and ob-
tained isothermal solutions for elastic and plastic re-
gions I and II. An isothermal homogeneous elastic
solution was used by Güven (1998b) to obtain the
stress distribution in a stationary annular disk sub-
jected to external pressure. A computational analy-
sis using Güven’s profile was carried out by Eraslan
and Argeso (2002) to calculate elastic and plastic
limit angular velocities in solid and annular disks.
The von Mises yield condition was used to deter-

mine plastic limit velocities. Another computational
study considering this profile was carried out by the
author (Eraslan, 2002b), in which the deformation
behavior of a rotating annular disk having a power
function form thickness profile was investigated using
radially constrained and free boundary conditions.
However, the form (167) of the profile considered in
this work is slightly different than the one proposed
by Güven (1995b). In this respect, all the solutions
given below may be considered original.

Elastic solutions: Governing differential equa-
tion:

r2(b− nr)d
2u

dr2
+ r[b− nr(1 + k)]

du

dr
− [b− nr(1− kν)] u = −(b− nr)(1− ν2)ρω2r3

E

−αkn(1 + ν)r2T + α(b− nr)(1 + ν)r2dT

dr
(168)

The homogeneous solution is obtained by introducing a new variable z = b− nr and using the transformation
u(r) = ry(z). The result is

P (r) = r F
(
α, β, δ; 1− nr

b

)
(169)

Q(r) = r (b − nr)1−kF
(
α− δ + 1, β − δ + 1, 2− δ; 1− nr

b

)
(170)

where

α = 1 +
k

2
− 1

2

√
k2 + 4(1− kν) (171)

β = 1 +
k

2
+

1
2

√
k2 + 4(1− kν) (172)

δ = k (173)

This solution is not finite at the axis of the disk.
Alternate solution: The solution given below is finite at the axis of the disk.

P (r) = r F
(
α, β, δ;

nr

b

)
(174)

Q(r) = P (r)
∫

dr

r3(b− nr)k
[
F (α, β, δ; nrb )

]2 (175)

where the parameters α and β are given by Eqs. (171)-(172) and δ = 3.

Plastic region I: The stresses:

σr(r) = σθ(r) =
EC3[

1− n( rb )
]k +

(b− nr)[b+ nr(1 + k)]ρω2

n2(1 + k)(2 + k)
(176)
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The displacement:

u(r) =
C4

r
− r

2η
+
[

1
ησ0

+
2(1− ν)

E

]{
[6b2 + 3bknr − 2n2r2(1 + k)]ρω2

6n2(1 + k)(2 + k)

− EC3(b− nr)
n(1− k)

[
1− n( r

b
)
]k
r

}
+

2α
r

∫ r

0

T (ξ)ξ dξ (177)

Plastic region II: Governing differential equation:

r2(b− nr)d
2u

dr2
+ r[b− nr(1 + k)]

du

dr
−W 2 [b− nr(1− kν)] u =

−(b − nr)(1−W 2ν2)ρω2r3

E
+

(1−W 2) {b(1− ν)− nr[1− ν(1 + k)]}σ0r

E

+α
{
b(1−W 2)− nr[1 + k −W 2(1 − kν)]

}
rT + α(b− nr)(1 + W 2ν)r2dT

dr
(178)

Homogeneous solution:

P (r) = r−WF
(
α, β, δ;

nr

b

)
(179)

Q(r) = rWF
(
α− δ + 1, β − δ + 1, 2− δ; nr

b

)
(180)

where

α =
k

2
−W − 1

2

√
k2 + 4W 2(1− kν) (181)

β =
k

2
−W +

1
2

√
k2 + 4W 2(1− kν) (182)

δ = 1− 2W (183)

Plastic region III: Governing differential equation:

r2W 2(b − nr)d
2u

dr2
+ rW 2[b− nr(1 + k)]

du

dr
−
[
b− nr(1− kW 2ν)

]
u =

−(b − nr)(1−W 2ν2)ρω2r3

E
− (1−W 2)[b(1− ν)− nr(1 + k − ν)]σ0r

E

−α
{
b(1−W 2) − nr[1−W 2(1 + k(1 + ν))]

