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Department of Mechanical Engineering, University of İstanbul,
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Abstract

In this study, a sliding mode control system is designed for a multi-degree-of-freedom structure having
an Active Tuned Mass Damper (ATMD) to suppress earthquake or wind induced vibration. Since the model
might have uncertainties and/or parameter changes, sliding mode control is preferred because of its robust
character and superior performance. In addition this control method can easily be applied to non-linear
systems. The simulated system has five degrees of freedom. In this study, a linear motor is used as the
control device. At the end of the study, the time history of the floor displacements, control voltage and
frequency response of the both uncontrolled and sliding mode controlled structures are presented and the
results are discussed.

Key Words: Sliding mode control, active tuned mass damper (ATMD), multi-degree-of-freedom structure,
earthquake or wind induced vibration.

Aktif Ayarlı Kütle Sönümleyicili Çok Serbestlik Dereceli Yapısal Bir Sistemin
Kayan Kipli Denetimi

Özet

Bu çalışmada, aktif ayarlı kütle sönümleyiciye (ATMD) sahip çok serbestlik dereceli bir yapının deprem
veya rüzgar kaynaklı titreşimlerini bastırmak için kayan kipli bir kontrol sistemi tasarlandı. Model belirsi-
zlikler ve/veya parametre değişikliklerine sahip olabileceği için, robust niteliğe ve üstün performansa sahip
olan kayan kipli denetim tercih edildi. Bunun yanında, bu denetim yöntemi doğrusal olmayan sistemlere
de kolaylıkla uygulanabilir. Benzetimi yapılan sistem beş serbestlik derecesine sahiptir. Bu çalışmada,
kontrol cihazı olarak bir doğrusal motor kullanılmıştır. Çalışmanın sonunda, kontrolcüsüz ve kayan kipli
kontrolcülü yapının kat hareketlerinin, denetim voltajının zaman cevapları ve frekans cevapları sunulmuş ve
sonuçlar irdelenmiştir.

Anahtar Sözcükler: Kayan kipli denetim, aktif ayarlı kütle sönümleyici (ATMD), çok serbestlik dereceli
yapı, deprem veya rüzgar kaynaklı titreşim.

Introduction

Structural vibration control has improved rapidly
both in theory and in practice recently. Vibration

isolation using rubber bearings is one of the most
popular method of passive vibration control. It is
known that a seismic isolation rubber bearing, con-
sisting of rubber sheets and steel plates, is effective
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for an architectural structure whose base is subjected
to an earthquake input. Also, semi-active vibration
methods are proposed in the literature. Yoshida and
Fujio (1999) applied a semi-active control method to
a base in which the viscous damping coefficient is
changed for vibration control. In recent years, there
have been studies where active actuators are used for
isolation systems in order to isolate the earthquake
induced vibrations. Fukushima et al. (1996) devel-
oped an active-passive composite tuned mass damper
aimed at reducing wind and earthquake induced vi-
brations of tall building structures. Since there are
uncertainties in building structures, and system pa-
rameters are not constant, robust control methods
are offered for the active control of the structures
(Nishimura et al., 1996). Because the actual build-
ings have a non-linear character, sliding mode con-
trols have gained more importance (Adhikari and Ya-
maguchi, 1997).

The aim of this study is to apply non-chattering
sliding mode control to structural systems. If not
prevented, chattering causes damage to mechanical
components. Sabanovic (1994) proposed an effective
method for chattering free sliding mode applications.
The improvements in electromagnetic force sources
and sensors make it possible. Dan Cho (1993) pre-
sented the application of sliding mode control to
stabilize an electromagnetic suspension system with
experimental results. Yagiz et al. (2000) proposed
the application of sliding mode control on a vehicle.
Presently this method has been applied to robot con-
trol, flight control, motor control and power systems
successfully. The superiorities of this method are its
applicability on nonlinear systems, simplicity, high
performance and robust character.

Dynamic Model of the Structural System

The structural system has five degrees of freedom
that are all in a horizontal direction. An ATMD
with the active element and passive elements, which
are optimally tuned for the first mode of the pri-
mary structure, is placed over the top floor. The
aim of an ATMD control system is to reduce wind
and earthquake induced vibrations of tall buildings.
The physical system has been shown in Figure 1.
The masses of each floor are m1, m2 ,m3 and m4 re-
spectively, where m5 is the mass of the ATMD. x1

x2 x3 x4 and x5 are the horizontal displacements be-
longing to them. All springs and dampers are acting
in a horizontal direction. The system parameters are
presented in the Appendix.
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Figure 1. Physical model of structural system

The equation of motion of the system is given
below:

[M ]Ẍ + [C]Ẋ + [K]X = Fu + F d (1)

where X = [x1 x2 x3 x4 x5]T and Fu = [ 0 0 0
Fu − Fu]T . Fu is the control force produced by a
linear motor and F d is the disturbance vector to the
structural system. [M ] , [C] and [K] are mass, damp-
ing and stiffness matrices and are given in the Ap-
pendix.

