•研究论文•

# 由己二酸根桥联的新颖双 U 形四核铜配合物: [Cu<sub>4</sub>(phen)<sub>4</sub>(NO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>(adip)<sub>4/4</sub>(Hadip)<sub>4/2</sub>](NO<sub>3</sub>)<sub>2</sub>•2H<sub>2</sub>O

解庆范"陈延民\*"。黄妙龄"林碧洲"

("泉州师范学院化学与生命科学学院 泉州 362000) (<sup>b</sup>华侨大学材料物理化学研究所 泉州 362021)

**摘要** 邻菲罗啉、己二酸和硝酸铜在水溶液中反应得到一种新颖的四核铜配合物[Cu<sub>4</sub>(phen)<sub>4</sub>(NO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>-(adip)<sub>4/4</sub>(Hadip)<sub>4/2</sub>](NO<sub>3</sub>)<sub>2</sub>•2H<sub>2</sub>O (其中H<sub>2</sub>adip=己二酸),并经元素分析, IR, UV, TG和X射线单晶衍射分析表征. 该配合物晶体属三斜晶系,  $P\bar{1}$ 空间群, a=1.0146(2) nm, b=1.0261(2) nm, c=1.8285(4) nm,  $a=91.66(3)^{\circ}$ ,  $\beta=92.19(3)^{\circ}$ ,  $\gamma=112.76(3)^{\circ}$ , V=1.7520(6) nm<sup>3</sup>, Z=1,  $D_c=1.639$  g/cm<sup>3</sup>,  $C_{66}H_{66}Cu_4N_{12}O_{28}$ ,  $M_r=1729.47$ , F(000)=886,  $\mu=1.294$  mm<sup>-1</sup>,  $R_1$ 和 $wR_2$ 分别为 0.0447和 0.1141. 己二酸根通过4个羧基O将两个U形双核亚单元联接成具有一个对称中心的双U形四核结构, 其中每个U型亚单元包含晶体学上不对称的2个Cu(II)原子.每个Cu(II)离子均处于畸变的四方锥配位环境,除与己二酸氢根(Hadip)、己二酸根(adip)和邻菲罗啉(Phen)的 N, O 配位形成锥底平面外, 其中的1个Cu(II)与水配位, 而另一个Cu(II)则与硝酸根配位. 配合物晶体结构中存在着广泛的氢键和π…π作用.

关键词 四核配合物;铜配合物;晶体结构;己二酸;柔性配体

## A Novel Adipato-Bridged Dual U-Shaped Tetranuclear Cu(II) Complex: $[Cu_4(phen)_4(NO_3)_2(H_2O)_2(adip)_{4/4}(Hadip)_{4/2}](NO_3)_2 \bullet 2H_2O$

XIE, Qing-Fan<sup>a</sup> CHEN, Yan-Min<sup>\*,a</sup> HUANG, Miao-Ling<sup>a</sup> LIN, Bi-Zhou<sup>b</sup> (<sup>a</sup> College of Chemistry and Life Science, Quanzhou Normal University, Quanzhou 362000)

(<sup>b</sup> Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou 362021)

**Abstract** A novel tetranuclear copper(II) complex  $[Cu_4(Phen)_4(NO_3)_2(H_2O)_2(adip)_{4/4}(Hadip)_{4/2}](NO_3)_2 · 2H_2O (H_2adip=adipic acid) was isolated from the reaction of 1,10-phenanthroline (phen), adipic acid and Cu(NO_3)•6H_2O in water solution, and characterized by elemental analysis, IR, UV, TG and single-crystal X-ray diffraction analysis. The complex crystallizes in the triclinic system, space group <math>P\bar{1}$  with a= 1.0146(2) nm, b=1.0261(2) nm, c=1.8285(4) nm,  $\alpha=91.66(3)^\circ$ ,  $\beta=92.19(3)^\circ$ ,  $\gamma=112.76(3)^\circ$ , V= 1.7520(6) nm<sup>3</sup>, Z=1,  $D_c=1.639$  g/cm<sup>3</sup>, C<sub>66</sub>H<sub>66</sub>Cu<sub>4</sub>N<sub>12</sub>O<sub>28</sub>,  $M_r=1729.47$ , F(000)=886 and  $\mu=1.294$  mm<sup>-1</sup>. The final  $R_1$  and  $wR_2$  are 0.0447 and 0.1141 for 5672 observed reflections with  $I>2\sigma(I)$ , respectively. It was revealed that the adipic acid groups adopt two types (*syn-syn*) of binding modes, an adipate bridge and two coordinated protonated adipate (Hadip). The adipate bridge provides its four carboxylate O atoms to link two U-shaped subunits into a centrosymmetric dual U-shaped tetranuclear Cu(II) structure. Each U-shaped frame consists of two crystallographically distinct Cu(II) sites, in which each Cu(II) exhibits a distorted square pyramidal geometry with the basal plane completed by two N atoms from one phen, one O atom from the adipate bridge and the other from the Hadip ligand. While the apical O atom in one Cu(II) coordination sphere is from a coordinated water, that in the other Cu(II) sphere is from a nitrate anion. There are extensive hy-

