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Starting from the ba sic con ser va tion laws of fluid flow, we in ves ti gated
tran si tion and break down to tur bu lence of a lam i nar flat plate bound -
ary layer ex posed to small, sta tis ti cally sta tion ary, two-com po nent,
three-di men sional dis tur bances. The de rived equa tions for the sta tis ti -
cal prop er ties of the dis tur bances are closed us ing the two-point cor re -
la tion tech nique and in vari ant the ory. By con sid er ing the equi lib rium
so lu tions of the mod eled equa tions, the tran si tion cri te rion is for mu -
lated in terms of a Reynolds num ber based on the in ten sity and the
length scale of the dis tur bances. The de duced tran si tion cri te rion de ter -
mines con di tions that guar an tee main te nance of the lo cal equi lib rium
be tween the pro duc tion and the vis cous dis si pa tion of the dis tur bances
and there fore the lam i nar flow re gime in the flat plate bound ary layer.
The ex per i men tal and nu mer i cal da ta bases for fully de vel oped tur bu -
lent chan nel and pipe flows at dif fer ent Reynolds num bers were uti lized 
to dem on strate the va lid ity of the de rived tran si tion cri te rion for the es -
ti ma tion of the on set of tur bu lence in wall-bounded flows.

Key words: transition to turbulence, two-point correlations, closure
problem, transition criterion

Introduction

There have been many the o ret i cal and ex per i men tal stud ies of the pro cesses
that cause lam i nar to tur bu lent tran si tion in bound ary lay ers and the phe nom ena oc cur -
ring in the in ner re gion of fully de vel oped tur bu lent flows. These stud ies led to con clu -
sion that there is a strong sim i lar ity be tween the mech a nisms re spon si ble for tran si tion
and the con tin u ous pro duc tion of tur bu lence close to the solid bound aries. Hinze •1•
pro vided a brief re view of the sub ject based on lin ear and non-lin ear sta bil ity the ory.
Hinze also pre sented ex per i men tal re sults de duced from hot-wire mea sure ments and
flow vi su al iza tions which re vealed in ter est ing de tails of the se quence of the events dur -
ing the tran si tion pro cess. Studies of the dy nam ics of co her ent struc tures close to the
wall by Kline et al., •2•, Kim, Kline, and Reynolds •3•, and Falco •4• showed re mark able
anal o gies to the se quence of events lead ing to tran si tion which led Laufer •5, 6• to the
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con clu sion that these pro cesses are very closely in ter con nected and there fore should be
treated the o ret i cally us ing the same math e mat i cal con cepts. This is sue was raised by J.
Laufer, P. Klebanoff, R. Falco, and M. Landahl dur ing par tic i pa tion in the round-ta ble
dis cus sion or ga nized by Z. Zari} at the ICHMT Sym po sium on Struc ture of Tur bu lence
in Heat and Mass Trans fer (Dubrovnik, 1980). Though there has been an ex plo sion of
ac tiv ity dur ing last two de cades, ap par ently no-one has yet suc ceeded in pro vid ing a de -
scrip tion of tran si tion and break down to tur bu lence us ing sta tis ti cal tech niques.

The pur pose of this pa per is to fill the gaps in the the o ret i cal treat ment of the
tran si tion pro cess us ing sta tis ti cal tech niques. An at tempt is made to es tab lish quan ti ta -
tive links be tween the tran si tion pro cess and fully de vel oped tur bu lence us ing sto chas tic
tools suit able for de scrib ing ran dom, three-di men sional flow fields. We shall pro vide ra -
tio nal ap prox i ma tions for the mech a nisms in volved in the tran si tion pro cess us ing the
two-point cor re la tion tech nique and in vari ant the ory and fin ish with a closed set of
trans port equa tions which are, how ever, iden ti cal with those de scrib ing the be hav iour of
fully de vel oped tur bu lent flow in the re gion of the vis cous sublayer close to the wall. It is
ex pected that these model equa tions will serve as a start ing point for de vel op ing meth -
ods for the pre dic tion of tran si tional and fully de vel oped tur bu lent flows with the same
set of trans port equa tions.

