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Abstract

Estimating the flows of rivers can have a significant economic impact, as this can help in agricultural
water management and in providing protection from water shortages and possible flood damage. This
paper provides forecasting benchmarks for river flow prediction in the form of a numerical and graphical
comparison between neural networks and auto-regressive (AR) models. Benchmarking was based on 7 and
4-year periods of continuous river flow data for 2 rivers in the USA, the Blackwater River and the Gila River,
and a 2-year period of streamflow data for the Filyos Stream in Turkey. The choice of appropriate artificial
neural network (ANN) architectures for hydrological forecasting, in terms of hidden layers and nodes, was
investigated. Three simple neural network (NN) architectures were then selected for comparison with the
AR model forecasts. Sum of square errors (SSEs) and correlation statistic measures were used to evaluate
the models’ performances. The benchmark results showed that NNs were able to produce better results
than AR models when given the same data inputs.
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Introduction

Many of the activities associated with the planning
and operation of the components of a water resource
system require forecasts of future events. For the
hydrologic component, there is a need for both short
term and long term forecasts of streamflow events
in order to optimize the system or to plan for fu-
ture expansion or reduction. Many of these sys-
tems are large in spatial extent and have a hydro-
metric data collection network that is very sparse.
These conditions can result in considerable uncer-
tainty in the hydrologic information that is available.
Furthermore, the inherently non-linear relationships
between input and output variables complicate at-
tempts to forecast streamflow events. There is thus
a need for improvement in forecasting techniques.
Many of the techniques currently used in model-
ing hydrological time series and generating synthetic
streamflows assume linear relationships amongst the

variables. The 2 main groups of techniques include
physically based conceptual models and time series
models. Techniques in the former group are specif-
ically designed to mathematically simulate the sub-
processes and physical mechanisms that govern the
hydrological cycle. These models usually incorpo-
rate simplified forms of physical laws and are gen-
erally nonlinear, time-invariant, and deterministic,
with parameters that are representative of water-
shed characteristics (Hsu et al., 1995) but ignore
the spatially distributed, time-varying, and stochas-
tic properties of the rainfall–runoff (R–R) process.
Kitanidis and Bras (1980 a,b) state that concep-
tual watershed models are reliable in forecasting the
most important features of the hydrograph. How-
ever, the implementation and calibration of such a
model can typically present various difficulties (Duan
et al., 1992), requiring sophisticated mathematical
tools (Sorooshian et al., 1993), significant amounts
of calibration data (Yapo et al., 1996), and some de-
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gree of expertise and experience with the model (Hsu
et al., 1995). The problem with conceptual models
is that empirical regularities or periodicities are not
always evident and can often be masked by noise.

In time-series analysis, stochastic models are fit-
ted to one or more of the time-series describing the
system for purposes that include forecasting, gener-
ating synthetic sequences for use in simulation stud-
ies, and investigating and modeling the underlying
characteristics of the system under study. Most
of the time-series modeling procedures fall within
the framework of multivariate autoregressive moving
average (ARMA) models (Raman and Sunilkumar,
1995).

ANNs have been successfully applied in a num-
ber of diverse fields, including water resources. In
the hydrological forecasting context, recent experi-
ments have reported that ANNs may offer a promis-
ing alternative for R-R modeling (Smith and Eli,
1995; Shamseldin, 1997; Tokar and Johnson, 1999),
streamflow prediction (Zealand et al., 1999; Chang
and Chen, 2001; Sivakumar et al., 2002; Kisi, 2004;
Cigizoglu and Kisi (in press)) and reservoir inflow
forecasting (Saad et al., 1996; Jain et al., 1999). Re-
cently, Coulibaly et al. (1999) reviewed the ANN-
based modeling in hydrology over the last years, and
reported that about 90% of experiments make exten-
sive use of the multi-layer feed-forward neural net-
works (FNN) trained by the standard backpropaga-
tion (BP) algorithm (Rumelhart et al., 1986).