<sup>\*</sup> E-mail: cym360@sohu.com

Received March 31, 2008; revised April 30, 2008; accepted June 11, 2008. 福建省自然科学基金(No. Z0513017)资助项目.

drogen bonds and  $\pi \cdots \pi$  interactions in the crystal structure.

Keywords tetranuclear complex; copper(II) complex; crystal structure; adipic acid; flexible ligand

铜是人体内含量仅次于铁和锌的微量元素, 它存在 于生物体内金属蛋白和金属酶的活性部位,铜配合物多 变的配位结构和活化小分子的催化活性,使其在生物体 内具有特殊的生物活性和催化作用. 已发现许多与核酸 有关的金属酶和金属蛋白的活性部位含有两个或两个 以上的过渡金属配位结构单元[1~3],因此多核金属配合 物作为核酸模拟酶的研究引起了广泛的关注. 多元羧酸 因其多种灵活的键合方式和电子传递作用而广泛用于 构筑在光、电、磁、催化、离子交换和生物活性等方面 具有潜在应用前景的配位聚合物和多核配合物<sup>[4~10]</sup>,但 与刚性配体相比,柔性配体研究得还比较少[11~17],这类 配体的骨架易于发生构象改变,在配位过程中有较大的 变形性,并能够根据配位环境的变化采取多种构型.文 献报导了己二酸构筑的一维[14~16]、二维[16]和三维[17]结 构的铜配位聚合物以及多核配合物[18].我们以己二酸 (H<sub>2</sub>adip)为桥联配体、邻菲罗啉(Phen)为第二配体,合成 了一种新奇的双U形四核多元混配型铜配合物,其中己 二酸分子新颖的配位形式在已有的报道中较为罕见.

## 1 实验部分

#### 1.1 试剂与仪器

所用试剂均为分析纯. C, H, N 元素分析使用德国 Elmentar Vario EL 元素分析仪; 金属含量用 EDTA 滴定 法测定; 摩尔电导用 DDS-307A 型电导仪测定; 热分析 使用德国塞驰 STA 409 PC 型综合热分析仪(升温速率为 10 ℃/min, 测试范围 20~900 ℃; N<sub>2</sub>气氛下测定); 红外 光谱使用美国 Nicolet 公司 Avater-360 型 FT-IR 红外光 谱仪(KBr 压片, 摄谱范围 400~4000 cm<sup>-1</sup>); 紫外-可见 光谱用日本岛津 UV-260 型紫外-可见分光光度计(以二 甲亚砜 DMSO 为溶剂).

#### 1.2 标题配合物的合成

将已二酸和邻菲罗啉预先溶解于蒸馏水,调节溶液 pH值至4~5,然后在搅拌下慢慢滴加Cu(NO<sub>3</sub>)<sub>2</sub>水溶液, 三者物质的量比为3:2:2,加热至70 ℃反应90 min, 过滤,滤液冷却静置,室温下自然挥发,一周后得到深 蓝色菱形块状晶体,过滤,用无水乙醇洗涤,室温下真 空干燥.

配合物难溶于水、甲醇、无水乙醇和乙腈,溶于 DMF和DMSO. 元素分析结果(%):Cu14.81,C45.78,H 3.90,N9.67;计算值(%)分别为:Cu14.70,C45.84,H 3.85,N9.72.

