•研究简报•

NaYF₄:Er³⁺, Yb³⁺纳米晶的液相合成

贾若琨*"。杨珊"李翠霞"闫永楠"白玉白"

("东北电力大学化学工程学院 吉林 132012) (^b吉林大学化学学院 长春 130061)

摘要 采用丙三醇液相结晶法制备了 NaYF₄: Er³⁺, Yb³⁺上转换纳米晶,合成步骤被简化. 常温下,用 980 nm 的红外激 光激发可以观察到很强的绿光、红光发射,用荧光光谱仪记录了该上转换光谱. X 射线粉末衍射(XRD)结果表明,该方 法制备 NaYF₄: Er³⁺, Yb³⁺纳米晶属于立方混合六方晶系.研究了纳米晶的上转换发光机理,根据晶体场理论对 Er³⁺的 两个上转换能级进行了 Stark 分裂计算,对两个能级之间的谱线进行了归属,进一步证实了 980 nm 光子激发 Er³⁺离子 的上转换机理,一个是连续吸收两个 980 nm 光子的过程(激发态吸收),另一个是吸收 980 nm 光子后,电子转移到亚稳 态能级,然后再吸收 980 nm 光子过程(能量转移上转换).

关键词 NaYF₄: Er³⁺, Yb³⁺; 上转换; Stark 分裂; 液相结晶

Liquid Preparation of Soluble NaYF₄: Er³⁺, Yb³⁺ Nanocrystals

JIA, Ruo-Kun^{*,a} YANG, Shan^a LI, Cui-Xia^a YAN, Yong-Nan^a BAI, Yu-Bai^b (^a College of Chemical Engineering, Northeast Dianli University, Jilin 132012) (^b College of Chemistry, Jilin University, Changchun 130061)

Abstract The NaYF₄ : Er^{3+} , Yb³⁺ nanocrystals have been prepared by liquid crystallization from glycerol. Red at 660 nm and green at 550 nm upconversion emissions were observed from NaYF₄ : Er^{3+} , Yb³⁺ nanocrystals under 980 nm excitation. The X-ray diffraction patterns confirm the nanocrystals are cubic and hexagonal. The mechanism of nanocrystal upconvertion has been studied. The Stark splits of two excitated states of Er^{3+} have been calculated based on theory of crystallization fields. The results confirm the upconverted mechanisms in the NaYF₄ : Er^{3+} , Yb³⁺ nanocrystals are due to two processes, one is a consecutive absorption of two 980 nm photon process, and the other process is that electrons transfer to substeady states after absorption of 980 nm photons, then absorb 980 nm photons.

Keywords NaYF₄ : Er^{3+} , Yb³⁺; upconversion; Stark split; crystallization from liquid

最近上转换纳米晶的制备受到了人们较多的重视^[1~6].上转换过程是将较低能量光子转换为较高能量 光子的过程.体相上转换材料的一个用途是制造短波长 激光器,如:紫外光激光器;纳米尺寸上转换材料的用 途是生物分子的标记物^[7~10].上转换材料采用近红外激 光激发,不产生生物自感荧光,在生物标记检测上具有 优势^[11~14];双光子吸收的染料和量子点也可避免生物 自感荧光,但使用昂贵的脉冲激光作为激发光源^[15~17], 上转换材料使用半导体激光器作为激发光源.纳米 ZrO₂, Y₂O₃等材料由于具有较低的声子能量而受到人们 的关注^[18~21],但处于纳米尺寸时,表面吸附的 H₂O 和 CO₂ 吸收了较多的激发光能量而使材料的发光效率降 低^[22~25];同时,这些材料需要超过 1000 ℃的烧结才能 晶化,耗能大且粒子易发生团聚,尺寸难以控制.发光 效率更高的 NaYF₄:Er³⁺,Yb³⁺上转换纳米晶被报道出 来^[26],这种材料在低于 500 ℃下晶化即能观察到强烈

 ^{*} E-mail: jiaruokun@mail.nedu.edu.cn; Tel.: 0432-4806371; Fax: 0432-4806620.
 Received April 18, 2008; revised June 11, 2008; accepted July 2, 2008.
 吉林省科技厅(No. 20070507)、吉林省教育厅(No. 2007307)和吉林市杰青(No. 200709)资助项目.

荧光,它是目前为止发光效率最高的上转换荧光材 料^[26].较为常用的方法是采用EDTA控制前体溶液中粒 子的生长,然后在 300~700 ℃下晶化得到样品^[27,28]. 这种方法可称之为溶胶-凝胶-固相烧结法.这里我们介 绍一种简单、廉价的方法——丙三醇液相结晶法,可通 过一步的反应,避免固相烧结,液相直接合成出 NaYF₄:Er³⁺,Yb³⁺纳米晶.

