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A soil water model of one dimensional flow, using the Runge-Kutta Gill algorithm, is described
with the aim of forming a flexible general purpose simulation tool. The problem of ‘stiffness’
appearing in the traditional finite difference methods approach is discussed, and a numerical
algorithm able to overcome it is adopted. The model, based on a flexible numerical approach,
is tested with published data. The tests show the model performance to be satisfactory in soil
water simulations. The performance of the numerical algorithm is compared with that of a
number of alternative numerical methods. The comparison supports the original choice of the
algorithm.
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INTRODUCTION

Within the wider framework of environmental studies, phenomena of water movement and
storage in the soil are of major importance. Reasons for this can be found in the particular significance
of these phenomena in relation to the hydrologic cycle, plant growth and crop production, and the
movement of chemicals in the environment. A list of processes of the hydrologic cycle that take place
within the soil water system would include interception, transpiration, soil evaporation, infiltration,
flow of water, storage in the upper soil layers, and drainage. In addition, these processes greatly
influence overland flow and groundwater recharge. With respect to environmental problems,
subsurface water movement is the key factor, able to adversely affect them  through scarcity or excess.

Models of soil water movement are required for simulation of a great number of composite
environmental processes. The limitations of such models caused by computational constraints are
being reconsidered because of the availability of increasingly powerful hardware. The main problems
that need to be considered are, therefore, the difficulties involved with the versatility of the model,
its ease of application, and the ease of combination with other environmental models. In this paper
the development and implementation of a model using numerical algorithms for one-dimensional soil
water flow are discussed. The development places major emphasis on these issues that enhance the
versatility of the model and make it readily applicable as a general simulation tool. The mathematical
formulation of the model and the standard numerical approaches are first discussed, followed by the
limitations of the model using published results. Finally a comparison is carried out between the
performance of the adopted solution method and the performances of two other suitable methods.

THEORY

Two properties define the water status of a soil; moisture content and water potential. Water
potential is the term used for the potential energy of water in the soil.

The fundamental law that defines the relationship between potential and flow is that of Darcy,
which can be expressed as:

v K u xx = ∆ ∆/ (1)
Where vx is the net velocity in the x direction through a soil segment, ∆u  is the difference in the
potential  h between the two ends of the segment,∆x  is the length of the segment, and K is the
hydraulic conductivity of the soil. The minus sign indicates that water flows towards the point of
lower potential.

Hydraulic conductivity depends on the pore structure of the soil as well as on its moisture content.
As a soil dries, hydraulic conductivity decreases because with the larger soil pores empty, water is
transmitted only through the finer ones, which leads to a more restricted and tortuous path.

The fundamental equation for unsaturated flow derives from a combination of the laws of Darcy
and continuity. In the case of one-dimensional flow in the x direction through a small volume of soil
dxdydz, the law of continuity states that:

∂ ∂ = − + ∂ ∂ −θ t dxdydz v dydz v v x dx dy dz Sx x xb g b g b g/ (2)

where θ is the moisture content of the soil and S is the rate of water abstraction by a sink in the soil
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element. Let U be a sink term, defined as the rate of extraction per unit soil volume and expressed
as

U = S /(dxdydz) (3)

Eliminating terms in equation (2) and substituting equation (1) gives
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Using the specific moisture content C = ∂ ∂Ψθ / , this equation can be written as
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where h is the water pressure potential.

By defining D as D=C(h) the previous equation becomes
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Since h = u -z
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Equation (8) forms the basis of the soil water model. Its solution in the time interval dt and space
interval requires the specification of initial value of the independent variable u(z, t) and the boundary
conditions at z0 and zl throughout the time interval in terms of the head h.

NUMERICAL SOLUTION OF THE MATHEMATICAL MODEL

Equation (8) is a parabolic partial differential equation in two independent (t,  z) and one dependent
variable. As the coefficients of C and K are functions of h, the equation is nonlinear.