#### 1.3 配合物晶体结构的测定

选取大小为 0.40 mm×0.40 mm×0.30 mm 的单晶, 294(2) K 下于 Rigaku R-AXIS RAPID IP 型单晶衍射仪 上,采用石墨单色化的 Mo Kα (λ=0.071069 nm)辐射为 光源,以 ω-2θ 扫描方式,在 2.15°<θ<27.48°范围共收 集 14562 个衍射点,其中 7461 个独立衍射点(*R*<sub>int</sub>= 0.0469),5672 个[*I*>2σ(*I*)]可观察点用于结构分析.晶体 结构采用 SHELXL-97 程序直接法解出<sup>[19]</sup>,对全部的非 氢原子的坐标及各向异性参数进行全矩阵最小二乘法

| Table I      Crystallographic data for the title complex |                                |                                                                   |                                                      |  |
|----------------------------------------------------------|--------------------------------|-------------------------------------------------------------------|------------------------------------------------------|--|
| Empirical formula                                        | $C_{66}H_{66}Cu_4N_{12}O_{28}$ | $D_{\rm c}/({\rm cm}^{-3})$                                       | 1.639                                                |  |
| Formula weight                                           | 1729.47                        | $\mu$ (Mo K $\alpha$ )/mm <sup>-1</sup>                           | 1.294                                                |  |
| <i>T</i> /K                                              | 294(2)                         | <i>F</i> (000)                                                    | 886                                                  |  |
| λ/nm                                                     | 0.071069                       | Crystal size/mm                                                   | $0.40 \times 0.40 \times 0.30$                       |  |
| Crystal system                                           | Triclinic                      | Range of $\theta/(^{\circ})$                                      | 2.15 to 27.48                                        |  |
| Space group                                              | $P\overline{1}$                | Limiting indices                                                  | $-13 \le h \le 12, 0 \le k \le 13, -23 \le l \le 23$ |  |
| a/nm                                                     | 1.0146(2)                      | Reflections collected                                             | 14562                                                |  |
| <i>b</i> /nm                                             | 1.0261(2)                      | Independent reflections                                           | 7461 [ $R_{\rm int}$ =0.0469]                        |  |
| c/nm                                                     | 1.8285(4)                      | Observed data                                                     | 5672                                                 |  |
| <i>α</i> /(°)                                            | 91.66(3)                       | Parameters                                                        | 552                                                  |  |
| β/(°)                                                    | 92.19(3)                       | Goodness-of-fit on $F^2$                                          | 0.984                                                |  |
| γ/(°)                                                    | 112.76(3)                      | $R_1, wR_2[I \ge 2\sigma(I)]$                                     | 0.0447, 0.1141                                       |  |
| V/nm <sup>3</sup>                                        | 1.7520(6)                      | $R_1$ , $wR_2$ (all data)                                         | 0.0675, 0.1286                                       |  |
| Ζ                                                        | 1                              | $(\Delta \rho)_{\text{max, min}}/(\text{e} \cdot \text{nm}^{-3})$ | 453, -657                                            |  |

|        | ₹ I   | 怀题配合物的晶体字数据                          |
|--------|-------|--------------------------------------|
| abla 1 | Crave | tallographic data for the title comp |

修正. 有关晶体学数据见表 1.

## 2 结果与讨论

#### 2.1 配合物的合成与组成

介质的 pH 值直接影响着有机酸的质子化程度,从 而影响着多元脂肪酸的配位能力和配位方式.弱酸性介 质中有机酸质子化程度较高,配位能力较弱,质子化的 羧基一般不会参加配位; pH>6 时,有机二元酸根配位 能力较强,通常以-2 价的酸根 L<sup>2-</sup>形式配位.我们在 pH=4~5 的介质中,研究了己二酸(H<sub>2</sub>adip)与第二种有 机配位体与金属的配合物,首次合成了一种己二酸根和 己二酸氢根混配的四核铜配合物[Cu<sub>4</sub>(Phen)<sub>4</sub>(NO<sub>3</sub>)<sub>2</sub>-(H<sub>2</sub>O)<sub>2</sub>(adip)<sub>4/4</sub>(Hadip)<sub>4/2</sub>](NO<sub>3</sub>)<sub>2</sub>•2H<sub>2</sub>O.元素分析结果与 晶体结构分析结果完全一致;在二甲亚砜介质中配合物 的摩尔电导为 108 S•cm<sup>2</sup>•mol<sup>-1</sup>.

