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Artificial Neural Network Application for Flexible Pavement
Thickness Modeling

Mehmet SALTAN, Mesut TIĞDEMİR, Mustafa KARAŞAHİN
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Abstract

Flexible pavements are affected by moving vehicles, climate and other environmental factors. As a result
of these factors, the pavement starts to deteriorate. In order to prevent further deterioration, a maintenance
program should be carried out at right time and right places. For the determination of the structural carrying
capacity of the pavement, non-destructive testing equipments are used. These are mainly Benkelman Beam,
dynaflect, road rater and falling weight deflectometer (FWD). In such a process, the most important thing
is to analyze the collected data. A backcalculation procedure is carried out for back-calculating the elastic
modulus for each layer that has an effect on the pavement life. Generally, linear elastic and finite element
based programs are used for backcalculation, but they are time consuming. An artificial neural network
(ANN) approach is used for the elimination of this drawback during the course of this study. Results
indicate that the ANN can be used for backcalculation of the thickness of layers with great improvement
and accuracy.
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Introduction

Highway pavements are generally constructed in
the form of flexible materials in which there are an
asphaltic concrete wearing course on the top, and
base and sub-base layers underneath the wearing
course. The base material may be a bituminous mix
or granular material depending on the passage num-
ber of heavy vehicles from the considered section
of the road. However, the sub-base layer is gener-
ally built with granular material obtained from lo-
cal quarries. Repeated application of vehicle loads,
weather conditions and other factors decrease the
serviceability of the pavement. In other words, the
comfort decreases while the user costs and the oper-
ation cost increase. For this reason, a maintenance
program should be set up to decide when and where
to carry out maintenance work. It is important that
the maintenance activities be done at the right time
and right places.

Perhaps the most difficult factor to determine
is the remaining life of the pavement. Many dis-
tresses can be seen by eye. In order to determine
the remaining life, the pavement should be analysed
structurally with material properties for each layer in
terms of elastic modulus, Poisson’s ratio and thick-
ness of layers. In order to determine the thickness,
geophysical methods or drilling can be used. Fur-
thermore, for determining the structural capacity of
the pavement, non-destructive test (NDT) methods
are used generally. These are mainly Benkelman
beam, road rater, dynaflect and falling weight deflec-
tometer (FWD). Since the FWD simulates the wheel
loading and its dynamic feature, many countries use
the FWD (see Figure 1).

Deflections obtained from the FWD are used to
backcalculate the layer material properties, which
are elastic modulus, Poisson’s ratio and layer thick-
nesses. In order to determine the material proper-
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loading plate

geophones

rubber pad

Figure 1. FWD loading and measurement system

ties, linear elastic theories and finite element meth-
ods (FEM) are used. However, an artificial neural
network (ANN) can also be used to backcalculate
material properties.

The Nature of FWD Testing

In order to simulate the truck loading on the
pavement, a circular plate is dropped on the pave-
ment from a certain height. The height is adjusted
according to the desired load level. Underneath
the circular plate a rubber pad is mounted to pre-
vent shock loading. Seven geophones are generally
mounted on the trailer (the number of geophones
may vary). When the vertical load is applied on
the pavement, the geophones collect the data in byte
form. Using the calibration factors, the bytes can be
converted to the real deflections.

Benkelman beam and dynaflect, which are mostly
used in the developing countries, only give infor-
mation about the pavement underneath the circular
plate. In the meantime, the FWD gives information
about six other points, which are away from the cir-
cular plate. Therefore, the effect of the wheel loading
can also be seen at other points.

There are many types of FWDs that can apply
the same loading. The frequencies of loading vary
between 0.025 and 0.030 sec; the applied loads vary
between 6.7 and 156 kN. The loads are generally ap-
plied in a sinusoidal form (Stolle, 1991; Stolle and
Jung, 1991). The loading time of 0.030 represents

the wheel loading moving at a speed of 30 km/h and
mm deviations up to ±0.023 can be seen in the FWD
measurements (Shaat and Kamal, 1991).