}
rT + αW 2(b− nr)(1 + ν)r2dT

dr
(184)

Homogeneous solution:

P (r) = r−1/WF
(
α, β, δ;

nr

b

)
(185)

Q(r) = r1/WF
(
α− δ + 1, β − δ + 1, 2− δ; nr

b

)
(186)

where

α =
k

2
− 1
W
− 1

2W

√
k2W 2 + 4(1− kW 2ν) (187)
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β =
k

2
− 1
W

+
1

2W

√
k2W 2 + 4(1− kW 2ν) (188)

δ = 1− 2
W

(189)

Plastic region IV: Governing differential equation:

r2(b− nr)d
2u

dr2
+ r[b− nr(1 + k)]

du

dr
−
{
b− nr[1− k(1−W 2(1 − ν))]

}
u =

−(b− nr)[2−W 2(1− ν)](1− ν)ρω2r3

E
− (1−W 2)[2b− nr(2 + k)](1− ν)σ0r

E

−αkn[2−W 2(1− ν)]r2T + α(b− nr)[2−W 2(1− ν)]r2dT

dr
(190)

Homogeneous solution:

P (r) = rF
(
α, β, δ; 1− nr

b

)
(191)

Q(r) = r(b− nr)1−kF
(
α− δ + 1, β − δ + 1, 2− δ; 1− nr

b

)
(192)

where

α = 1 +
k

2
− 1

2

√
4 + k2 − 4k[1−W 2(1 − ν)] (193)

β = 1 +
k

2
+

1
2

√
4 + k2 − 4k[1−W 2(1− ν)] (194)

δ = k (195)

Alternate Solution:

P (r) = r F
(
α, β, δ;

nr

b

)
(196)

Q(r) = P (r)
∫

dr

r3(b− nr)k
[
F (α, β, δ; nrb )

]2 (197)

where the parameters α and β are given by Eqs. (193)-(194) and δ = 3.

Plastic region V: Governing differential equation:

r2(b− nr)d
2u

dr2
+ r[b− nr(1 + k)]

du

dr
−
{
b− nr[1− k(1−W 2(1 − ν))]

}
u =

−(b− nr)[2−W 2(1− ν)](1− ν)ρω2r3

E
+

(1−W 2)[2b− nr(2 + k)](1− ν)σ0r

E

−αkn[2−W 2(1− ν)]r2T + α(b− nr)[2−W 2(1− ν)]r2dT

dr
(198)

Homogeneous solution: same as in plastic region IV.

260



ERASLAN

Parabolic disk type I

This parabolic disk profile is described by the thick-
ness function

h(r) = h0

[
1− n

(r
b

)k]
(199)

where n and k are geometrical parameters (0 ≤ n <
1, k > 0). With this form of the disk profile func-
tion, a uniform thickness disk is obtained by setting
n = 0 and a linearly decreasing thickness is obtained

by setting k = 1. Furthermore, if k < 1 the profile is
concave and if k > 1 it is convex.

This profile was suggested by the author Eraslan
(2003). A similar profile in the form h(r) =
h0

[
1− nrk

]
was used by Güven (1998b). Isother-

mal elastic and plastic solutions for regions I, II and
III were presented in (Eraslan, 2003). Homogeneous
solutions and nonhomogeneous terms for these re-
gions together with the solutions for plastic regions
IV and V are given next.