Using the Taylor expansion approximation for the central-difference (three-point) operators for
the first and second derivatives of U with respect to x at node I as
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in equation (6) leads to a different discretized form

C
h
t

K
h

z

K
z

h
z

U
θ
θ

ϑ
ϑ

ϑ
ϑ

ϑ
ϑ

= + +L
NM

O
QP−

2

2 1          (11)

From equation (9) one can deduce that
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where 1
1

2
+  refers to the midpoint between i and i+1. Equation (6) can therefore be approximated

by,
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Equation (13) is known as the “local balance” model (Vauclin et al., 1979) because it expresses

the water balance of a soil element between i − 1

2
and i + 1

2
. In a number of studies a discretized

approximation to equation 13 has been used:
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Vauclin et al. 1979 report that schemes based on equation (14), also known as “the decomposed
model”, performed generally worse than those based on the local balance model.

To approximate the time derivative, central differences can again be used
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or, alternatively, backward differences, and forward differences
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The use of forward differences leads to an explicit model in which the difference equations for
each node at time-step j can be readily solved in terms of the values of h in step j-1. Models of this
type are easy to program and each time step is computationally relatively inexpensive. The
preservation and of stability and accuracy, however, dictates the use of very small time steps making
the scheme relatively inefficient (Haverkamp et al., 1977).

The use of backward or central differences results in an implicit scheme involving a system of
nonlinear difference equations, which can only be solved iteratively by a Newton-type method.
Although they allow the use of longer time-steps than explicit methods, such nonlinear implicit
schemes have not been popular for the solution of the flow equation because they are quite involved
to program, are expensive computationally at each time-step and, more importantly, there exists an
attractive alternative. This consists of linearizing the difference equations by expressing the specific
moisture content and the hydraulic conductivity in terms of a known pressure head. This reduces the
C and K functions to parameter values and the nonlinear system of difference equations to a linear
time-varying set. With the use of backward differences the local balance model becomes
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where $C  and $K  represent the known values of the parameters. This type of scheme based on
backward time differences is known as “fully implicit”.

The use of the central-difference approximation yields
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The partial derivative at is expressed as a weighed sum of the partial derivatives at j and j + 1

2
.

When the weights are both equal to 0.5 the resulting scheme is given by
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and is known as a Crank-Nicholson type scheme (Smith, 1985, Vauclin, 1979).

For both the totally implicit and the Crank-Nicholson type models estimates for $C  and $K  are

required. The estimates for $C  must approximate  C
j+1

2 and for $K , K j+1. The simplest and most
commonly used method is to assume that for any particular time mode
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There is an additional requirement for estimates of K
i+ 1

2

 and K
i− 1

2

. These are estimated either as

some type of average of Ki-1, Ki and Ki+1, or from estimates of h at i + 1

2
 and i − 1

2
, which are

themselves evaluated as averages of hi-1, hi and hi+1.

These methods are widely adopted to the solution of the flow equation for soil water movement.
In the following paragraphs the problems with these methods and different approaches to the
numerical solution of the soil water model are examined.

LIMITATIONS OF TRADITIONAL SCHEMES - IMPLICIT MODELS

Finite-difference methods solve partial differential equations by discretizing all variables in both
space and time. In the case of a nonlinear partial differential equation, the difference equations that
result from the discretization are also nonlinear.

After comparing a large number of variations on the two principal models of equations (18) and

(20), Vauclin et al. (1979) recommended the use of a totally implicit model with estimates $C  and $K

given by equations (21) and (22) and estimates of K
i+ 1

2

 given by the geometric mean,K Ki i +1 .

At each time-step the solution of a vector equation is of the form,

I A u bj− =+d i 1          (22)

where I  is the identity matrix. Equation (22) can either be solved iteratively or by a simple efficient
algorithm. In a comparative study Vauclin et al. (1979) showed that the Thomas algorithm based
solution is computationally more efficient than the iterative one.

When an explicit linearization is combined with a backward difference discretization for the time
derivative (equation 18), the following system of equations is derived:

u t A u u t sj j j j+ += + +1 1∆ ∆          (23)

where A  is the matrix and s
U

ei
i

i

= − .

This system was solved at each time step using library routines.

A COMPARISON BETWEEN INTEGRATION ALGORITHMS

Selection of the appropriate integrator for the solution of the system is imperative to the success
of the method. Problems reported in the integration of systems of ordinary differential equations that
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have been arrived at by the spatial discretization of a partial differential equation have mainly to do
with the stiffness often associated with problems involving such systems. The dependence of the time
discretization method on the space discretization of traditional differential of equations makes it
advisable that standard explicit Runge-Kutta algorithms are not used as general purpose routines.
Instead, methods exhibiting a more extensive region of stability should be implemented.