#### 2.2 配合物的电子光谱

以 DMF 为溶剂测定了配合物的紫外-可见光谱, 在 274 和 295 nm 处出现了两个强吸收带, 它们分别属于 phen 配体内的  $\pi \rightarrow \pi^*$ 电子跃迁和 N→Cu 的 n→ $\pi^*$ 电子跃 迁, 与 phen 的 $\pi \rightarrow \pi^*$ 吸收峰(263 nm)相比, 红移 11 nm; 698 nm 处极弱的吸收带归属中心离子 Cu<sup>2+</sup>的 d-d 电子跃 迁.

## 2.3 配合物的红外光谱

配合物的 IR(表 2)中出现了一个 v<sub>COOH</sub> (1701 cm<sup>-1</sup>), 尽管强度与己二酸(1693 cm<sup>-1</sup>)相比减弱,仍可说明配合 物中存在 COOH 基团,正与晶体结构分析表明配合物中 存在-1价的 Hadip(即 HOOC(CH<sub>2</sub>)<sub>4</sub>COO<sup>-</sup>)的结果一致. 羧酸根 COO<sup>-</sup>的反对称伸缩振动  $v_{as}$  与对称伸缩振动  $v_{s}$ 分别位于 1577 和 1400 cm<sup>-1</sup>,  $\Delta v = v_{as} - v_{s} = 177$  cm<sup>-1</sup>, 小 于 200 cm<sup>-1</sup>, 表明羧酸根以双齿与金属配位<sup>[20]</sup>. 1620, 1518, 1421, 849 和 721 cm<sup>-1</sup>归属 phen, 与游离的 phen 相比(1644, 1616, 1503, 853 和 733 cm<sup>-1</sup>)发生了不同程度 的位移,表明邻菲罗啉参加配位;新吸收峰 663 cm<sup>-1</sup> ( $v_{Cu-N}$ )则可作为进一步证明的旁证.

在 1384 cm<sup>-1</sup> 处的强吸收峰归属于游离的硝酸根 NO<sub>3</sub> 产生的,同时 IR 中出现了一组归属 NO<sub>3</sub> 单齿配 位<sup>[21]</sup>的吸收峰  $v_1$  (1450 cm<sup>-1</sup>)和  $v_4$  (1317 cm<sup>-1</sup>),从而表 明配合物中同时存在配位和未配位的两种类型硝酸根,而这种情况在已报导的含硝酸根的配合物中比较少见. 3423 cm<sup>-1</sup>左右的宽吸收峰说明配合物中存在水分子.

## 2.4 配合物的热分析

配合物在 30~900 ℃受热分四阶段失重. 第一阶段 75~178 ℃脱除 2 个结晶水和 2 个配位水, 失重 4.3%(理 论失重 4.1%), 相应 DSC 曲线上出现两个小的吸热峰(98 和 130 ℃); 第二阶段(178~249 ℃)失重 17.8%, 伴随强 烈的放热效应(239 ℃), 此阶段为配合物骨架崩塌, 同 时脱除硝酸根(脱除硝酸根理论失重 14.3%); 第三阶段 (249~450 ℃)与第二阶段严重重叠, 其失重与有机物分 解和挥发有关; 500 ℃后失重缓慢, 至 900 ℃时残余量 为 19.7%, 因此可以推测残余物可能主要是 CuO(理论值 为 18.4%).

## 2.5 晶体结构分析

标题配合物的部分键长和键角列于表 3 中.