Interpretation of FWD Measurements

A typical deflection bowl obtained from the FWD
loading is shown in Figure 2. It is obvious that un-
derneath the circular plate, the maximum deflection
is obtained. However, points away from the circular
load application point have smaller deflections.

FALLING WEIGHT

SPRING SYSTEM
GEOPHONES

LOADING PLATE

TYPICAL DEFLECTION BOWL

Figure 2. Typical deflection bowl obtained from a FWD
loading
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When we apply the FWD loading, the load and
the deflections due to the FWD loading are both
known. However, for the structural analysis, the
layer materials should be known. There are two
unknowns in the problem: the elastic modulus and
Poisson’s ratio of each layer. Sometimes, there is
no information about layer thickness. Generally, the
effect of Poisson’s ratio is ignored in the pavement
analysis; therefore, constant Poisson’s ratios are gen-
erally assigned to each layer. For these purposes,
some computer programs are written which use lin-
ear elastic theory and finite element methods. In
the linear elastic theory, all materials in the pave-
ment are assumed to behave linearly, which is not a
valid assumption for the pavement materials. Espe-
cially, granular materials and soils behave in a non-
linear manner. Apart from this, there is constraint
in width along the road, which is again not a valid
assumption. Therefore, in recent years finite element
methods have been considered to overcome the above
problems. One of the finite element programs is writ-
ten by the first author of this paper (Saltan, 1999).
The problem in using the finite element programs is
to prepare meshes for each problem which is time
consuming. Apart from this, an iteration approach
should be used to find the solution, which is again
time consuming.

For the backcalculation analysis, an initial elastic
modulus is set up for each layer. The FWD loading
is then applied on the mesh vertically and deflections
are compared with error functions below. If the error
is not in the acceptable range, the elastic modulus
has to be changed until the error function is satisfied.
Following the satisfaction, the elastic modulus for
each layer is assumed as known quantities. Hence, a
forward analysis is carried out with the obtained val-
ues in order to find the tensile strain underneath the
bituminous mixture and vertical strain on the sub-
grade. Results obtained from the forward analysis
are entered into the fatigue and plastic deformation
graphics. From these two graphics, the remaining
life of the pavement is then determined. Finally, a
decision is made as to whether the overlay is neces-
sary or not. For an objective decision, the following
relative error square summation, RSS, is generally
employed.

For the study the following objective function was
chosen:

s∑
i=1

(
dmi − dhi

)2
< ε (1)

where dhi = calculated deflections in ith geophone;
dmi =measured deflections in ith geophone; s= sen-
sor number from i to s, and ε is a constant that
depends on the accuracy.

Artificial Neural Networks

Artificial neural networks (ANNs) are widely
used in a variety of practical tasks from process mon-
itoring, fall diagnosis and adaptive human interfer-
ence to natural events and artificial intelligence such
as computers (Dimitrova, 1996). They are very im-
portant in control system applications because of
their universal mapping characteristics and learning
ability. An ANN process can be considered black-
box modelling with a set of input factors and output
variables which are a result of input factors treat-
ment through a systematic neural network. The
first appearance of the ANN concept in the litera-
ture is due to McCullough and Pits (1943), who sug-
gested the cell model. In such a model, ANNs are
exemplified as a set of logical statements. Later on,
many researchers concentrated their attention on the
learning ability of humans and its modelling (Hebb,
1949), which can be considered the pioneering work
on ANNs. However, actual leaps in ANN develop-
ment appeared towards 1980 through various studies
(Hopfield, 1982).

Initially, an ANN can be divided into two parts:
architecture and neurodynamics (functional proper-
ties). The former defines the structure of the network
as the number of artificial neurons and their inter-
connectivity, whereas the latter includes their prop-
erties as to how the neural network learns, recalls,
associates and continuously compares new informa-
tion with existing knowledge, and how it classifies
new information and the development of new clas-
sifications if necessary. ANN architecture includes
many interconnected neurons or processing elements
with familiar characteristics such as inputs, synaptic
strengths, activation, output and bias (Sönmez and
Şen, 1998).