Elastic solution: Governing differential equation:

r2

[
1− n

(r
b

)k] d2u

dr2
+ r

[
1− n(1 + k)

(r
b

)k] du
dr
−
[
1− n(1− kν)

(r
b

)k]
u =

−

[
1− n

(
r
b

)k] (1− ν2)ρω2r3

E
− αkn

(r
b

)k
(1 + ν)rT + α

[
1− n

(r
b

)k]
(1 + ν)r2dT

dr
(200)

The homogeneous solution is obtained by introducing a new variable z = n(r/b)k and using the transformation
u(r) = ry(z). The result is

P (r) = rF

(
α, β, δ;n

(r
b

)k)
(201)

Q(r) =
1
r
F

(
α− δ + 1, β − δ + 1, 2− δ;n

(r
b

)k)
(202)

where

α =
1
2

+
1
k
− 1

2k

√
k2 + 4(1− kν) (203)

β =
1
2

+
1
k

+
1
2k

√
k2 + 4(1− kν) (204)

δ = 1 +
2
k

(205)

Plastic region I: The stresses:

σr(r) = σθ(r) =
EC3

1− n( rb )k
−

[
2 + k − 2n

(
r
b

)k]
ρω2r2

2(2 + k)
[
1− n

(
r
b

)k] (206)

The displacement:

u(r) =
C4

r
− r

2 η
+
[

1
η σ0

+
2(1− ν)

E

] [
EC3r

2
F

(
2
k
, 1, 1 +

2
k

;n
(r
b

)k)

−

[
2 + kF

(
4
k , 1, 1 + 4

k ;n
(
r
b

)k)]
ρω2r3

8(2 + k)

+
2α
r

∫ r

0

T (ξ)ξ dξ (207)
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in which F (α, β, δ; z) is again a hypergeometric function defined by (72).

Plastic region II: Governing differential equation:

r2

[
1− n

(r
b

)k] d2u

dr2
+ r

[
1− n(1 + k)

(r
b

)k] du
dr

−W 2

[
1− n(1− kν)

(r
b

)k]
u = −

[
1− n

(
r
b

)k] (1−W 2ν2)ρω2r3

E

+
(1 −W 2)

[
1− ν − n (1− ν − kν)

(
r
b

)k]
σ0r

E

+α
{

1−W 2 − n[1 + k −W 2(1− kν)]
(r
b

)k}
rT + α

[
1− n

(r
b

)k]
(1 + W 2ν)r2dT

dr
(208)

Homogeneous solution:

P (r) = r−WF

(
α, β, δ;n

(r
b

)k)
(209)

Q(r) = rWF

(
α− δ + 1, β − δ + 1, 2− δ;n

(r
b

)k)
(210)

where

α =
1
2
− W

k
− 1

2k

√
k2 + 4W 2(1− kν) (211)

β =
1
2
− W

k
+

1
2k

√
k2 + 4W 2(1− kν) (212)

δ = 1− 2W
k

(213)

Plastic region III: Governing differential equation:

W 2r2

[
1− n

(r
b

)k] d2u

dr2
+ W 2r

[
1− n(1 + k)

(r
b

)k] du
dr

−
[
1− n(1− kW 2ν)

(r
b

)k]
u = −

[
1− n

(
r
b

)k] (1−W 2ν2)ρω2r3

E

−
(1−W 2)

[
1− ν − n (1 + k − ν)

(
r
b

)k]
σ0r

E

−α
{

1−W 2 − n
[
1−W 2(1 + k(1 + ν))

] (r
b

)k}
rT + αW 2

[
1− n

(r
b

)k]
(1 + ν)r2dT

dr
(214)

Homogeneous solution:

P (r) = r−1/WF

(
α, β, δ;n

(r
b

)k)
(215)

Q(r) = r1/WF

(
α− δ + 1, β − δ + 1, 2− δ;n

(r
b

)k)
(216)

262



ERASLAN

where

α =
1
2
− 1
kW
− 1

2kW

√
k2W 2 + 4(1− kW 2ν) (217)

β =
1
2
− 1
kW

+
1

2kW

√
k2W 2 + 4(1− kW 2ν) (218)

δ = 1− 2
kW

(219)

Plastic region IV: Governing differential equation:

r2

[
1− n

(r
b

)k] d2u

dr2
+ r

[
1− n(1 + k)

(r
b

)k] du
dr
−
{

1− n[1− k(1−W 2(1− ν))]
(r
b

)k}
u =

−

[
1− n

(
r
b

)k] [2−W 2(1− ν)](1− ν)ρω2r3

E
−

[
2− n(2 + k)

