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Abstract

The determination of velocity distribution in open channel flows is crucial in many critical engineering
problems such as channel design, calculation of energy losses and sedimentation. In this study, velocity
distribution is experimentally investigated in a smooth rectangular open channel. Wall shear stresses are
calculated using measured local velocities. Assuming logarithmic velocity distribution along perpendiculars
to a wetted perimeter, dimensionless wall shear stresses K (I) = TwT7w and A and B constants unique to
the cross section in the Prandtl equation were calculated. A correlation for friction coefficient in an open
channel is developed using measured wall shear stress distribution. An improved relation for the Manning

coefficient on smooth rectangular channels is proposed.
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Introduction

Although many mathematical relations for mean ve-
locity distribution have been developed for pressur-
ized and free surface flows, there are still many points
related to turbulent flow that need to be studied. It
is usually difficult to develop a formulation for free
surface flows. In particular, there is a lack of litera-
ture on the formulation of friction resistance. Today,
the most widely used formulation by hydraulic engi-
neers is the Manning formula. Manning (1895) stud-
ied turbulent flow in open channels and proposed the
following two formulae for average velocity distribu-
tion:

/ 0.22
V=C+gRJ|1 R —0.15F, 1
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V = CR™J,2 (2)

where C" and C are constants, P, is the atmospheric
pressure, R is the hydraulic radius, J. is the hy-

draulic gradient, g is the acceleration due to gravity
and V is the mean velocity.

Although Manning suggested the use of Eq. (1),
because of its simplicity most researchers have in-
stead used Eq. (2) (Yen, 1992). The C coefficient in
Eq. (2) is expressed as

C=1/n (3)

The parameter n in Eq. (3) called the is Manning
coefficient. There are wide disagreements between
researchers on the value of n and extensive research
on its determination is ongoing.

Rouse (1938) and Keulegan (1938) were among
the first researchers who worked on the value of n.
They proposed a value considering friction factor
f in the Weisbach equation and found that C" in
(1) was proportional to RS leading to Eq. (2).
King (1918), Powell (1949), Chow (1959), Hender-
son (1966), Dooge (1991), Yen (1992), Ciray (1999),
Bilgil (2000) and several other researchers have pro-
posed values for n after considering different aspects
of flow conditions.
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On the other hand, knowledge of wall shear
stresses is important in many engineering applica-
tions such as in the design of canals, calculation of ve-
locity distribution and sedimentation studies in open
channels.

In the literature, there are few methods to cal-
culate velocity and the wall shear stress distribution
in open channels. Ciray (1970) calculated wall shear
stresses distribution for turbulent flows in a rectan-
gular channel using experimental velocity measure-
ments and gave a relation for the velocity of any
point in the cross section. Assuming logarithmic ve-
locity distribution along perpendiculars to a wetted
perimeter, Ciray proposed the following relation for
velocity distribution

V*(y 2)
K'2(z)

where VT (y, 2) (: Uy, Z)/UT), Y*(y, 2) (: UTy/I/)’

U, (: \/Fw/p), and K(z) = T‘;—l(j) represent dimen-
sionless velocity at any point in the rectangular cross
section of the uniform flow, dimensionless distance,
wall shear velocity (U-(z,y)) and local dimensionless
wall shear stress respectively; A and B are unique
constants for the wetted cross section, Ul(y, z) is lo-
cal velocity, y is the distance from the wall, v is the
kinematic viscosity of water, 7, and 7,, are mean and
local wall shear stresses and p is fluid density. (See
Figure 1). Performing a number of experiments,
Ciray has proven the validity of Eq. (4) in open
channels. He was also able to obtain the wall shear
stress distribution as a by-product.

= A+ Bh [Kl/z(z)YJr(z)} (4)
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Figure 1. Coordinate system of rectangular channel uni-
form steady flow

Extensive research has been performed by Coles
(1956), Nezu and Nakagowa (1984), Sar1 (1987),
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Tominaga et al. (1989), Alkiglar (1993), Ardighoglu
(1994), Knight et al. (1994) and Ciray (1995, 1999)
on the calculation of velocity distribution in turbu-
lent open channel flows.