1 实验部分

1.1 试剂和仪器

Er₂O₃, Yb₂O₃和 Y₂O₃均为光谱纯(长春应用化学研究所), 丙三醇和氟化钠为分析纯(北京化学试剂二厂), 试验用水均为二次重蒸去离子水.

Rigaku D/max-rA X 光衍射仪(Cu 靶, λ=1.54 Å). 980 nm 半导体激光器(功率为 1 mW). H8100 型透射电 镜. FS920 型稳态荧光光谱仪(英国爱丁堡仪器公司).

1.2 NaYF₄: Er³⁺, Yb³⁺纳米晶的制备

分别称量一定量 Er₂O₃, Yb₂O₃和 Y₂O₃,用稀硝酸溶 解后温热烘干,所得固体用丙三醇溶解,分别配制成 Er(NO₃)₃, Yb(NO₃)₃和 Y(NO₃)₃的丙三醇溶液.称量 2.1 g NaF,加入 100 mL 丙三醇,超声波溶解.分别量取一 定量的 Er(NO₃)₃, Yb(NO₃)₃, Y(NO₃)₃溶液,混匀.室温 下倒入到 NaF 溶液中,室温反应 20 min,然后加热至 280 ℃继续搅拌 3 h,材料经离心分离,乙醇洗涤,烘 干.同时采用水相合成与其进行比较:分别量取一定量 Er(NO₃)₃, Yb(NO₃)₃, Y(NO₃)₃溶液和 EDTA 溶液,混匀. 磁力搅拌下快速倒入到 NaF 溶液中,冰浴反应 20 min, 再室温反应 20 min,离心,真空干燥.氮气保护下 280 ℃恒温 3 h 得到的晶体与此方法进行了比较.

2 结果与讨论

2.1 X射线粉末衍射光谱

图 1 谱线 A 为 NaYF₄: Er³⁺, Yb³⁺纳米晶在 280 ℃ 焙烧 3 h 后所测得的 X 射线衍射(XRD)图. 谱线 B 为 NaYF₄: Er³⁺, Yb³⁺纳米晶在丙三醇中制备所测得的 XRD 图. 谱线 A 和谱线 B 相比较,可以看出在丙三醇中 反应 3 h 后伴随着立方晶体(ICDD, No. 77-2042)出现了 六方晶体(ICDD, No. 28-1192). NaYF₄: Er³⁺, Yb³⁺纳米 晶被证实在固相烧结的情况下晶型随着温度发生变化: 300~600 ℃之间为立方和六方晶系混合体,700 ℃烧 结的情况下呈现单纯的立方相,大于 700 ℃时又出现 立方相和六方相的混合体^[27]. 由于六方相的晶型比立 方相的对称性低,造成更多的 Er 能级的 Stark 分裂,更 有利于上转换发射,因此使用高沸点溶剂的液相结晶法 更有利于获得高发光效率的材料.

图 1 NaYF₄: Er³⁺,Yb³⁺纳米晶的 XRD 图 (A)由溶胶-凝胶-烧结法制备; (B)由液相结晶法制备

Figure 1 XRD patterns of $NaYF_4$: Er^{3+} , Yb^{3+} nanocrystals (A) Prepared by sol-gel-annealed; (B) prepared by liquid crystallization

图 1 谱线 B 的 XRD 图中, 在 2θ =28.1417°主峰处, 半峰宽为 0.1617°, 仪器自展宽 0.09°, 根据 Scherrer's 公 式计算晶粒度:

$$D = K\lambda/\beta \cos\theta \tag{1}$$

式中, K=0.9, D 是晶体尺寸, λ 是铜靶的发射波长, 取值 0.15406 nm, β 代表半峰宽, 计算得到晶粒的尺寸为 88.4 nm.

2.2 TEM 表征

图 2 为 NaYF₄: Er³⁺, Yb³⁺纳米晶的 TEM 照片.透 射电镜表征测得粒子平均尺寸为 95 nm,与 XRD 计算结 果相符合.从实验中发现,采用液相结晶法制备的样品 尺寸均匀,易得到球形颗粒,因为避免了固相烧结造成 粒子间的接点成键.水相合成条件下需用 EDTA 控制尺 寸.EDTA 是反应过程中的络合剂,可有效控制粒子尺 寸.粒子尺寸随着 EDTA 量的增加而减小;当 EDTA 的 用量增加到与 Y³⁺相等时,粒子尺寸则不再受到影响^[27]. 然而液相条件下的尺寸控制仍然避免不了固相烧结时 粒子生长.这些粒子生长无法预计,导致纳米粒子尺寸 不一,形状难以控制,个别粒子生长较大,降低水溶性.