In general, a neuron has n inputs as xj,
(j=1,2,...,n), which show the source of input sig-
nal. Each input is weighted before reaching the main
body of the processing element (artificial neuron) by
the connecting strength or the weight factors, wj.
Hence, the signal transferred through the connection
strength is equal to a portion of the original signal as
wjxj. On the other hand, for the neuron to produce
a signal, the input signal to a neuron must exceed a
threshold value, T, and in addition it has, in general,
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a bias term B. After the effects of the bias and the
threshold on the weighted signal a nonlinearity func-
tion, F, i.e. activation R, enters this nonlinear unit
and then comes out as completely treated output,
O. Of course, this output may be an input for some
other neurons. If there are many neurons in a net-
work, then each neuron is called a node within the
network. If there are m nodes in a network then the
above-mentioned procedures will work for each one
of them. In order to distinguish between neurons
the subscript i will be used. Accordingly, inputs,
weights, activation signals, outputs, threshold and
nonlinear function will all have identification sub-
script, i. The transfer function in an ANN is given
by the following relation:

Oi = Fi

 n∑
j=1

wijxij

 (2)

with the neuron’s firing condition as

n∑
i=1

wijxij ≥ Ti (3)

where the subscripts i and j represent the neuron in
question and the inputs from the neurons.

The reason for including the nonlinearity func-
tion is to ensure the neuron’s bounded response.
This means that the actual response of the neuron is
conditioned or damped as a result of large or small
activating stimuli and thus is controllable. It is well
known that in order to hear a sound twice as loud,
an actual increase in sound amplitude of about 10
times is necessary. This shows the almost logarith-
mic response of the ear.

Two of the most used nonlinearities are the hard
limiter and the sigmoid (as expressed in Equation
3), where x is the variable and F (x) is the activa-
tion function. Most of the limiters have upper and
lower limits of ±1, or 0 and 1. In an actual ANN
application, it is up to the user to choose the bound
values. However, the sigmoid is very popular because
it is bounded, monotonic and nonlinear, and has a
simple derivative.

F (Σwijxij) =
1

1 + e−(Σwx)
(4)

Threshold values in equations are assumed to
be zero in order to take into account even smaller

weights in the network. Therefore, a better approx-
imation to the problem solution can be obtained.

Artificial Neural Networks in Backcalculating
Pavement Layer Thickness

Setting the finite element mesh and iteration pro-
cedure of backcalculation takes rather a long time.
The ANN procedure will reduce the required com-
putation significantly.

In order to develop an ANN based backcalcula-
tion procedure, it is necessary first of all to have a
data base. For this reason a forward analysis is car-
ried out for each value of elastic modulus, Poisson’s
ratio and thickness. For this purpose, a computer
program, KENLAYER (Huang, 1993), was used. A
typical flexible pavement in which wearing course,
base and sub-base layers exist was chosen (see Figure
3). For simplicity, base layer thickness is assumed to
be constant, whereas wearing course layer thickness
varies. The elastic modulus for the asphalt concrete
is between 1000 and 4000 MPa. For the base layer
and subgrade, the elastic moduli are assumed to be
500 and 100 Mpa. Poisson ratios for asphalt con-
crete, base and subgrade are chosen as 0.30, 0.40
and 0.45, respectively. For each run, seven deflec-
tions, which are 0.305 m apart from each other, elas-
tic modulus, Poisson’s ratio and thickness are saved
in a file. Seventy-five structural analyses were car-
ried out in order to obtain deflections using the KEN-
LAYER program.

E1=1000 ~ 4000 Mpa    ν1=0.30            WEARING COURSE         4~10 cm.

E2=500 Mpa                 ν2=0.40            BASE LAYER                     20 cm.