The wall shear stress distribution in a planar and
axially symmetric flow is uniform along the wetted
perimeter and shear stress can be calculated from
force balance. However, for rectangular channels
with a finite aspect ratio after a certain W/h ratio
(W/h < 10 in narrow channels), flow in the chan-
nel becomes three-dimensional and wall shear stress
is not uniformly distributed due to the free surface
and existence of secondary flows. Therefore, the cal-
culation of the distribution of wall shear stress in a
rectangular open channel is complex.

The purpose of this study is to develop a correla-
tion for the friction coefficient for the turbulent flow
in narrow open channels (W/h < 10). Therefore, an
experimental set up is designed and the local shear
stresses are determined from velocity measurements
using different methods.

Experimental Set Up

The experimental studies were performed in a chan-
nel in Erzincan Vocational School of Atatiirk Uni-
versity, Erzincan, Turkey (Figure 2). The channel
has an adjustable base slope range of +2%. The
measurements in this study have been performed by
keeping the channel base slope values between 0.0002
and 0.09 and having uniform flows. The channel has
a rectangular cross section 0.21 m wide and 9 m in
flow length. Since the walls and the base of the chan-
nel are made of glass, the channel surfaces were as-
sumed to be smooth. At the beginning of the chan-
nel, there was a water inlet section of about 0.9 m in
length and it is connected to the water reservoir. In
order not to have an M2 profile, small stones and a
screen were placed in the water inlet section. In this
way, water was sent to the channel uniformly. The
water discharge was adjusted by means of a flowme-
ter, of 1% sensitivity. Along the channel, in order
to ensure uniform depth, different measuring devices
were placed at four locations. By means of a lid
at the end of the channel, a uniform flow was ob-
tained. Furthermore, local flow velocity measure-
ments were obtained by means of a pitot tube (Fig-
ure 3) placed 5 m away from the beginning of the
channel inlet. A mechanism was designed to allow
the pitot tube to move horizontally and vertically
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to any location in the channel. The pressure dif-
ferences at the manometer, which was connected to
the pitot tube, were obtained with a sensitivity of 0.1
mm pressure head. Average pressure differences read
on manometers were recorded to a computer 20 times
minute. The measurements were performed for each
cm?starting 0.5 cm from free surface. On the other
hand, local velocity measurement points for differ-
ent water level are given in Figure 4 in detail. The
nearest measurement point was 0.5 cm away from
the boundary wall. The experiments have been per-
formed at 20 °C water temperature (v = 1.01% 10~°
m?/s). During the experiments, the channel width
(W) was constant. Nine different W/h cases with
different channel slope values were tested.

The purpose of measurements is to calculate wall
shear stress. The measured data were employed in a
logarithmic average velocity equation proposed by

Prandtl (1935) for two-dimensional turbulent flow
and revised by Ciray (1970). The results of all the
experimental conditions are summarized in Table 1.

Method of Shear Stress Calculation after
Criray

The average wall shear stress for a uniform flow with
a free surface is calculated from the following equa-
tion:

Tw = YRJ. (5)

where ~ is the specific weight of water. Then the
local wall shear stress at any point on the wall can
be calculated as 7, = T, K, where K is the dimen-
sionless wall shear stress parameter.

Table 1. Experimental data.

W/h | Experiment | Reynolds number | Discharge

ratio number interval interval
(Re=4VR/v (/s)

10.5 4 7920 — 39604 0.5-25
5.25 11 9567 — 109252 0.7-9
3.5 13 14368 — 168017 1.2-19
2.33 13 13205 — 172632 1.3-20
1.75 14 13082 — 167224 1.5-24
1.4 13 11648 — 147501 1.5-24
1.17 9 15285 — 132013 2.2-24
1 8 18859 — 119440 Mar-24
0.84 8 16734 — 105982 Mar-24

Measurement rods
A .

v

AR

Water tank

Flowmeter Water pump

~
Adjusting apparatus

Longitudinal section

> -
g | | °
—
A
A-A
/! 20 l 900 4| section
Plan view

Measurements are in cm

Figure 2. Schematic sketch of the experimental set up.
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Connected to manometer
~ Connected to manometer

20 cm

6 cm

Figure 3. Pitot tube used in the experiment.