2.3 上转换发光光谱的测定

图 3 是两种制备方法的上转换荧光谱线,激发光源 为980 nm,绿光对应波长约为540 nm,红光对应波长约 为660 nm. Er^{3+} 的基态能级是 ${}^{4}I_{15/2}$,当用 980 nm 波长的 激发光激发时,电子跃迁至 ${}^{4}I_{11/2}$ (10204 cm⁻¹)能级,同 时到达这个能级的还有从 Yb³⁺离子 ${}^{4}F_{5/2}$ 能级的共振转 移.在 ${}^{4}I_{11/2}$ (10204 cm⁻¹)能级上有两个过程发生,一是 电子经由无辐射跃迁转移至 ${}^{4}I_{13/2}$ (6600 cm⁻¹)能级,这 个能级寿命较长^[29],可积累大量电子,然后这些电子再

吸收激发光源的 980 nm 光子达到 ${}^{4}F_{9/2}$ (15270 cm⁻¹)能 级,这样电子经由 ${}^{4}F_{9/2}$ (15270 cm⁻¹)能级回到基态 ${}^{4}I_{15/2}$ 能级发出波长大约 660 nm 的红光.这是能量转移上转 换过程(ETU).第二个过程是激发态吸收过程(ESA):有 一部分到达 ${}^{4}I_{11/2}$ (10204 cm⁻¹)能级的电子未经无辐射跃 迁到达 ${}^{4}F_{7/2}$ (20500 cm⁻¹)能级,而是直接吸收 980 nm 能 量到达 ${}^{4}F_{7/2}$ (20500 cm⁻¹)能级,再经无辐射跃迁到达 ${}^{2}H_{11/2}$ (19050 cm⁻¹)和 ${}^{4}S_{3/2}$ (17850 cm⁻¹)能级,随后辐射 到基态,发出大约 540 nm 的光子(图 6).这两个过程是 分别产生红光和绿光的原因^[19].值得注意的是,图 3 中 谱线发射带都由多重尖峰组成,说明能级发生了 Stark 分裂.从能级图上我们看到,当电子从 ${}^{4}F_{9/2}$ (1527 cm⁻¹)

图 3 980 nm 激光激发的 NaYF₄: Er³⁺,Yb³⁺纳米晶的上转换 发射谱

(A)由溶胶-凝胶-烧结法制备;(B)由液相结晶法制备

Figure 3 Up-conversion emitting spectra of $NaYF_4$: Er^{3+} , Yb^{3+} nanocrystals excited at 980 nm

(A) Prepared by sol-gel-annealed; (B) prepared by liquid crystallization

能级向下跃迁到达基态时,应该得到一条谱线,然而实 验中却观察到(如图 3A)在 647.8,648.8,654.5,656.1, 664.9,666 和 672 nm 处分别得到 6 条谱线,对应的波数 分别是 15437,15413,15279,15242,15039,15015 和 14881 cm⁻¹(图4),说明 Er³⁺的能级在晶体场中发生了分 裂.其中 ⁴I_{15/2}能级分裂为 3 个能级,⁴F_{9/2}能级分裂为 2 个能级,经过跃迁得到了 6 条谱线.Stark 能级的分裂数 目可以依靠群伦来进行计算.立方晶系的 NaYF₄属于 O 群.由于 Er³⁺的总角量子数 J 是半整数,所以用双值群 O 群的特征标表来处理它的能级分裂.对于基态能级 ⁴I_{15/2},由特征标公式计算:

$$Xa = \frac{\sin(J+0.5)a}{\sin(0.5a)}$$
(2)

其中Xa为此状态的特征标, a为做旋转操作的角度, J为 能级的角动量, 计算得到基态能级的特征标:

 $E=16, C_2=0, C_3=-1, C_4=0$

其中 *E*=2*J*+1, 对照 O 群的特征标表, 得到基态能级的 不可约表示的线性组合:

$$\Gamma_{(J=15/2)} = \Gamma_6 + \Gamma_7 + \Gamma_8 \tag{3}$$

即 Er^{3+} 的基态 ${}^{4}I_{15/2}$ 能级在此种晶体场中分裂为 3 个能级. 同理, 又得到 ${}^{4}F_{9/2}$ 能级的不可约表示的线性组合:

$$\Gamma_{(J=9/2)} = \Gamma_6 + 2\Gamma_8 \tag{4}$$

即激发态 ⁴F_{9/2} 能级在立方晶系中分裂为 2 个能级.