|                                                                                                                                                         |                                                               | Table 2 The fix data | t of figands and the complex                    |               |           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------|-------------------------------------------------|---------------|-----------|--|
| 化合物                                                                                                                                                     | 化合物 IR/cm <sup>-1</sup>                                       |                      |                                                 |               |           |  |
| 己二酸                                                                                                                                                     | 3200~2500 (vs), 2962, 1                                       | 693 (vs), 1278, 1192 |                                                 |               |           |  |
| 己二酸二钠盐                                                                                                                                                  | 3419 (vs), 2951, 2933, 2921, 2858, 1568 (vs), 1452 (vs), 1204 |                      |                                                 |               |           |  |
| 邻菲罗啉 3382 (vs), 3059, 1644, 1616, 1586, 1560, 1503, 1427, 853, 733                                                                                      |                                                               |                      |                                                 |               |           |  |
| 配合物 3423 (s), 3060, 2937, 1701 (m), 1620 (m), 1577 (vs), 1518 (m), 1450 (m), 1421 (s), 1400 (s), 1384 (vs), 1317 (s), 1250~1000 (w), 849, 721, 663, 431 |                                                               |                      |                                                 |               |           |  |
|                                                                                                                                                         | Table 3                                                       | <b>表3</b> 配合物的       | 主要键长(nm)和键角(°)<br>hs (nm) and angles (°) of the | complex       |           |  |
|                                                                                                                                                         |                                                               |                      |                                                 |               |           |  |
| Cu(1) - O                                                                                                                                               | (1) 0.1942(2                                                  | Cu(1) - O(3)         | 0.1967(2)                                       | Cu(1)— $N(2)$ | 0.2002(2) |  |
| Cu(1)—N                                                                                                                                                 | (1) 0.2017(2)                                                 | Cu(1)—O(7)           | 0.2203(3)                                       | Cu(2)—O(4)    | 0.1940(2) |  |
| Cu(2)—O                                                                                                                                                 | (2) 0.1962(2)                                                 | Cu(2)—N(3)           | 0.1993(2)                                       | Cu(2)—N(4)    | 0.2020(3) |  |
| Cu(2)—O                                                                                                                                                 | (8) 0.2248(3)                                                 | Cu(1)…Cu(2)          | 0.3082(2)                                       |               |           |  |
| O(1)—Cu(1)-                                                                                                                                             | -O(3) 90                                                      | 3) 90.70(10)         |                                                 | 166.51(10)    |           |  |
| O(3)—Cu(1)-                                                                                                                                             | -N(2) 94                                                      | N(2) 94.73(11)       |                                                 | 90.84(10)     |           |  |
| O(3) - Cu(1) -                                                                                                                                          | -N(1) 170                                                     | 83(10)               | N(2) - Cu(1) - N(1)                             | 81 90(10)     |           |  |

**表 2** 配位体和配合物的红外光谱数据(KBr) **Table 2** The IR data of ligands and title complex

|                 |            |                 | 续表         |
|-----------------|------------|-----------------|------------|
| O(1)—Cu(1)—O(7) | 96.42(10)  | O(3)—Cu(1)—O(7) | 93.79(10)  |
| N(2)—Cu(1)—O(7) | 95.53(10)  | N(1)—Cu(1)—O(7) | 95.02(10)  |
| O(4)—Cu(2)—O(2) | 91.50(10)  | O(4)—Cu(2)—N(3) | 169.77(10) |
| O(2)—Cu(2)—N(3) | 91.80(10)  | O(4)—Cu(2)—N(4) | 93.25(11)  |
| O(2)—Cu(2)—N(4) | 169.46(10) | N(3)—Cu(2)—N(4) | 81.97(10)  |
| O(4)—Cu(2)—O(8) | 92.79(10)  | O(2)—Cu(2)—O(8) | 83.88(11)  |
| N(3)—Cu(2)—O(8) | 97.19(10)  | N(4)—Cu(2)—O(8) | 105.26(11) |

配合物的分子结构由双 U 形的四核 Cu(II)单元、2 个硝酸根反荷离子和2个晶格水组成.双U形四核单元 [Cu4(Phen)4(NO3)2(H2O)2(adip)4/4(Hadip)4/2]2+具有中心对 称性,其结构如图1所示.它是通过1个-2价的己二酸 根(adip)桥联两个 U 形双核亚单元构成,同时每个 U 形 双核亚单元中还包含1个未端质子化的-1价的己二酸 氢根(Hadip). 也就是说, 每个 U 形双核亚单元包含 0.5 个-2 价的己二酸根, 1 个己二酸氢根, 2 个邻菲咯啉 (phen),1个配位H<sub>2</sub>O分子,1个配位硝酸根和2个晶体学 上不对称的 Cu(II)原子. 其中两个 Cu(II)原子都是五配 位,具有畸变的四方锥构型,但配位环境并不相同.相 同之处是两个 Cu(II)原子配位单元中,每个四方锥底平 面均由己二酸根的羧基 COO<sup>-</sup>的1个O和另一个己二酸 氢根的羧基 COO<sup>-</sup>的 1 个 O 原子及 1 个 phen 的 2 个 N 原子占据[Cu(1): O(1), O(3), N(1), N(2); Cu(2): O(2), O(4), N(3), N(4)]. 两个底面内对应的 Cu-O 和 Cu-N 键长相似,分别为 0.1940(2)~0.1967(2) nm 和 0.1993(2)~0.2020(3) nm, 围绕 Cu(II)原子的相关键角总