The main purposes of this paper are to ana-
lyze and to discuss stochastic modeling of time se-
ries using FNN and traditional modeling techniques.
There are many parameters (precipitation, evapo-
transpiration, ground water, initial moisture content
of soil etc.) that affect the next day runoff. Al-
though it is possible to identify sophisticated mod-
els taking into consideration the hydrological and
hydro-meteorological variables such as precipitation,
runoff, temperature and evaporation, it is economi-
cally preferable that a model that simulates the flow
variations on the basis of past discharge records be
available to the decision maker, whether administra-
tor, local authority or technical operator. Therefore,
only the past discharge records were used as inputs
in the present study. The FNN and AR models are
applied to forecast daily river flow for 3 rivers, the
Blackwater River and Gila River in USA and the
Filyos Stream in Turkey. The results are compared
and conclusions are presented.

Artificial Neural Networks

General

The human brain contains billions of interconnected
neurons. Due to the structure in which the neu-
rons are arranged and operate, humans are able to
quickly recognize patterns and process data. An
ANN is a simplified mathematical representation of
this biological neural network. It has the ability to
learn from examples, recognize a pattern in the data,
adapt solutions over time, and process information
rapidly. The application of ANNs to water resources
problems is rapidly gaining popularity due to their
immense power and potential in the mapping of non-
linear system data.

A water resources system may be nonlinear and
multivariate, and the variables involved may have
complex interrelationships. Such problems can be
efficiently solved using ANNs. The processes that in-
volve several parameters are easily amenable to neu-
rocomputing. Among the many ANN structures that
have been studied, the most widely used network
structure in the area of hydrology is the multilayer,
feed-forward network. The remaining discussion is
focused on such networks.

An ANN consists of a number of data processing
elements called neurons or nodes, which are grouped
in layers. The input layer neurons receive the input
vector and transmit the values to the next layer of
processing elements across connections. This process
is continued until the output layer is reached. This
type of network in which data flows in one direction
(forward) is known as a feed-forward network. The
ANN theory has been described in many books, in-
cluding the text by Rumelhart et al. (1986). The
application of ANNs has been the subject of a large
number of papers that have appeared in the recent
literature. Therefore, to avoid duplication, this sec-
tion will be limited to main concepts.

A 3-layer, feed-forward ANN is shown in Figure
1. It has input, output, and hidden middle layers.
Each neuron in a layer is connected to all the neu-
rons of the next layer, and the neurons in one layer
are not connected among themselves. All the nodes
within a layer act synchronously. The data passing
through the connections from one neuron to another
are multiplied by weights that control the strength of
a passing signal. When these weights are modified,
the data transferred through the network changes;
consequently, the network output also changes. The
signal emanating from the output node(s) is the net-
work’s solution to the input problem.
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Figure 1. A 3-layer ANN architecture used for flow estimation.

Each neuron multiplies every input by its in-
terconnection weight, sums the product, and then
passes the sum through a transfer function to pro-
duce its result. This transfer function is usually a
steadily increasing S-shaped curve, called a sigmoid
function. The sigmoid function is continuous, differ-
entiable everywhere, and monotonically increasing.
The output yj is always bounded between 0 and 1,
and the input to the function can vary ±∞. Under
this threshold function, the output yj from the jth
neuron in a layer is

yj = f
(∑

wjixi

)
=

1
1 + e−(

P
wjixi)

(1)

where wji = weight of the connection joining the jth
neuron in a layer with the ith neuron in the previ-
ous layer, and xi = value of the ith neuron in the
previous layer.

Training of ANNs

The process of determining ANN weights is called
learning or training and is similar to the calibration
of a mathematical model. The ANNs are trained
with a training set of input and known output data.
At the beginning of training, the weights are initial-
ized, either with a set of random values or based on
some previous experience. Next, the weights are sys-
tematically changed by the learning algorithm such
that for a given input the difference between the
ANN output and actual output is small. Many learn-
ing examples are repeatedly presented to the net-
work, and the process is terminated when this differ-
ence is less than a specified value. At this stage, the
ANN is considered trained.

The backpropagation algorithm based upon the
generalized delta rule proposed by Rumelhart et al.