& h(cm) #
25.0 h=25cm
L - L] L] L * L] - - L]
L] & L L * # -

22-5_ L] L] - - - - - - L] -

h=21cm
L] L] L - Ll - - - L] L
205_ L] L L - L] Ll - - Ll L
" L L - L] L] - - L] L -
h=18cm

15.0 h=15cm

’é\ L] L] Ll - L] - - - L] Ll
S
= F % & W B & & ®% & &
125 % & ® & & & & @ & @ h=12 cm
* " * - " - - - " *
& & & @ ® & & & & &
10.04
L] - L - L] L] - - - L
h=9cm
L] L ] [ " L L] L ] - L ] [
75 -1 L] - - - - - - - - -
L] L] Ll - - - - - L] L
h=6cm
$ &% & ® % % % & & #
5.0
L] - L] - L * - - - *
h=4cm
# & & @ & & & 4 & &
25 » = ®w = = w = = s m
L] - L - L] L] - - Ll L
z (cm)
L] L L] " L L ] " - L ] L]
0 : - - : : : -
0 15 3 45 6 75 9 105

W/2 (2)

Figure 4. Local velocity measurement points for different
water levels.

The compatibility equation is

%K@M:L (6)

The circle in the integral sign represents the inte-
gration over the wetted perimeter of the rectangular
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duct whose length is L. Eq. (6) is discretized and
dz is scaled with respect to the L. Then Eq. (6)
becomes

N

> K(D)Az(I) =1 (7)

i=1

where Az is the elementary distance on wetted
perimeter and Eq. (4) assumes the form

+
w = A+ Bh [K1/2(I)Y+(I, Nl®)
K 2(I)

Equation (8) is written twice for each measure-
ment point (I, J), which means [—1 to N and J—1
to M (I) where N shows the number of points on a
wetted perimeter that K(I) will be calculated and
M(I) are the number measurement points on each
perpendicular (Ciray, 1999).

Therefore, the system of a non-linear equation of

N
type 8 to be solved is > M(I) to which Eq. (7)
=1
h]%s to be added. Therefore the total number is
S>> M(I) + 1. The number of unknowns is N + 2
=1

where the last two correspond to A and B in Eq.
(8).

These equations were solved via an iterative pro-
cess. The basic idea comes from regression analysis,
where for a given iteration the sum of the squares of
the derivatives needs to be minimized. For the ap-
plication of this technique, the number of equations
must be at least equal to or greater than the number
of unknowns. The details of this technique may be
found in Ciray (1971).

Experimental Results

The distribution of dimensionless wall shear stress
for ranges of water depth are shown in Figure 5. The
connected points represent the average wall shear
stress. The wall shear stresses were calculated only
for half of the channel due to the symmetry at the
channel axis. According to Ciray (1970), the wall
shear stress at the corners and free surface is zero.
Therefore, the points can be connected at these loca-
tions. The maximum value of average dimensionless
shear stress was calculated as 1.15 to 1.24 for dif-
ferent W/h values at the channel axis. The values
of maximum dimensionless wall shear stress on the
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vertical wall of the channel for different W/h values
varied between 1.022 and 1.082.

The equations for the mean dimensionless wall
shear stress were obtained for the vertical and hori-
zontal walls of the channel. The power law relations
obtained from the experimental data for the distri-
bution of dimensionless wall shear stress can be ex-
pressed as follows:

For the vertical walls shown in Figure 5

K(I)g = 0.7175¢°-1617 9)

For the bottom wall of channel shown in Figure

K(I)r = 0.679820-2744 (10)

where y and z are the spatial coordinates shown in
Figure 5. Using Xt = w7z and K(I)r = CrX+""
relations, the distribution of dimensionless wall shear
stress at the bottom wall of the channel can be
rewritten as

K(I)p = 1.2958 X T0-2744 (11)
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Figure 5. Measured distribution of dimensionless wall
shear stress.

Logarithmic Law Constants

Variations of constants A and B given in Eq. (8)
depending on discharge (@) are shown in Figure
6. The constants A and B were calculated from
the Prandtl logarithmic velocity distribution equa-
tion using experimentally measured data. The mea-
surements were performed in a fully turbulent re-
gion. Figure 6 shows that at lower values of W/h,
the constant A values decrease. This change is ex-
pected since at lower values of W/h the secondary
flow cells increase. Almost a constant value of B
except small oscillations supports the mixing length
theory of Prandtl (1935).
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Figure 6. Variation of A and B constants with @ accord-
ing to logarithmic velocity distribution.