和分别是 358.17(10)° [Cu(1)]与 359.52(11)° [Cu(2)]. 这 些与付峰等<sup>[5]</sup>报导的[Cu<sub>4</sub>(dhbd)<sub>2</sub>(dpphen)<sub>4</sub>•2H<sub>2</sub>O]•8H<sub>2</sub>O (H<sub>4</sub>dhbd=2,3-二羟基丁二酸, dpphen=4,7-二苯基-1,10-邻菲咯啉)比较相近(但与之相比,标题配合物则是另一 种类型的双 U 形结构).标题化合物两个 CuO<sub>3</sub>N<sub>2</sub> 四方锥 的不同点是, Cu(1)配位单元中, 配位水分子的 O(7)原子 占据锥顶位置[Cu(1)—O(7): 0.2203(3) nm], 而 Cu(2)单 元中则是配位硝酸根的 O(8)原子占据锥顶位置[Cu(2)-O(8): 0.2248(3) nm], Cu-O 磺键长比配位聚合物[Cu2(µ- $OH_{2}_{2}L(bpy)_{2}(NO_{3})_{2}]_{n}$  和 [Cu<sub>2</sub>( $\mu$ -OH<sub>2</sub>)<sub>2</sub>L(phen)<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>]<sub>n</sub> (bpy=2,2'-联吡啶; H<sub>2</sub>L=丁二酸)<sup>[22]</sup>中的键长(0.2519~ 0.2528 nm)短. O-Cu-Cu-O 轴上的原子不在一条直 线上,弯曲程度较大,键角 O(7)-Cu(1)-Cu(2)和 Cu(1)—Cu(2)—O(8)分别为 168.81(6)°和 152.44(9)°. Cu(1)…Cu(2)之间的距离为 0.3082(1) nm, 与{[Cu<sub>4</sub>L<sub>2</sub>- $(bpy)_4(H_2O)_2](ClO_4)_4(H_2O)_n$  (H<sub>2</sub>L=丁二酸)<sup>[22]</sup>中 Cu…Cu 距离相近. 在 U 形双核亚单元中, 两个 phen 间近于平



**图 1** 双 U 形四核单元[Cu<sub>4</sub>(Phen)<sub>4</sub>(NO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>(adip)(Hadip)<sub>2</sub>]<sup>2+</sup>的分子结构图 **Figure 1** ORTEP drawing of the dual U-shaped tetranuclear unit [Cu<sub>4</sub>(Phen)<sub>4</sub>(NO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>(adip)(Hadip)<sub>2</sub>]<sup>2+</sup>

| Table 4      Hydrogen bonds in complex |                               |                                    |           |             |                    |          |
|----------------------------------------|-------------------------------|------------------------------------|-----------|-------------|--------------------|----------|
|                                        | D—H…A                         | Symmetry operation                 | d(D—H)/nm | d(H···A)/nm | $d(D \cdots A)/nm$ | ∠DHA/(°) |
|                                        | O(6)—H(36)…O(18) <sub>*</sub> | <i>x</i> , <i>y</i> +1, <i>z</i>   | 0.082     | 0.186       | 0.2671(11)         | 170.9    |
|                                        | O(6)—H(36)…O(15) <sub>間</sub> | x, y+1, z                          | 0.082     | 0.197       | 0.2719(14)         | 151.0    |
|                                        | O(7)—H(37A)····O(5)           | <i>x</i> +1, <i>y</i> , <i>z</i>   | 0.082     | 0.195       | 0.2735(4)          | 160.8    |
|                                        | O(7)—H(37B)···O(10)           | <i>x</i> +1, <i>y</i> +1, <i>z</i> | 0.086     | 0.213       | 0.2872(5)          | 144.7    |

**表4** 配合物中的氢键

行, 夹角为 3.41(4)°, 分子内存在着较强的 π…π 相互作 用,两个 phen 平面距离为 0.3685(2) nm.