根据以上计算,知道 Er³⁺在立方晶系中⁴F₉₂和⁴I₁₁₂ 能级分别分裂成 2 个和 3 个能级.这样,这 2 个能级之 间的跃迁最多可得到 6 个不同波长的谱线,从实验中观 察到的结果与理论计算得到的结果大致相当.实验中得 到7条谱线, 其中 656.1 nm 处的谱线不能指认, 这是由 于 Na⁺离子的存在使得晶格发生微小的畸变, 降低了晶 格的对称性, 让部分 Stark 能级进一步分裂, 出现较为 复杂的谱线. 理论计算和实验结果示于图 4 中. 从图 3 对比看出六角相的材料比立方相的发射峰谱线明显增 多, 谱线难以计算, 对称性较低的晶体场会造成 Er³⁺能 级较多的 Stark 分裂^[21], 增多了电子辐射跃迁的几率, 从而实现更高的上转换效率.

图 5 给出了两种晶型红、绿光随泵浦强度的光谱谱 线. 图 5A 给出采用溶胶凝胶法制备的材料发光强度变 化规律, 图 5B 给出采用高沸点溶剂制备的材料发光变 化规律. 对于双光子 ETU 上转换过程荧光强度与泵浦 强度之间的关系按照下面的公式^[30]:

$$I_{\rm f} = \frac{KI_{\rm p}^2}{(A+BI_{\rm p}+CI_{\rm p}^2)} \tag{5}$$

其中 *I*_f是上转换荧光强度, *I*_p是泵浦强度, *K* 是与 Er³⁺密 度有关的常数, *A*, *B*和 *C*分别是跃迁常数. 图 6 中比较 了红、绿光在不同晶格中随泵浦强度变化的发光强度. 立方相中红光发光强度比绿光强度有较大的增长,说明 立方相更有利于红光的发射. 电子被 980 nm 光子激发 到⁴*I*_{11/2}能级之后,在立方相中迅速跃迁到能级寿命更长 的⁴*I*_{13/2}能级上(⁴*I*_{13/2}能级寿命约4 ms, ⁴*I*_{11/2}能级寿命为微 秒级)^[29],然后在经过激发态吸收和能量转移上转换过 程到达 ⁴*F*_{9/2}能级,最后回到基态发出红光(图 7).

图 4 NaYF₄: Er³⁺,Yb³⁺纳米晶的上转换荧光机理图 **Figure 4** Up-conversion fluorescent mechanism of NaYF₄: Er³⁺, Yb³⁺ nanocrystals

图 5 不同泵浦能量激发下 NaYF₄: Er³⁺,Yb³⁺纳米晶的上转换发射谱图 (A)由溶胶-凝胶-烧结法制备; (B)由液相结晶法制备

Figure 5 Up-conversion emitting spectra of $NaYF_4 : Er^{3^+}$, Yb^{3^+} nanocrystals excited at different pump power (A) Prepared by sol-gel-annealed; (B) prepared by liquid crystallization

图 6 不同结构 NaYF₄: Er³⁺, Yb³⁺纳米晶红、绿光的泵浦能量-上转换发光强度对数曲线

Figure 6 Log-Log coordinate of variation of red and green upconversion intensities with pump power for $NaYF_4$: Er^{3+} , Yb^{3+} nanocrystals with different structures

(A) Prepared by sol-gel-annealed; (B) prepared by liquid crystallization

3 结论

采用丙三醇液相结晶法合成出了六方 NaYF₄: Er³⁺, Yb³⁺纳米晶,不经过固相烧结的材料表现出了更强的水 溶性.用 980 nm 的红外光照射样品会看到很强的绿光、 红光发射.用晶体场理论对 Er³⁺的能级进行了 Stark 分 裂计算,对两个能级的谱线做了进一步的指认.结果表 明,980 nm 激发 Er³⁺离子的上转换机理,一个是连续吸 收两个 980 nm 光子的过程(ESA),另一个是吸收 980 nm 光子后,电子转移到亚稳态能级,然后再吸收 980 nm 光 子的过程(ETU).

References

- 1 Sivakumar, S.; Veggel, F. C. J. M. V.; Raudsepp, M. J. Am. Chem. Soc. 2005, 127, 12464.
- 2 Suyver, J. F.; Aebischer, A.; Biner, D.; Gerner, P.; Grimm, J.; Heer, S.; Krämer, K. W.; Reinhard, C.; Güdel, H. U. Opt.

Mater. 2005, 27, 1111.