Basic equations

Starting from the Navier-Stokes and the continuity equations for a viscous
incompressible fluid:
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and introducing the conventional method of separating the instantaneous velocity ui,
and the pressure p into the mean-laminar flow and disturbances u’i, and p’ superimposed
on it:

u U u p P pi i i= + ¢ = + ¢ (2)

one obtains the equations for the disturbances:
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In the derivation of the above equations, it is assumed that the disturbances are
much smaller than the corresponding quantities of the mean flow:

¢ ¢u U p Pi in n, (4)
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and that they satisfy the Navier-Stokes and the continuity equations. By systematic
manipulation of eq. (3) it is possible to obtain transport equations for the
“apparent”turbulent stresses (see, for example,  •1•, pp. 323-324):
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In the above equations one can identify two different types of unknown
correlations: the velocity/pressure gradient correlations Pij and the dissipation
correlations eij. These correlations must be expressed in terms of Ui and ¢ ¢u ui j  in order to
close the resultant eq. (5) for the stresses.

The closure problem for small, two-component,
three-dimensional disturbances

Let small disturbances be statistically stationary, two-component and
three-dimenstional consisting of longitudinal, ¢u1 , and transverse, ¢u2 , velocity pulsations,
wihle the lateral component, ¢u3 , of the pulsations is assumed to be zero everywhere in
time and space. Such disturbances can be produced by a small, two-dimensional
roughness element placed at the wall in a laminar boundary layer as shown in fig. 1.
Measurements of the anisotropy invariants IIa and IIIa, to be discussed in subsection to
follow, of the disturbances clearly demonstrate that these are almost two-component for
different free stream velocities and low Reynolds numbers. The laminar to turbulence
transition process initialized by the two-component disturbances is characterized by
abrupt and explosive breakdown to the fully developed turbulent state at a fixed value of
the Reynolds number which is very close those met in engineering practice. This is
indicated in fig. 2(c), from which it appears that approaching the break downpoint from
the laminar, two-component state and from the fully developed turbulent state results in
the same estimate of the critical Reynolds number. We shall exploit this experimental
evidence in order to provide the quantitative link between results of the theoretical
considerations of the transition process with those of fully developed turbulence which
are available from numerous experiments and also from direct numerical simulations.

A few remarks follow with respect to the role of the natural disturbances in the
transition process. Figure 2(b) shows that for such disturbances laminar to turbulence
transition is weaker than transition induced by the two-component disturbances shown
in fig. 2(c). Natural disturbances, which originate in technical practice, can be considered 
in a statistical sense of fig. 3 as nearly axisymmetric. For this type of disturbances
theoretical considerations, following same analytical path as used in this study, show that 
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Figure 1. Anisotropy-invariant mapping of the disturbances generated by small, two-dimensional
roughness element in a initially laminar flat plate boundary layer from [7]
(a) specially designed two-component laser-Doppler system for near-wall measurements; (b)
schematic of flat plate arrangement in the wind tunnel with layout of two different beam configurations
which allowed measurements of all components of the apparent stresses of the disturbances; (c) traces
of the joint variations of invariants IIa and IIIa across the anisotropy invariant map confirm the
two-component nature of the disturbances
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Figure 2. Intermittency (¡) measurements of the transition process from laminar to
turbulent states at the channel centreline from Fischer •8•: (a) channel flow test section; (b)
transition due to the natural disturbances is accompanied by large hysteresis in the experimental
data; (c) transition due to two-component disturbances



the critical Reynolds number for breakdown to turbulence depends strongly on the
anisotropy of the disturbances. If the intensity of the streamwise velocity component is
smaller than the intensities of the normal and lateral components, IIIa < 0, the transition 
process is promoted and occurs at low Reynolds numbers. For the reverse situation
when the intensity of the streamwise velocity component is larger than the intensities of
the normanl and lateral components, IIIa > 0, the transition process is delayed and
occurs at high Reynolds number. Since the continuity equation near the wall dictates
that IIIa > 0 the results in fig. 2(b) are logical and not surprising.

For small, sta tis ti cally sta tion ary, two-com po nent, three-di men sional dis tur -
bances it is pos si ble to at tack the clo sure of eq. (5) us ing the two-point cor re la tion tech -
nique de vel oped by Chou •9• and in vari ant the ory in tro duced by Lumley and Newman
•10•. Ap pli ca tion of the two-point cor re la tion tech nique per mits the sep a ra tion of the
inhomogeneous ef fects in the treat ment of the un known terms in volved in eq. (5) and re -
cast ing of the inhomogeneous prob lem into the cor re spond ing prob lem of a sta tis ti cally
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Figure 3. Anisotropy invariant map and the asymptotic forms for the
unknown correlations involved in the equations for the apparent stresses



ho mo ge neous flow field. Then, us ing in vari ant the ory, it is pos si ble to iso late the ef fects
of the ani so tropy in the tur bu lent stresses from all other flow prop er ties, which al lows ra -
tio nal con struc tion of the clo sure ap prox i ma tions that in clude all phys i cally re al is tic
states of the dis tur bances.