与多数含 NO3 配合物不同的是,标题配合物中同 时存在配位的和游离的两类 NO3. 两类 NO3 的 O-N-O键角没有显著差别(117.5°~121.5°), 但是配位的 NO3 中, N-O 键明显增长, 3个 N-O 键长短不一差别较大 [N(5)—O: 0.1250(4), 0.1228(4), 0.1195(4) nm], 而游离 NO3 中的 N-O 键长度相对均一[N(6)-O: 0.1184(15), 0.1202(11), 0.1246(9) nm; N(7) — O: 0.1230(14), 0.1241(8), 0.1243(9) nm].

在多数配合物中己二酸一般采用单齿或双齿螯合 的方式与金属配位[15~18],更容易形成配位聚合物,而在 标题配合物中己二酸则采用 µ-OCO 的两个 O 原子分别 与两个 Cu 原子配位, 从而与 phen 共同构筑成 U 形双核 亚单元结构,类似的配位方式仅在丁二酸的配位聚合物 {[Cu<sub>4</sub>L<sub>2</sub>(bpy)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>](ClO<sub>4</sub>)<sub>4</sub>(H<sub>2</sub>O)}<sub>n</sub><sup>[22]</sup>中出现过,但与 之不同,由于配位H2O和NO3占据四方锥顶位置,阻断 了配位聚合物的形成,从而构成了有限的四核结构.更 为有趣的是,四核单元中构筑U形双核亚单元的是两种 形式的己二酸(即己二酸根和己二酸氢根),其中已二酸 根起桥联作用, 而己二酸氢根仅一端配位, 质子化的羧 基未参加配位(这是形成有限的四核结构的另一重要原 因), 其 C-O 键长存在显著差异[C(32)-O(5), 0.1196(4); C(32)—O(6), 0.1309(4) nm], 键角 O(6)— C(32)-C(31)为112.4(3)°; 配位后的羧基 OCO-的 C-O 键长基本均等[C(25)-O(1), 0.1257(4); C(25)-O(2), 0.1251(4); C(27) - O(3), 0.1251(4); C(27) - O(4),0.1256(4) nm], 键角 O(3)-C(27)-O(4) 和 O(2)-C(25)—O(1)分别为 125.3(3)°和 125.8(3)°.

质子化的羧基与游离的硝酸根离子和晶格水之间, 配位水与质子化的羧基和配位的硝酸根之间,存在广泛 的氢键作用.其中,相邻的四核单元通过配位水H<sub>2</sub>O分 子[O(7)]与配位 NO3 根[O(10)]的氢键作用(O(7)-H(37B)…O(10): 键长 0.2872(5) nm, 键角 144.7°)形成超 分子一维链(图 2); 超分子链之间则通过配位 H<sub>2</sub>O 与己 二酸氢根的质子化羧基的氢键作用(O(7)-H(37A)…O(5): 键长 0.2735(4) nm, 键角 160.8°)沿(110) 面形成二维超分子网络. 晶格水[O(18)]和游离的硝酸根



图 2 配合物中的一维超分子链结构 Figure 2 1D supramolecular chain structure of the complex



图3 标题配合物的分子堆积图 Figure 3 Packing diagram of the title complex

离子[O(15)]则填充于层间(图 3),并与质子化羧基的羟 基[O(6)]形成氢键作用, 氢键键长分别为 0.2671(11) [O(6) — H(36)…O(18)] 和 0.2719(14) nm [O(6) — H(36)…O(15)].

#### References

- 1 Holm, R. H. Pure Appl. Chem. 1995, 67, 217.
- 2 Zhang, S.-C.; Shao, Y.; Tu, C.; Dai, C. H.; Guo, Z. J. Chinese J. Inorg. Chem. 2004, 20, 1159 (in Chinese). (张寿春, 邵颖, 涂超, 戴春晖, 郭子建, 无机化学学报, 2004, 20, 1159.)
- 3 Wilcox, D. E. Chem. Rev. 1996, 96, 2435.
- Shi, X.; Fang, Q.-R.; Wu, G.; Tian, G.; Zhu, G.-S.; Ye, L.;

Wang, C.-L.; Zhang, Z.-D.; Qiu, S.-L. Acta Chim. Sinica 2003, 61, 863 (in Chinese).