In the following, the proposed method is compared with the performance of two other integration
routines. The first algorithm is based on one of the widely used Runge-Kutta formulae by Kuo (1981).
The second is based on the standard implicit finite difference method with explicit linearization of
the discretized equations. The method was recommended by Vauclin et al. (1979) and Haverkamp
et al. (1977) on the basis of their comparison tests. As it is their tests that have been used here, the
inclusion of the method provides a reference point between the results of these two methods and the
present work.

THE RUNGE-KUTTA METHOD

Runge-Kutta formulae are the most popular integrators for systems of ordinary differential
equations. However, they are often inefficient when applied, as is the case here, because of the so
called “stiffness” that equations describing physical systems exhibit when there are transient
components which vary in time at widely different rates

The Runge-Kutta-Fehlberg algorithm used for comparison in this study is the well known method

of the fourth order, which means that at each integration step it requires four evaluations of ℑ (h, t)

in u = ℑ (h, t). It uses evaluations to approximate a fourth order method. At each step, the difference
between the results of the second and third order methods is assumed to be indicative of the local error
and is used to choose an appropriate length for the next time step. If the maximum difference, max

h hi
j

i
j− +1 , between the second and the third order results are not greater than a prespecified error

tolerance ∆, the step is regarded as successful. If not, the calculations are repeated using a new time

step. After each evaluation of u j  and u j+1, the time step is updated using

∆ ∆t new oldb g b g= δ          (24)
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GILL ALGORITHM

The Gill algorithm is an example of a family known as “semi implicit” proposed by Kuo. It is
actually a modification of the explicit Runge-Kutta method that involves the Jacobian matrix of the
system of ordinary differential equations. The explicit part involves the linearization of system
equation that involves the use of water addition, hydraulic conductivity and specific moisture content
values calculated at the start of the time step, through the whole of the time step. The whole system

can be written asℑ = +( , )h t Ah q, whereA  is the matrix containing the Jacobian matrix of system
equations and q is constant. Following this the Gill algorithm as described by Kuo  (1981) can be
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written as follows:

h h a f t qm
k

m
k k k k= + −− + − −1 1 1 1∆          (26)

q a q a q A tk k k k k= − +− −1 3 21 1e j ∆          (27)

where

q a a a0 1 2 30 1 2 1 2 2 1 2 2b g d i d i= = = − √ = + √/ , / , /and          (28)

k = 1,2,3... the three steps of the method, and ∆t is a prespecified time step. The method is implicit
in the evaluation of q1 and q2.

THE IMPLICIT METHOD

When an explicit linearization is combined with a backward difference discretization for the time
derivative, equation (23) describes the relevant system. The system was solved at each time step using
library routines.

AN OVERVIEW OF THE COMPUTER PROGRAM

The soil water program has been programmed in Pascal. The design of the program has been
influenced by two aims. Firstly, to achieve flexibility with regard to the application of the model to
different simulation problems. This has meant a high degree of modularity, with each subroutine
carrying out a specific task. Secondly, to structure the problem so as to allow the addition of other
dynamic models coupled to that of soil water model. The program consisted of three main
components. The input component capable of adjusting its inputs to changing environmental
conditions (Manoliadis, 1994), the integration of ordinary equations, and output. The program is
designed to allow for the inclusion of additional models, each one of the three sections has as input
key variables that can easily communicate with other programs (i.e. soil moisture of each step). The
subroutines that may need modification are those related to the soil types.

INPUT
UPDATE

INTEGRATION

OUTPUT

Figure 1. Structure of the computer program.

Plant water model, impact assessment model

VALIDATION OF THE SOIL WATER MODEL SIMULATION

Validation of the soil water model has been carried out using two sets of published results reporting
the infiltration of water in homogeneous sand and clay columns under restricted initial and boundary
conditions. These initial conditions of the simulation were provided by the pressure head profile
observed just prior to the commencement of water application. During infiltration the surface
boundary conditions were given by the sequence of application rates (Figures 2a and 2b).
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The simulations carried out were of the infiltration into fine sand tests presented in Haverkamp
et al. (1977). In both tests, the three methods described used an identical grid spacing of 2 cm. The
grid depths were 90 cm (Figure 3a) and 60 cm (Figure 3b) for the constant pressure and constant flux
experiments.