(1986) was used to train the ANN in this study. In
the back-propagation algorithm, a set of inputs and
outputs is selected from the training set and the net-
work calculates the output based on the inputs. This
output is subtracted from the actual output to find
the output-layer error. The error is backpropagated
through the network, and the weights are suitably
adjusted. This process continues for the number of
prescribed sweeps or until a prespecified error tol-
erance is reached. The mean square error over the
training samples is the typical objective function to
be minimized.

After training is complete, the ANN performance
is validated. Depending on the outcome, either the
ANN has to be retrained or it can be implemented for
its intended use. An ANN is better trained as more
input data are used. The number of input, output,
and hidden layer nodes depend upon the problem
being studied. If the number of nodes in the hidden
layer is small, the network may not have sufficient
degrees of freedom to learn the process correctly. If
the number is too high, the training will take a long
time and the network may sometimes overfit the data
(Karunanithi et al., 1994).

AR models
The autoregressive (AR) model of an order p can

be written as AR(p) and is defined as

Xt = α1Xt−1 + · · ·+ αpXt−p + Zt (2)

where Zt is a purely random process and E (Zt) = 0,
V ar (Zt) = σ2

Z. The parameters α1, . . . αp are called
the AR coefficients. The name “auto-regressive”
comes from the fact that Xt is regressed on the past
values of itself.

In this study, standard AR models were fitted to
the river flow data. The least squares method was
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used to estimate AR coefficients. The maximum en-
tropy method (MEM, or Burg algorithm) is an alter-
native way to estimate AR coefficients. The model
that gives the maximum correlation and the mini-
mum sum of square errors (SSE) was selected. The
AR(5) and AR(2) were found appropriate for the
Blackwater. For the Gila River and Filyos Stream,
however, the AR(2) model gave the best results.

Case study

The flow data of the 2 stations operated by the U.S.
Geological Survey (USGS) and the data of the Dere-
cikviran Station operated by the Turkish General Di-
rectorate of Electrical Power Resources Survey and
Development Administration (EIE) were used in the
study. The locations of these stations are illus-
trated in Figures 2 and 3. The 1st station (USGS

Station No: 02047500, datum of gauge is 9.45 m
above sea level) is on the Blackwater River near Den-
dron in Virginia, the 2nd station (USGS Station No:
09442000, datum of gauge is 1017 m above sea level)
is on the Gila River near Clifton in Arizona, the 3rd

station (EIE Station No: 1335, datum of gauge is 1
m above sea level) is on the Filyos Stream in Turkey.
The drainage areas at these sites are 761 km2, 10386
km2 and 133300 km2, respectively.

For the 1st station, the data for October 01 1990
to September 30 1996 (6 water years) were chosen for
calibration, and data for October 01 1996 to Septem-
ber 30 1997 (1997 water year) were chosen for val-
idation, arbitrarily. For the 2nd station, the data
for October 01 1995 to September 30 1998 (3 water
years) were used for calibration, and data for Octo-
ber 01 1998 to September 30 1999 (1999 water year)

Figure 2. The locations of the stations operated by the USGS.
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were chosen for validation. For the 3rd station, the
data for October 01 1999 to September 30 2000 were
chosen for calibration, and data for October 01 2000
to September 30 2001 were used for validation It may
be noted that the periods from which calibration and
validation data were chosen span the same temporal
seasons (October–September).

The coefficients of correlation between 2 vari-
ables, say x and y, whose n pairs are available, can
be calculated by

corr =

n∑
i=1

(xi − x̄) (yi − ȳ)√
n∑
i=1

(xi − x̄)2
n∑
i=1

(yi − ȳ)2

(3)

where the bar denotes the mean of the variable. The
auto-correlation coefficients of the flow data of each
river for the calibration and validation period are
given in Table 1. The correlations of the Gila River

are not as high as those of the other rivers. From 1
to 6 antecedent flow values were taken into consider-
ation as input vectors of the ANN and AR models.