(石鑫, 方千荣, 吴刚, 田歌, 朱广山, 叶玲, 王春雷, 张 震东, 裘式纶, 化学学报, **2003**, *61*, 863.)

5 Fu, F.; Li, D.-S.; Feng, Y.; Wang, Q.-L.; Wang, J.-W.; Hu, H.-M.; Wang, Y.-Y. *Acta Chim. Sinica* **2006**, *64*, 1606 (in Chinese).

(付峰, 李东升, 冯勇, 王巧玲, 王继武, 胡怀明, 王尧宇, 化学学报, **2006**, *64*, 1606.)

- 6 Sun, D.-F.; Cao, R.; Liang, Y.-C.; Shi, Q.; Su, W.-P.; Hong, M.-C. J. Chem. Soc., Dalton Trans. 2001, 2335.
- Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W. S.;
  Withersby, M. A.; Schroder, M. Coord. Chem. Rev. 1999, 183, 117.
- 8 Lin, W.; Wang, Z.; Ma, L. J. Am. Chem. Soc. 1999, 121, 11249.
- 9 Kahn, O.; Martinez, C. J. Science 1998, 279, 44.
- Ye, B.-H.; Tong, M.-L.; Chen, X.-M. Coord. Chem. Rev. 2005, 249, 545.
- He, J.-R.; Wang, Y.-L.; Bi, W.-H.; Cao, R. Chinese J. Inorg. Chem. 2006, 22, 1380 (in Chinese). (何锦润, 王玉玲, 毕文华, 曹荣, 无机化学学报, 2006, 22, 1380.)
- Kuang, Y.-F.; Li, C.-H.; Yang, Y.-Q.; Li, W. Chinese J. Inorg. Chem. 2007, 23, 541 (in Chinese). (匡云飞,李昶红,杨颖群,李薇, 无机化学学报, 2007, 23, 541.)
- 13 Li, J.-R.; Zheng, Y.; Xie, Y.-B.; Chen, W.; Zhang, R.-H.;

Bu, X.-H. Proceedings of Fifth Chinese Coordination Chemistry Conference, Guangzhou, 2005, p. 54 (in Chinese).

(李建荣,郑艳,谢亚勃,陈巍,张若桦,卜显和,全国第 五届配位化学学术讨论会论文集,广州,2005, p. 54.)

- Setifi, F.; Bouchama, A.; Sala-Pala, J.; Jean-Yves, S.; Triki,
  S. *Inorg. Chim. Acta* 2006, *359*, 3269
- 15 Zheng, Y.-Q.; Liu, W.-H.; Lin, J.-L.; Gu, L.-Y. Z. Anorg. Allg. Chem. 2002, 628, 829.
- 16 Bakalbassis, E. G.; Korabik, M.; Michailides, A.; Mrozinski, J.; Raptopoulou, C.; Skoulika, S.; Terzis, A.; Tsaousis, D. J. Chem. Soc., Dalton Trans. 2001, 850.
- 17 Hu, R.-F.; Kang, Y.; Zhang, J.; Li, Z.-J.; Qin, Y.-Y.; Yao, Y.-G. Z. Anorg. Allg. Chem. 2005, 631, 3053.
- Jiang, X.-J.; Zhao, X.-J.; Du, M. Journal of Tianjin Normal University (Nat. Sci. Ed.) 2006, 26, 1 (in Chinese).
   (姜秀娟,赵小军,杜森,天津师范大学学报(自然科学 版), 2006, 26, 1.)
- 19 Sheldrick, G. M. SHELX, Version 5.1, A System for Structure Solution and Refinement, Bruker-Axs, Madison, WI, 1997.
- 20 Deacon, G. B.; Philips, R. J. Coord. Chem. Rev. 1980, 33, 227.
- 21 Cutis, N. F.; Cutis, Y. M. Inorg. Chem. 1965, 4, 804.
- 22 Debajyoti, G.; Tapas, K. M.; Golam, M.; Saugata, S.; Lu, T.-H.; Joan, R.; Ennio, Z.; Nirmalendu, R. C. J. Chem. Soc., Dalton Trans. 2004, 1687.

(A0803315 DING, W. F.)