(
r
b

)k] (1−W 2)(1− ν)σ0r

E

−αkn[2−W 2(1− ν)]
(r
b

)k
rT + α

[
1− n

(r
b

)k]
[2−W 2(1− ν)]r2dT

dr
(220)

Homogeneous solution:

P (r) = rF

(
α, β, δ;n

(r
b

)k)
(221)

Q(r) =
1
r
F

(
α− δ + 1, β − δ + 1, 2− δ;n

(r
b

)k)
(222)

where

α =
1
2

+
1
k
− 1

2k

√
4 + k2 − 4k[1−W 2(1− ν)] (223)

β =
1
2

+
1
k

+
1

2k

√
4 + k2 − 4k[1−W 2(1 − ν)] (224)

δ = 1 +
2
k

(225)

Plastic region V: Governing differential equation:

r2

[
1− n

(r
b

)k] d2u

dr2
+ r

[
1− n(1 + k)

(r
b

)k] du
dr
−
{

1− n[1− k(1−W 2(1− ν))]
(r
b

)k}
u =

−

[
1− n

(
r
b

)k] [2−W 2(1− ν)](1− ν)ρω2r3

E
+

[
2− n(2 + k)

(
r
b

)k] (1−W 2)(1− ν)σ0r

E

−αkn[2−W 2(1− ν)]
(r
b

)k
rT + α

[
1− n

(r
b

)k]
[2−W 2(1− ν)]r2dT

dr
(226)

Homogeneous solution: same as in plastic region IV.
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Parabolic profile type II

This parabolic disk profile is defined as

h(r) = h0

[
1−

(
r

b+ n

)k]
(227)

where n and k are geometrical parameters (n > 0,
k > 0). A uniform thickness disk is obtained by set-
ting n→∞ and a linearly decreasing disk thickness
is obtained by the use of k = 1. If k < 1 the profile

is concave and if k > 1 it is convex. Furthermore,
the shape of the profile is smoothed as n increases.

This profile was proposed by the author Eraslan
(2003). Isothermal elastic and plastic solutions for
regions I, II and III may be found in (Eraslan, 2003).
Homogeneous solutions and nonhomogeneous terms
for these regions together with the solutions for plas-
tic regions IV and V are given below.

Elastic solution: Governing differential equation:

r2

[
1−

(
r

b+ n

)k]
d2u

dr2
+ r

[
1− (1 + k)

(
r

b+ n

)k]
du

dr

−
[

1− (1− kν)
(

r

b+ n

)k]
u = −

[
1−

(
r

b+n

)k]
(1− ν2)ρω2r3

E

−αk
(

r

b+ n

)k
(1 + ν)rT + α

[
1−

(
r

b+ n

)k]
(1 + ν)r2dT

dr
(228)

The homogeneous solution is obtained by introducing a new variable z = [r/(b+ n)]k and using the transfor-
mation u(r) = ry(z). The result is

P (r) = rF

(
α, β, δ;

(
r

b+ n

)k)
(229)

Q(r) =
1
r
F

(
α− δ + 1, β − δ + 1, 2− δ;

(
r

b+ n

)k)
(230)

where arguments α, β and δ are given by Eqs. (203)-(205).

Plastic region I: The stresses:

σr(r) = σθ(r) =
EC3[

1− ( r
n+b)

k
] −

ρω2r2

2 + k
+

kρω2r2

2(2 + k)
[
1− ( r

n+b )k
]
 (231)

The displacement:

u(r) =
C4

r
− r

2 η
+
[

1
η σ0

+
2(1− ν)

E

] [
EC3r

4(2 + k)
F

(
2
k
, 1, 1 +

2
k

; (
r

n+ b
)k
)

−

[
2 + kF

(
4
k , 1, 1 + 4

k ; ( r
n+b )k

)]
ρω2r3

8(2 + k)

+
2α
r

∫ r

0

T (ξ)ξ dξ (232)
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Plastic region II: Governing differential equation:

r2

[
1−

(
r

b+ n

)k]
d2u

dr2
+ r

[
1− (1 + k)