Application and Results

In general, the architecture of a multi-layer FNN
can have many layers where a layer represents a set
of parallel processing units (or nodes). The 3-layer
FNN (Figure 1) used in this study contains only 1
intermediate (hidden) layer. Multi-layer FNNs can
have more than 1 hidden layer, although theoretical
studies have shown that a single hidden layer is suf-
ficient for ANNs to approximate any complex non-
linear function (Cybenko, 1989; Hornik et al., 1989).
Indeed, many experimental results seem to confirm
that 1 hidden layer may be enough for most fore-
casting problems (Zhang et al., 1998; Coulibaly et
al., 1999). Therefore, in this study, 1 hidden layer
FNN is used.

Figure 3. The location of the Derecikviran Station operated by the EIE.

Table 1. Auto-correlation coefficients for flow data of each river.

The Blackwater River
Qt−1 Qt−2 Qt−3 Qt−4 Qt−5 Qt−6

Calibration period Qt 0.960 0.879 0.793 0.707 0.628 0.564
Validation period Qt 0.960 0.872 0.768 0.657 0.553 0.468

The Gila River
Qt−1 Qt−2 Qt−3 Qt−4 Qt−5 Qt−6

Calibration period Qt 0.793 0.506 0.357 0.289 0.245 0.212
Validation period Qt 0.885 0.719 0.541 0.434 0.393 0.365

The Filyos Stream
Qt−1 Qt−2 Qt−3 Qt−4 Qt−5 Qt−6

Calibration period Qt 0.933 0.814 0.721 0.662 0.620 0.591
Validation period Qt 0.935 0.832 0.740 0.666 0.597 0.524
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A difficult task with ANNs involves choosing pa-
rameters such as the number of hidden nodes, the
learning rate, and the initial weights. There is no
theory yet to determine how many hidden units are
needed to approximate any given function. The net-
work geometry is problem dependent. Here, we use
the 3-layer FNN with 1 hidden layer (Figure 1) and
the common trial and error method to select the
number of hidden nodes. The logistic function (Eq.
(1)) is used as the hidden nodes and the output node
activation function.

Before applying the ANN, the input data were
normalized to fall in range [0.1, 0.9]. The river flow
Q was standardized by the following formula:

Qs = (Q/1.24Qmax) + 0.1 (4)

where Qs = standardized flow, and Qmax = maxi-
mum of the flow values.

In the present study, the following combinations
of input data of flow were evaluated:

1. Qt−1

2. Qt−1 and Qt−2

3. Qt−1, Qt−2, and Qt−3

4. Qt−1, Qt−2, Qt−3, and Qt−4

5. Qt−1, Qt−2, Qt−3, Qt−4, and Qt−5

6. Qt−1, Qt−2, Qt−3, Qt−4, Qt−5, and Qt−6

The output layer had 1 neuron for current flow
Qt. In the trials, the number of neurons in the hid-
den layer varied between 1 and 6. The configuration

giving the minimum SSE and maximum correlation
was selected for each of the combinations. Table 2
gives the correlation and SSE for each combination
for the Blackwater River. The correlation coefficient
and SSE for the AR models are also given in Ta-
ble 2. It can be seen from Table 2 that the SSE
for the ANNs is smaller than the statistical method
for the calibration period. From Table 2, the ANN
combination 5 and AR(5) are selected for graphical
representation.

Figures 4 and 5 contain a plot of the observed and
computed discharges (using the AR(5) and the ANN
combination 5) of the Blackwater River for the 1997
water year validation period. The difference between
the standard backpropagation ANN and AR model
is not clear from these figures. Close examination
of the figures shows that the ANN estimates show a
better match with the observed data. The 3 largest
values can be given as samples. The ANN predicted
the flow peak 2380 as 2135 m3/s, an underestimation
of 10%, while the AR(5) model predicted it as 1914,
an underestimation of 20%. The ANN predicted the
flow peaks 2310 and 2370, as 2356 and 2482 m3/s, an
overestimation of 0.02% and 0.05%, while the AR(5)
model predicted 2772 and 2566, an overestimation of
17% and 0.08%, respectively.