In Figure 2, the working principle of the linear
motor is depicted. It is comprised of two main parts:

i) a number of base-mounted permanent magnets
forming the stator,

ii) a translator (as counterpart of the rotor in a ro-
tating motor) formed by a number of iron-core
coils.

By applying a three-phase current to three ad-
joining coils of the translator, a sequence of attract-
ing and repelling forces between the poles and the
permanent magnets will be generated. This results
in a thrust force experienced by the translator. Basi-
cally, the motor is a synchronous permanent-magnet
motor with electronic commutation (Otten et al.,
1997), (Nasar and Boldea, 1987).
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Figure 2. Working principle of a linear motor.

The equation of the linear motor is

R i+Ke(ẋ5 − ẋ4) = u (2)

u and i are the voltage and current of the armature
coil respectively where u is the control voltage input
at the same time. R and Ke are the resistance value
and induced voltage constant of the armature coil.
The current of the armature coil and control force
has the following relation:

Fu = Kf i (3)

where Kf is the thrust constant. The inductance
of the armature coil is neglected (Nishimura et al.,
1996). By combining the equations (1) through (3)
and arranging them, it is also possible to get the
governing equations in state space form.

The Sliding Mode Controller Design

Sliding mode control theory has been applied to
many nonlinear systems. The main idea is to bring
and keep the error on a sliding surface such that the
system is insensitive to the disturbances and param-
eter changes (Utkin, 1981; Yagiz et al., 1997). The
nonlinear system is defined in state space form as

ẋ = f(x) + [B] ∗ u (4)

where dim[B] = n∗m, dim(f(x)) = n∗1 and
dim(u) = m∗1; f(x) is continuous, but u(t) may be
discontinuous. The aim is to hold the system motion
on a sliding surface S. The surface can be expressed
as

S = {x : σ(x, t) = 0} (5)

In order to obtain a stable solution of the system,
it must stay on this surface, i.e. σ(x, t) = 0 as shown
in Figure 3.

x

sliding
Surface

x
.

Figure 3. Phase plane diagram of the state variables.

The sliding surface equation for control of the
system can be selected as follows:

σ(x, t) = [G]∗e = [G]∗(xref − x) (6)

In this equation, xref represents the state vector
of the reference, and the constant [G] matrix repre-
sents the slope of the sliding surface (Utkin, 1977).
The same equation also can be written as

σ(x, t) = Φ(t) − [G]∗x (7)

where

Φ(t) = [G]∗xref(t) (8)

The first step in design is to select a Lyapunov
function ν. According to the Lyapunov Stability
Criteria, the Lyapunov function must have a value
greater than zero, whereas its derivative should be
smaller than zero. Selecting the function as in equa-
tion (9) makes its value greater than zero

ν = σT (x, t)∗σ(x, t)/2 > 0 (9)

To have the value of the derivative of the Lya-
punov Function smaller than zero:

dν

dt
= −σT (x, t)∗Γ∗σ(x, t) < 0 (10)

where Γ has a positive value. Through this, the
Lyapunov Stability Criteria have been satisfied. By
equating equation (10) to the derivative of (9)
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dσ(x, t)/dt = −Γ∗σ(x, t) or dσ(x, t)/dt+ Γ∗σ(x, t) = 0
(11)

As it is seen in equation (11), the sliding function
becomes zero at infinity. But the goal is to make it
very close to zero. If equation (7) is differentiated
and (4) is used, the derivative of the sliding surface
is obtained as

dσ(x, t)/dt = dΦ(t)/dt− [G]∗dx/dt
= dΦ(t)/dt− [G]∗(f(x) + [B]∗u(t))

(12)

The controller is designed as below by inserting
(12) into (11)

u(t) = ueq(t) + [GB]−1
∗ Γ∗σ(x, t) (13)

where

ueq(t) = [GB]−1
∗ (dΦ(t)/dt− [G]∗f(x)) (14)