(
r

b+ n

)k]
du

dr

−W 2

[
1− (1− kν)

(
r

b+ n

)k]
u = −

[
1−

(
r

b+n

)k]
(1−W 2ν2)ρω2r3

E

+
(1−W 2)

[
1− ν −

(
r

b+n

)k
(1− ν − kν)

]
σ0r

E

+α

{
1−W 2 − [1 + k −W 2(1− kν)]

(
r

b+ n

)k}
rT

+α

[
1−

(
r

b+ n

)k]
(1 +W 2ν)r2dT

dr
(233)

Homogeneous solution:

P (r) = r−WF

(
α, β, δ;

(
r

b+ n

)k)
(234)

Q(r) = rWF

(
α− δ + 1, β − δ + 1, 2− δ;

(
r

b+ n

)k)
(235)

The arguments α, β and δ are given by Eqs. (211)-(213).

Plastic region III: Governing differential equation:

r2W 2

[
1−

(
r

b+ n

)k]
d2u

dr2
+ rW 2

[
1− (1 + k)

(
r

b+ n

)k]
du

dr

−
[

1− (1− kW 2ν)
(

r

b+ n

)k]
u = −

[
1−

(
r

b+n

)k]
(1−W 2ν2)ρω2r3

E

−
(1−W 2)

[
1− ν − (1 + k − ν)

(
r

b+n

)k]
σ0r

E

−α
{

1−W 2 −
[
1−W 2(1 + k(1 + ν))

]( r

b+ n

)k}
rT

+αW 2

[
1−

(
r

b+ n

)k]
(1 + ν)r2dT

dr
(236)

Homogeneous solution:

P (r) = r−1/WF

(
α, β, δ;

(
r

b+ n

)k)
(237)
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Q(r) = r1/WF

(
α− δ + 1, β − δ + 1, 2− δ;

(
r

b+ n

)k)
(238)

The arguments α, β and δ are given by Eqs. (217)-(219).

Plastic region IV: Governing differential equation:

r2

[
1−

(
r

b+ n

)k]
d2u

dr2
+ r

[
1− (1 + k)

(
r

b+ n

)k]
du

dr
−
{

1− [1− k(1−W 2(1− ν))]
(

r

b+ n

)k}
u =

−

[
1−

(
r

b+n

)k]
[2−W 2(1− ν)](1− ν)ρω2r3

E
−

[
2− (2 + k)

(
r

b+n

)k]
(1−W 2)(1− ν)σ0r

E

−αk[2−W 2(1− ν)]
(

r

b+ n

)k
rT + α

[
1−

(
r

b+ n

)k]
[2−W 2(1− ν)]r2dT

dr
(239)

Homogeneous solution:

P (r) = rF

(
α, β, δ;

(
r

b+ n

)k)
(240)

Q(r) =
1
r
F

(
α− δ + 1, β − δ + 1, 2− δ;

(
r

b+ n

)k)
(241)

The arguments α, β and δ are given by Eqs. (223)-(225).

Plastic region V: Governing differential equation:

r2

[
1−

(
r

b+ n

)k]
d2u

dr2
+ r

[
1− (1 + k)

(
r

b+ n

)k]
du

dr
−
{

1− [1− k(1−W 2(1− ν))]
(

r

b+ n

)k}
u =

−

[
1−

(
r

b+n

)k]
[2−W 2(1− ν)](1− ν)ρω2r3

E
+

[
2− (2 + k)

(
r

b+n

)k]
(1−W 2)(1− ν)σ0r

E

−αk[2−W 2(1− ν)]
(

r

b+ n

)k
rT + α

[
1−

(
r

b+ n

)k]
[2−W 2(1− ν)]r2dT

dr
(242)

Homogeneous solution: same as in plastic region IV.
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Appendix A
Solution of Eq. (69)

Introducing a new variable z = b2 − nr2 and using the transformation u(r) = ry(z) the homogeneous
equation is transformed into

z(b2 − z)d
2y

dz2
+

1
2

(b2 − 5z)
dy

dz
− (1 + ν)