The results of the calibration and validation for
the Gila River are given in Table 3. Here also the
trend of the results is the same as that for the Black-
water River. From Table 3, the ANN combination

Table 2. SSE and coefficient of correlation for ANN and AR models-training and testing data of the Blackwater River.

ANN model inputs
Nodes Training/Calibration Data Test/Validation Data

in hidden River flow (m3/s) River flow (m3/s)
layer Correlation SSE Correlation SSE

Qt−1 3 0.961 0.1884.105 0.961 0.4405.104

Qt−1, Qt−2 2 0.975 0.1253.105 0.980 0.2407.104

Qt−1, Qt−2, Qt−3 4 0.980 0.1048.105 0.986 0.1881.104

Qt−1, Qt−2, Qt−3, Qt−4 4 0.980 0.1022.105 0.982 0.2012.104

Qt−1, Qt−2, Qt−3 Qt−4, Qt−5 6 0.981 0.9860.104 0.985 0.1841.104

Qt−1, Qt−2, Qt−3 Qt−4, Qt−5, Qt−6 4 0.980 0.1062.105 0.986 0.1897.104

AR(1) 0.959 0.1921.105 0.960 0.4378.104

AR(2) 0.971 0.1393.105 0.976 0.2715.104

AR(3) 0.973 0.1293.105 0.977 0.2585.104

AR(4) 0.974 0.1240.105 0.978 0.2485.104

AR(5) 0.975 0.1183.105 0.979 0.2343.104

AR(6) 0.975 0.1183.105 0.979 0.2349.104
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2 and AR(2) were selected for graphical representa-
tion. The variation of observed and computed dis-
charges for the 1999 water year validation period is
given in Figures 6 and 7. The difference between the
2 models is evident. The ANN estimates are, how-
ever, quite close to the observed variation except for
1 peak that has been underestimated by the ANN.
The ANN predicted the maximum flow peak 2440
as 1659 m3/s, an underestimation of 32%, while the
AR(2) model predicted 1472, an underestimation of
40%. As seen from Figures 6-7, the number of un-
derestimations by the AR model for the other values
is also much more that of those by the ANN.

The forecasting performances of the AR and

ANN models for the Filyos Stream are presented in
Table 4. As seen from the table, the 3rd combina-
tion has the lowest SSE and the highest correlation
among the ANN models. Of the AR models, the
AR(2) model exhibited the best performance. The
variation in the observed and the ANN (3rd com-
bination) and AR(2) forecasts is illustrated in Fig-
ures 8 and 9, respectively. Both models’ forecasts
seem to be close to the corresponding observed val-
ues. The ANN predicted the maximum flow peak 495
as 498 m3/s, with an overestimation of 0.5%, while
the AR(2) model computed 502, an overestimation
of 1.4%.

Table 3. SSE and coefficient of correlation for ANN and AR models-training and testing data of the Gila River.

ANN model inputs
Nodes Training/Calibration Data Test/Validation Data

in hidden River flow (m3/s) River flow (m3/s)
layer Correlation SSE Correlation SSE

Qt−1 2 0.819 0.6786.105 0.873 0.3189.104

Qt−1, Qt−2 2 0.896 0.4061.105 0.907 0.2393.104

Qt−1, Qt−2, Qt−3 4 0.874 0.4836.105 0.906 0.2395.104

Qt−1, Qt−2, Qt−3, Qt−4 5 0.896 0.4069.105 0.903 0.2497.104

Qt−1, Qt−2, Qt−3 Qt−4, Qt−5 5 0.896 0.4087.105 0.903 0.2483.104

Qt−1, Qt−2, Qt−3 Qt−4, Qt−5, Qt−6 6 0.898 0.3967.105 0.903 0.2504.104

AR(1) 0.793 0.7700.105 0.885 0.3088.104

AR(2) 0.818 0.6996.105 0.896 0.2966.104

AR(3) 0.831 0.6423.105 0.879 0.3193.104

AR(4) 0.831 0.6416.105 0.876 0.3248.104

AR(5) 0.832 0.6361.105 0.873 0.3292.104

AR(6) 0.832 0.6357.105 0.874 0.3277.104

Table 4. SSE and coefficient of correlation for ANN and AR models-training and testing data of the Filyos Stream.