The average values of A vary between 4.9661 and
8.0493 at different W/h values, while B values vary
between 1.6630 and 1.8522. The value of B can be
assumed to be a constant in the range of W/h con-
sidered. Therefore, the value of B in logarithmic
velocity law can be taken as B = 1.7559, an average
of all data. However, a similar assumption for the
value of A would not be correct. The change in the
value of A was observed to be exponential between
2 < W/h < 6. The variation of A and B with W/h is
summarized in Figure 7 as a function of aspect ratio.
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Figure 7. The change of constants A and B as a function
of W/h.
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Friction and Energy Losses

In wide channels, A becomes constant and since its
variation is attributed to secondary currents the ef-
fect of such currents do not seem to be important
in very wide channels (Figure 7). As the W/h ratio
decreases, secondary flow is observed and the flow
resistance is affected (Chow, 1959). The findings of
this study support this opinion.

The most widely used formula for open channel
flows is the Manning formula and there is still an
ongoing discussion on the generality of parameter n
in this formula. Therefore, a discharge formula pro-
posed by Ciray (1999), which includes the effects of
a couple of complex factors such as the secondary
flows, irregular wall shear stress and W/h ratios, was
used in discharge calculations. Ciray’s formula, ob-
tained from logarithmic velocity distribution (For-
mula 4), can be expressed as follows:

the wall shear stress on the bottom of the channel,
and Cr and nr are constants. The distance z has
become dimensionless by X = WL/Q

The n parameter in the Manning formula was ob-
tained by equating Ciray’s and Manning’s discharge
formulae as expressed by Bilgil (1998)

(13)

1
1 g2 20
N RY6 np + 2

{A—i—Bln

where, n,, corresponds to parameter n in the Man-
ning formula. This equation was developed with
the assistance of the velocity distribution formed ac-
cording to effects in open channels, such as irregu-
lar boundary shear stress, secondary flows, and W/h
ratio. Therefore, the roughness coefficient in open
channels is determined more realistically.

The mean values obtained according to the W/h
ratio to be used in Eq. (13) are provided in Table 2
According to a variety of Reynolds numbers
shown in Figure 8, the distribution of the rough-
ness coefficient of these are n=0,011 by Manning,

_ R

Q . 2

Q 2 el aiBunts Bmo, 2
Y nT+2CT{ +Bln +2[nCT (nr +2)]

(12)
where W is the width of the channel, h is the depth of
water, v is the kinematic viscosity, AT (: hUT/,/) isa

dimensionless depth, K(I) (= CrX *nT) represents

v from flowmeter and n,, determined

from Eq. (13). As seen in Figure 8, the distributions
of ny and ny, fit very well.

Table 2. The parameters, to be used in Eq. (13), according to the different W/h ratios.

Mean A B Cr nr
W/h Ratio | Constant | Constant
5.25 4.9661 1.7815 1.2958 | 0.2744
3.50 5.1245 1.8522 1.2958 | 0.2744
2.33 5.8623 1.8091 1.2958 | 0.2744
1.75 6.5410 1.7474 1.2958 | 0.2744
1.40 6.1041 1.8508 1.2958 | 0.2744
1.17 6.8244 1.7652 1.2958 | 0.2744
1.00 6.6726 1.7005 | 1.2958 | 0.2744
0.84 8.0493 1.6630 | 1.2958 | 0.2744
0.0160
0. 01501 = nm Eq. (13)
0. 0140 o o = nf Flowmeter
£ O 0130I -Tl:' : & N Manning
_ 0. 0120-[ 'i b =
< 0.0110 H - l-.l.u.i Al da
IS =] z
0.01001 ? % ; ,‘ F S
0.009 o 1"'.1 SR
0.0080t
0.0070* — -+ — ~
0 50,000 100,000 150,000 200,000
Re

Figure 8. Variation of manning coefficients n, ny and n,, with reynolds number.
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Figure 9. Comparison of discharges obtained from Eq. 14 and measured data.