4
y = 0 (A1)

This is the standard form of the hypergeometric differential equation with the solution (Zhang and Jin, 1996)

y(z) = C1F
(
α, β, δ;

z

b2

)
+C2

√
zF
(
α− δ + 1, β − δ + 1, 2− δ; z

b2

)
(A2)

in which the arguments have been defined by Eqs. (73)-(75). Back transformation ry(z) = u(r) gives

u(r) = C1rF

(
α, β, δ; 1− n

(r
b

)2
)

+ C2r
√
b2 − nr2F

(
α− δ + 1, β − δ + 1,

2− δ; 1− n
(r
b

)2
)

(A3)

Hence,

P (r) = rF

(
α, β, δ; 1− n

(r
b

)2
)

(A4)

Q(r) = r
√
b2 − nr2F

(
α− δ + 1, β − δ + 1, 2− δ; 1− n

(r
b

)2
)

(A5)

Appendix B
Alternate Solution of Eq. (69)

One solution to the homogeneous equation is obtained as

P (r) = r F

(
α, β, δ;n

(r
b

)2
)

(B1)

in which α and β are given by Eqs. (73)-(74) and δ = 2. The homogeneous solution is assumed to be of the
form u(r) = P (r) · V (r). Substituting in Eq. (69) we get a differential equation for V (r):

r2(b2 − nr2)P
d2V

dr2
+
[
r(b2 − 2nr2)P + 2r2(b2 − nr2)

dP

dr

]
dV

dr
= 0 (B2)

with the solution

V (r) = C1 +C2

∫
dr

r
√
b2 − nr2 [P (r)]2

= C1 +C2

∫
dr

r3
√
b2 − nr2

[
F
(
α, β, δ;n

(
r
b

)2)]2 (B3)
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In view of Eq. (20) we see that

Q(r) = P (r)
∫

dr

r3
√
b2 − nr2

[
F (α, β, δ;n( rb )2)

]2 (B4)

The integration in Eq. (B4) may be carried out analytically if the Poisson’s ratio is assigned a numerical value.
For ν = 3/10 the result is∫

dr

r3
√
b2 − nr2

[
F (α, β, δ;n( r

b
)2)
]2 = − 1

2br2
+

7n ln r
40 b3

+
2663n2r2

38400 b5

+
542597n3r4

18432000 b7
+

383330149n4r6

22118400000 b9
+

208132660421n5r8

17694720000000 b11

+
183819510478993n6r10

21233664000000000 b13
+

27380392583073829n7r12

4076863488000000000 b15
+ · · · (B5)

Appendix C
Solution of Eq. (140)

Introducing a new variable z = n(r/b)k and using the transformation u(r) = ry(z) the homogeneous equation
is transformed into

z
d2y

dz2
+

1
k

[2 + k(1− z)] dy
dz
− 1
k

(1 + ν)y = 0 (C1)

This is the standard form of the confluent hypergeometric differential equation with the solution (Abramowitz
and Stegun, 1966)

y(z) = C1FC(α, β; z) + Ĉ2z
− 2
kFC(α − β + 1, 2− β; z) (C2)

in which the arguments have been defined by Eqs. (144)-(145). Back transforming using ry(z) = u(r) we obtain

u(r) = C1rFC

(
α, β;n

(r
b

)k)
+ Ĉ2r

(
n
(r
b

)k)−2/k

FC

(
α− β + 1, 2− β;n

(r
b

)k)
= C1rFC

(
α, β;n

(r
b

)k)
+
Ĉ2b

2n−2/k

r
FC

(
α− β + 1, 2− β;n

(r
b

)k)
= C1rFC

(
α, β;n

(r
b

)k)
+ C2

1
r
FC

(
α− β + 1, 2− β;n

(r
b

)k)
(C3)

Hence,

P (r) = rFC

(
α, β;n

(r
b

)k)
(C4)

Q(r) =
1
r
FC

(
α− β + 1, 2− β;n

(r
b

)k)
(C4)
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