If the knowledge of f(x) and [B] matrices are
poor, then the equivalent calculated control inputs
will be far from the actual equivalent control inputs.
In the literature, a number of approaches are pro-
posed for the estimation of ueq , rather than cal-
culating it. In this study, it is suggested that the
equivalent control is the average of the total control.
The design of an averaging filter for calculation of
the equivalent control can be as below (Sabanovic,
1994):

ûeq =
1

τs+ 1
u (15)

This is actually a low-pass filter. The value of 1/τ
gives the cut-off frequency. The logic behind design-
ing a low pass filter is that low frequencies determine
the characteristics of the signal and high frequencies
come from unmodeled dynamics. Then

u(t) = ûeq + ([G].[B])−1
∗ Γ∗σ(x, t) (16)

Simulation

A structural system was simulated against 0.010
m. of initial displacement of the first floor. Fig-
ures 4.a and 4.b show the controlled and uncontrolled
time responses of the top and first floors. It is ob-
served that there is an important improvement when
the horizontal displacements of the structure are con-
sidered. Figure 5.a demonstrates the change in volt-
age input. The motion of ATMD mass is shown in
Figure 5.b.

Figure 6 shows the frequency responses of the top
floor displacements and accelerations respectively for
both controlled and uncontrolled cases. The natural
frequencies of the structure without ATMD are at
2.1, 6.2, 9.7 and 12 Hz. The natural frequency of
ATMD was tuned for the first mode.

As expected, the upper curves belong to the un-
controlled system. A significant improvement in
terms of magnitudes have been witnessed again par-
ticularly at the resonance value of 6.2 Hz. on the top
floor, as anticipated.

Conclusion

An ATMD with sliding mode controller has been
designed for the multi-degree-of-freedom structural
system. Since the destructive effects of earthquakes
and wind disturbances are sourced as a result of hor-
izontal vibrations, in this study, the degrees of free-
dom have been assumed only in this direction. The
system is modeled to include the dynamics of a lin-
ear motor used as the control device. Since struc-
tural systems and buildings have uncertainties, and
their parameters are subject to changes, a sliding
mode control preferred because of its robust charac-
ter, applicability to nonlinear systems and superior
performance. Against disturbances, it is shown that
a designed sliding mode controller has brought sat-
isfactory seismic isolation performance.
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Figure 4. Controlled and uncontrolled time responses of the first and top floors.
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Figure 5. Time history of the control voltage and ATMD mass displacement.
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Figure 6. Controlled and uncontrolled frequency responses of the top floor.

Nomenclature

m1, m2, m3,
m4 and m5 Mass of the related floors and ATMD

[kg]
k1, k2, k3,
k4 and k5 Stiffness of the related floors and

ATMD [N/m]
c1, c2,
c3, c4 and c5 Damping value of the related floors and

ATMD [Ns/m]
x1, x2, x3,
x4 and x5 Displacement of the related floors and

ATMD [m]

Kf Thrust constant of the armature coil
[N/A]

Ke Induced voltage constant of the arma-
ture coil [Vs/m]

R Resistance of the armature coil [Ω]
u Control voltage input [V]
f(x) Vector of non-linear state space equa-

tion
σ Vector of sliding surfaces
[B] Control input matrice
[G] Matrice of slopes of sliding surfaces
ν Vector of Lyapunov functions
u Vector of control inputs
Γ Positive term
ueq Equivalent control input
τ Time constant of the low-pass filter [s]
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Appendix

Parameters of the structural system:

m1 1.6 kg m2=m3 1.5 kg
m4 2.2 kg m5 0.135 kg
k1=k2=k3=k4 2600 N/m k5 22 N/m
c1= c2= c3 0.08 N.s/m c5 0.38 N.s/m
Kf 2 N/A Ke 2 V.s/m
R 4.2 Ω x10 0.01 m.

Mass, damping and stiffness matrices:

Mass matrix,

[M ] =


m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 m5


Damping matrix,

[C] =


(c1 + c2) −c2 0 0 0
−c2 (c2 + c3) −c3 0 0
0 −c3 (c3 + c4) −c4 0
0 0 −c4 (c4 + c5) −c5
0 0 0 −c5 c5


Stiffness matrix,

[K] =


(k1 + k2) −k2 0 0 0
−k2 (k2 + k3) −k3 0 0
0 −k3 (k3 + k4) −k4 0
0 0 −k4 (k4 + k5) −k5
0 0 0 −k5 k5


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