E3=100 Mpa                 ν3=0.45 8

Figure 3. A typical flexible pavement used in the analysis

In order to develop a backcalculation procedure
using the ANN, the deflection bowl is assumed to
be known, whereas elastic modulus, Poisson’s ratio
and layer thickness are unknown. Such an approach
is just the opposite of the forward analysis. For the
study in this paper, a multilayer ANN architecture
was chosen, as seen in Figure 4. A backpropaga-
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tion learning algorithm was employed for learning in
the MATLAB program (Hanselman and Littlefield,
1996). The number of hidden layers is varied as 2,
4, 8, 16 and 32 in order to see the sensitivity of the
results. The number of neurons in the hidden layer
affects highly the sum squares of error (see Table 1).
The neuron number in the hidden layer is considered
to be 32, which yields the smallest sum of squares of
error.

In Figure 4, seven deflection values were em-
ployed in the input layer, and asphaltic concrete
elastic modulus as well as the thickness of bitumi-
nous mixture were represented in the output layer.
The network was then trained using 52 run results.
For the training process, 200,000 epoches were car-
ried out, and the sum of square errors is equal to
0.003. The training results are shown in Figure 5.
The training network for layer thickness gave a quite
close approximation to the observed values. A re-
gression analysis was carried out to see the approx-
imation between the observed and calculated layer
thickness, as shown in Figure 6. The regression co-
efficient is 0.944 for the thickness, which is accept-
able for the highway industry. Furthermore, 23 data
sets, which were considered previously in the training
process, were used to test the trained network. The
results are shown in Figures 7 and 8. For the test
data sets, the regression coefficient is 0.884 for the
thickness. These results indicate that the ANN can
be effectively used to determine the layer thickness.
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Figure 4. The ANN architecture
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Figure 5. Calculated and trained layer thickness (cm)
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Figure 6. Scatter diagram of actual and trained values
for layer thickness
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Figure 7. Calculated and predicted layer thickness
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Table 1. The Sum Squares of Error for Neuron Number in Hidden Layer

Neurons of Hidden
Layer 2 4 8 16 32

Sum Squares of
Error 0.1784 0.0907 0.0402 0.0212 0.0126

y = 1.0164x + 0.0382

R2 = 0.9731
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Figure 8. Scatter diagram of calculated and predicted
values for layer thickness

Conclusions

The backcalculation procedure for flexible pave-
ments is time consuming and expensive. In such
a procedure, deflections and thickness are assumed
to be known. However, determination of pavement
layer thickness is time consuming and expensive.
Therefore, using the ANN approach, the thickness of
each layer can be determined with a small amount of
error and geophysical methods or drilling might not
be used. Using a package program for backcalcula-
tion, especially finite element programs, needs mesh
generation, which takes relatively longer. With an
ANN it is possible to obtain results with 10-15% er-
ror, which may be better than with many package
programs.

Acknowledgment

The authors would like to thank Sakarya University
Industrial Engineering Lab for making the MATLAB
software available for the paper preparation.

References

Dimitrova, M., “A Neural Compound Neural Net-
work for User Identification in Adaptive Human
Computer Interfaces”, J. Complex Control Systems,
1, 1996.

Hanselman, D., and Littlefield, B., “Mastering
MATLAB”, Prentice Hall, Upper Saddle River, NJ,
1996.

Hebb, D., “The Organisation of Behaviour”, Willey,
New York, USA, 1949.

Hopfield, J.J., “Neural Networks and Physical Sys-
tems with Emergent Collective Computational Abil-
ities”, Proc. Natl. Acad. Sci., 79, 2554-2558, 1982.

Huang, Y.H., “Pavement Analysis and Design”,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
USA, 1993.

McCulloch, W.S., and Pitts, W.A., “A Logical Cal-
culus of The Ideas Immanent in Nervous Activity”,
Bull. Math. Biophysics, 5, 115-133, 1943.

Saltan, M., “Analytical Evaluation of Flexible Pave-
ments”, PhD Thesis, 202, Isparta, Turkey, 1999.

Shaat, A.A., and Kamal, M.A., “The Effective Use
of Deflectograph Testing in Quantifying Pavement
Strength and Seasonal Variations”, PTRC Summer
Annual Meeting, USA, 1991.
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