Discussion

The wall shear stress is found to vanish at the corners
of cross section including the point the water surface
makes contact with the atmosphere. Non-uniform
wall shear stress distribution was reported by several
researchers, because the wall shear stress becomes

zero at free surfaces (Ciray, 1970, 1995, 1999; Sari,
1987; Alkiglar, 1993). In addition, the formation of
secondary flow cells in the flows which are impor-
tant for small W/h values, also affects the value of
A. Therefore, the analysis of the free surfaces are
usually more complex than that of pressured flows.
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As seen in Figure 7, it is difficult to find a re-
lation between W/h values and A. Rao (1969) and
Myers (1982) studied the relation between W/h and
the Reynolds number; however, they reached no con-
clusive result. The findings of Rao and Myers showed
that uncertainty would begin when W/h ratios were
smaller than 6 and 4 respectively. The present re-
sults show that the uncertainty may begin when the
W/h ratio is smaller than 2. The experimental find-
ings indicate that the friction loss coefficient became
more complex when channel geometry was changed
to square.

In this study, the roughness coefficient was stud-
ied depending on Reynolds number and W/h ratios.
In previous studies, the friction coefficient was gener-
ally studied at large W/h ratios. Since the secondary
flows are important at lower W/h ratios, the exper-
iments in this study were performed at low W/h ra-
tios. The flow was observed to be three-dimensional
at low W/h ratios and, therefore, logarithmic rela-
tion was assumed to be valid in whole channel depth.

Many researchers stated that the average friction
factor in open channels is nearly 8% higher than that
of pipes under similar conditions. Therefore, the us-
age of pipe flow equations in the calculation of fric-
tion factor may lead to significant errors in channel
flows (Bilgil, 1998).

There is no simple relation between the friction
coefficient and Reynolds number and W/h ratios in
the literature. It may be appropriate to calculate
the friction coefficient in the Manning formula using
Eq. (13). n represents wall shear stress, secondary
flows and channel geometry. As seen in Figure 9, a
high degree of correlation is evident between the dis-
charge values calculated from Eq. (14) in which n,,
is calculated from Eq. (13) and those read from the
flowmeter.

1
Q=FV= Fn—R2/3J1/2 (14)

m
Conclusions

The major conclusions of this study can be summa-
rized as follows:

- A numerical study based on experimental find-
ings was carried out considering local friction factor
and dimensionless shear stress distribution along the
wetted parameter of a channel. The results obtained
in this study are confirmed in the analytical model,
which takes into account wall shear stress to repre-
sent velocity distribution in channel flows. It is also
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seen that the wall shear stress vanishes at the regions
of wall corners and free surface at contact points with
wall.

- A and B constants in the Prandtl logarithmic
velocity distribution change with W/h ratios. The
change in the value of B is not significant at differ-
ent W/h ratios, with an average value of 1.7. The
calculated value of B agrees very well with Prandtl’s
hypothesis. However, changes in the value of A are
important and are influenced by friction factors. Al-
though there is general agreement on the formation
of the friction factor, a constant A value was not
obtained in this study.

- The application of Eq. (13), which calcu-
lates frictional losses of uniform flow in rectangular
smooth channels, may be extended to rough chan-
nels. The extension of this formulation can be sought
in channels that have triangular, trapezoid, circular
etc. cross-sectional areas.

Symbols

C,C ' constant

Cr 1.2958 constant

D diameter of pipe

F flow area

g acceleration due to gravity

h depth of water

Je hydraulic gradient

K Tw/Fw dimensionless shear stress
K(I); wall shear stress at side wall

K(I)y wall shear stress at the bottom

L wetted perimeter

n Manning frictional resistance constant
ny roughness coefficient from flowmeter
Nm roughness resistance constant [Eq. (13)]
nr 0.2744 constant

P wetted perimeter

P, vatmospheric pressure

R hydraulic radius

Re Reynolds number

U local velocity

U- wall shear velocity

%4 mean velocity

xz,y,2  the spatial coordinates shown in Figure 1
Yi distance from the wall

W channel width

~ specific weight of water

" dynamic viscosity

v kinematic viscosity

Tw mean wall shear stress
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Tw local wall shear stress
p  fluid density
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