Figure 3a.  Infiltration in sand with constant
pressure condition at surface. Simulation
using Gill’s algorithm and Philip’s solution
(Haverkamp et al., 1977).

Figure 3b.  Infiltration in sand with constant flux
conditions at surface. Simulation using Gill’s
algorithm and measurements from Haverkamp et
al., 1977.
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Figure 2a.  Infiltration in sand with constant
pressure condition at surface. Model simulation
and Philip’s solution (Haverkamp et al., 1977).

Figure 2b.  Infiltration in sand with constant flux
condition at surface. Model simulation and
experimental measurements from Haverkamp et
al., (1977).
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RESULTS AND DISCUSSION

For the Runge-Kutta methods, the lower boundary condition was one of constant pressure. With
the Gill and implicit methods, a no-flow boundary condition was used. Output for the validation of
the model proposed are shown in Figures 2a and 2b. Simulation results are shown in Figure 3a for
the constant pressure, and Figure 3b for the constant flux tests. In the constant pressure test, the three
methods performed very similarly. The differences occurred near the lower end of the grid due to the
different lower boundary conditions employed. In the constant flux test, the difference between the
three methods becomes more apparent, with the explicit Runge-Kutta method performing worse, but
only by a small fraction, than the implicit and Gill difference methods.

The performance of three methods with respect to the accuracy of simulation of the infiltration
front is very similar. Any small differences cannot be regarded as conclusive because there exists the
additional complicating factor of the different error control used by each method. The accuracy of
the Runge-Kutta method is controlled through the specification of a local error tolerance. With the
implicit and Gill algorithm methods, the control is less direct, through the choice of time step.
Table 1 shows the tolerance values, computer central processing unit  times and percentage error in
water balance for the three integration methods in the constant flux test.

Table 1.  Algorithm Performance Parameters

The relationship between computer time and error in water balance is probably the most objective
criterion for assessing the relative efficiency of the algorithms. This relationship, based on three
simulations of the constant flux test by each method, is shown in Table 1. There are wide differences
in performance between the four methods, with the Gill and implicit methods being the most, and the
Runge-Kutta the least efficient.

The results of these tests agree with the conclusions of Haverkamp et al. (1977) that, in general,
all numerical time integration schemes are able to successfully simulate infiltration events, but that
totally explicit schemes are far less efficient than the others. The results also confirm that the Gill
algorithm  may be used as a general purpose soil water flow model. Although its performance here
has been very similar to the implicit finite difference model, over longer runs with changing
environmental conditions its ability to change the length of the time step would be expected to make
it the more efficient of the other two models.

SUMMARY AND CONCLUSIONS

Models of subsurface water movement are required in the simulation of a great number of
composite environmental processes. Besides their obvious importance as descriptions of an integral
part of such processes, they are also important from a practical modeling aspect because they tend
to form the computationally most expensive and, therefore, limiting part of composite models. The
mechanics of water movement in the soil are quite well understood in comparison to other

Method Error Tolerance Time-step (min) Balance Error (%) CPU Time(s)

Runge-Kutta .01 - +14.45 6.7

Gill algorithm - 0.10 +0.93 1.6

Implicit - 0.10 +0.40 0.4
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environmental processes. The application of this understanding to practical problems, however, has
been hampered by the fact that soil water modeling usually creates models specific to particular
problems with a  resulting absence of models of more general applicability. The limitations caused
by the computational requirements of real life problems are being steadily raised by the spreading
availability of increasingly powerful hardware. The main problems that need to be considered are,
therefore, the difficulties involved in obtaining representative parameter values for use with the
models and the non-availability of models that, once implemented, can be used in a variety of
applications with little modification.

In this paper the development and implementation of a model for one dimensional soil water flow
is discussed. The development places major emphasis on features that enhance the versatility of the
model and make it more readily applicable as a general simulation tool.

The development of the model has been carried out to meet the following  objectives:

* Ease of combination with models of other environmental processes,

* Ability to simulate flow under combined saturated-unsaturated conditions,

* Independence of numerical parameter specification (e.g. time step) from type of application, and

* Modular structure allowing the isolated alteration and validation of individual model components.
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