- 3 Wang, L.; Yan, R.; Huo, Z.; Wang, L.; Zeng, J.; Bao, J.; Wang, X.; Peng, Q.; Li, Y. Angew. Chem., Int. Ed. 2005, 44, 6054.
- 4 Zeng, J.-H.; Su, J.; Li, Z.-H.; Yan, R.-X.; Li, Y.-D. Adv. Mater. 2005, 17, 2119.
- 5 Mai, H.-X.; Zhang, Y.-W.; Si, R.; Yan, Z.-G.; Sun, L.; You, L.-P.; Yan, C.-H. J. Am. Chem. Soc. 2006, 128, 6426.
- 6 Wang, L.; Li, Y. Chem. Commun. 2006, 24, 2557.
- 7 Corstjens, P.; Zuiderwijk, M.; Brink, A.; Li, S.; Feindt, H.; Neidbala, R. S.; Tanke, H. *Clin. Chem.* **2001**, *47*, 1885.
- 8 Corstjens, P. L. A. M.; Zuiderwijk, M.; Nilsson, M.; Feindt, H.; Niedbala, R. S.; Tanke, H. J. Anal. Biochem. 2003, 312, 191.
- 9 Hampl, J.; Hall, M.; Mufti, N. A.; Yao, Y. M. M.; Mac-Queen, D. B.; Wright, W. H.; Cooper, D. E. Anal. Biochem. 2001, 288, 176.
- 10 van de Rijke, F.; Zijlmans, H.; Li, S.; Vail, T.; Raap, A. K.; Niedbala, R. S.; Tanke, H. J. *Nat. Biotechnol.* 2001, *19*, 273.
- 11 Chen, W.; Sammynaiken, R.; Huang, Y. N. J. Appl. Phys.

2000, 88, 5188.

- Xie, P. B.; Zhang, W. P.; Yin, M.; Chen, H. T.; Zhang, W.
 W.; Lou, L. R.; Xia, S. D. J. Colloid Interface Sci. 2000, 229, 534.
- 13 Konrad, A.; Fries, T.; Gahn, A.; Kummer, F.; Herr, U.; Tidecks, R.; Samwer, K. *J. Appl. Phys.* **1999**, *86*, 3129.
- Sharma, P. K.; Nass, R.; Schmidt, H. Opt. Mater. 1998, 10, 161.
- 15 König, K. J. Microsc. 2000, 200, 83.
- 16 Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Science 2003, 300, 1434.
- 17 Denk, W.; Strickler, J. H.; Webb, W. W. Science 1990, 248, 73.
- 18 Jia, R. K.; Liu, Y. M.; He, D. L. Chem. J. Chin. Univ. 2004, 25, 1306 (in Chinese).
 (贾若琨,刘艳梅,和东亮,高等学校化学学报, 2004, 25, 1306.)
- 19 Jia, R. K.; Jian, W. P.; Guo, W. Chem. Res. Chin. Univ. 2004, 20(6), 781.
- 20 Jia, R. K.; Yang, W. S.; Bai, Y. B. Opt. Mater. 2006, 28,

246.

- Jia, R. K.; He, D. L.; Dai, J.; Yang, W. S.; Bai, Y. B. Acta Phys.-Chim. Sin. 2008, 23(8), 1288 (in Chinese).
 (贾若琨,和东亮,戴洁,杨文胜,白玉白,物理化学学 报, 2008, 23(8), 1288.)
- 22 Vetrone, F.; Boyer, J. C.; Capobianco, J. A.; Speghini, A.; Bettinelli, M. J. Appl. Phys. 2004, 96, 661.
- 23 Vetrone, F.; Boyer, J.-C.; Capobianco, J. A.; Speghini, A.; Bettinelli, M. *Chem. Mater.* 2003, 15, 2737.
- 24 Silver, J.; Martinez-Rubio, M. I.; Ireland, T. G.; Fern, G. R.; Withnall, R. J. Phys. Chem. B 2003, 107, 1548.
- 25 Vetrone, F.; Boyer, J. C.; Capobianco, J. A.; Speghini, A.; Bettinelli, M. J. Phys. Chem. B 2003, 107, 1107.
- 26 Stephan, H. Adv. Mater. 2004, 16, 23.
- 27 Guangshun, Y. Nano Lett. 2004, 4(11), 2191.
- 28 Guangshun, Y.; Ganmoog, C. Chem. Mater. 2007, 19, 341.
- 29 Tanabe, S.; Hayashi, H.; Hanada, T. Opt. Mater. 2002, 19, 343.
- 30 Patra, A.; Friend, C.; Kaspoor, R. J. Phys. Chem. B 2002, 106, 1909.

(A0804182 CHEN, J. X.; ZHENG, G. C.)