ANN model inputs
Nodes Training/Calibration Data Test/Validation Data

in hidden River flow (m3/s) River flow (m3/s)
layer Correlation SSE Correlation SSE

Qt−1 1 0.939 0.1065.107 0.936 0.1390.106

Qt−1, Qt−2 4 0.965 0.6210. 106 0.938 0.1505.106

Qt−1, Qt−2, Qt−3 3 0.963 0.6480. 106 0.949 0.1206.106

Qt−1, Qt−2, Qt−3, Qt−4 4 0.961 0.6847. 106 0.940 0.1433.106

Qt−1, Qt−2, Qt−3 Qt−4, Qt−5 3 0.963 0.6545. 106 0.939 0.1541.106

Qt−1, Qt−2, Qt−3 Qt−4, Qt−5, Qt−6 3 0.964 0.6419.106 0.940 0.1444.106

AR(1) 0.935 0.7502.107 0.936 0.1336.106

AR(2) 0.948 0.7681.106 0.943 0.1210.106

AR(3) 0.957 0.7756.106 0.941 0.1264.106

AR(4) 0.957 0.9422.106 0.939 0.1303.106

AR(5) 0.958 0.1160.106 0.936 0.1382.106

AR(6) 0.958 0.7472.106 0.936 0.1375.106
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Figures 10, 11 and 12 show the extent of the
match between the measured and predicted daily
river flow values by ANN and AR models in term
of a scatter diagram. The R2 performances of ANN
models are slightly better than those of AR models.

The relative SSE difference between the 5th ANN
combination and the AR(5) model in the calibration
period for the Blackwater River is 20% that between
the 2nd ANN combination and the AR(2) model in
calibration period for the Gila River is 42% and that

between the 3rd ANN combination and the AR(2)
model in the calibration period for the Filyos Stream
is 16%. Since the linearity in the Blackwater River
and the Filyos Stream is much higher than that in the
flow data of the Gila River (see Table 1), the relative
SSE difference between the 2 methods for these rivers
is much lower than the value for the Gila River. In
other words, the performances of the AR and ANN
models are closer to each other for the 1st and 3rd

rivers whose auto-correlations are quite high.
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Figure 4. Observed and computed (ANN model) flows for the Blackwater River, validation period (01 October 1996-30
September 1997; 1997 water year).
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Figure 5. Observed and computed (AR model) flows for Blackwater River, validation period (01 October 1996-30 Sep
1997; 1997 water year).

16



KİŞİ
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Figure 6. Observed and computed (ANN model) flows for the Gila River, validation period (01 October 1998-30 Septem-
ber 1999; 1999 water year).
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Figure 7. Observed and computed (AR model) flows for the Gila River, validation period (01.October1998-
30.September1999; 1999 water year).
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Figure 8. Observed and computed (ANN model) flows for Filyos Stream-Validation period.
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Figure 9. Observed and computed (AR model) flows for Filyos Stream-Validation period.
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Figure 10. Scatterplots comparing predicted and observed flows for validation data of the Blackwater River.
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Figure 11. Scatterplots comparing predicted and observed flows for validation data of the Gila River.
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Figure 12. Scatterplots comparing predicted and observed flows for validation data of Filyos Stream.

Conclusions

The potential of ANN models for simulating the hy-
drologic behavior of streamflow has been presented in
this study. The greatest difficulty lay in determining
the appropriate model inputs for such a problem. Al-
though ANNs belong to the class of data-driven ap-
proaches, it is important to determine the dominant
model inputs, as this reduces the size of the network
and consequently reduces the training times and in-
creases the generalization ability of the network for

a given data set.
The results obtained with ANNs for 1-day ahead

forecasts are better than those reached in the AR
models and confirm the ability of this approach to
provide a useful tool in solving a specific problem in
hydrology, that of streamflow forecasting. The re-
sults suggest that the ANN approach may provide a
superior alternative to the AR models for developing
input–output simulations and forecasting models in
situations that do not require modeling of the inter-
nal structure of the watershed.
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