Application of the two-point correlation technique for
interpretation of  eij

Let us first consider closure for the terms which are related to the dissipation
process:
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that appear in eq. (5). The most efficient procedure to treat these correlations is based
on the two-point correlation technique that was originally developed by Chou •9• and
subsequently refined by Kolovandin and Vatutin •12•, and Jovanovi}, Ye, and Durst
•13•. However, application of this technique to the study of the dynamics of the
disturbances is complicated, tedious and very demanding for the reader. Here we shall
provide only a brief account of the parts of the subject which are relevant for the present
study.

In order to separate the effect of local character from global, large-scale fluid
motion, we must first express the dissipation correlations eij in a coordinate system
relative to two closely separated points A and B in space as follows:
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Expressing the partial differential operators in eq. (7) at points A and B as
functions of the position in space and the relative coordinates between these two points:

xk k kx x= -( ) ( )B A (8)

and taking the limit A ® B yields •13•
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where the double prime, ("), indicates a value of the two-point correlation function at

point  B,  ( ) ( )A B¢ ¢ º ¢ ¢u u u ui j i j , the subscript  zero (0)  represents  zero relative separation

in space, 
r
x = 0, and D corresponds to the Laplace operator ( / ,Dx k kx xº ¶ ¶ ¶2

Dx ¶ ¶ x ¶ xº 2/ )k k .

Equation (9) shows that eij is composed of an inhomogeneous part 

( / )1 4 nDx i ju u¢ ¢  and a homogeneous part e n xij
h

i ju u= - ¢ ¢¢( )D 0 . Since the tensor eij is sym-

metrical, from  eq. (9) it follows that:

( ) ( )D Dx x¢ ¢¢ = ¢ ¢¢u u u ui j j i0 0 (10)

the two-point velocity correlation of second rank in the limit when 
r
x ® 0 satisfies the

same relationship as in a statistically homogeneous flow field. This peculiarity of the

two-point velocity correlation, deduced only from kinematic considerations, permits us

to introduce the concept of local homogeneity for the disturbances, which leads to

radical simplifications of the dynamic equations for the dissipation correlations.

Since the inhomogeneous part of eij can be directly related to ¢ ¢u ui j  we need to

consider only the homogeneous part of eq. (9). Using the two-point correlation

technique, kinematic constraints and the continuity equation, it can be shown •9, 12, 14•

that the components of the homogeneous part of eq. (9) can be interpreted analytically

in terms of its trace e n xh s su u= - ¢ ¢¢( )D 0  and the turbulent stresses   ¢ ¢u ui j . Therefore, only

the equation for eh needs to be considered. This equation is obtained by operating the

dynamic equation for the two-point velocity correlation in a relative coordinate system

with respect to –nDx and setting  
r
x ® 0  to obtain •13•:
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The approximate equation for the homogeneous part of the dissipation rate

involves only the derivatives of two-point velocity correlations. In the derivation of this

equation the concept of local homogeneity was utilized by applying the relationships for

the derivatives of the two-point correlation functions for zero separation (
r
x = 0) that are

valid in a statistically homogeneous flow field.

The first two terms on the right-hand side of eq. (11) are the production terms

that originate from the mean velocity gradient. A firm analytical closure for these terms

can be formulated only for the case of axisymmetric disturbances. For such disturbances

Jovanovi}, Oti}, and Bradshaw •15• showed that the above-mentioned terms are equal,

and their sum is given by:
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where k u u qk kº ¢ ¢ º1 2 1 2 2/ /  and the scalar function A depends on the anisotropy in
¢ ¢u ui j  and eij

h, to be discussed later. Figure 1 shows that, for the limiting states of
axisymmetric disturbances which lie at the two-component limit, A = 1 and therefore we
may suggest closure for such a disturbance state in the following form:
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The third term on the right-hand side of eq. (11) represents the viscous
destruction of eh and can be approximated using the scaling arguments based on the
asymptotic balance of the dissipation rate equation •16• in the form:
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Using the above relations (14) can be written as:
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where Rl = ql/n is the Reynolds number based on statistical properties of the
disturbances. The above result also follows from the asymptotic balance of the
dissipation rate eq. (11) at the wall where the viscous destruction  - ¢ ¢¢2 2

0n x x( )D D u us s   is in 
balance with the viscous diffusion ( / ) ( )1 2 2

0n xD Dx s su u¢ ¢¢  •17•. It is therefore not
surprising that both of the suggested proposals (13) and (16) for the closure of (11) agree 
closely with the available data from direct numerical simulations of wall-bounded flows
in the region of the viscous sublayer •18•.

Construction of the closure approximations 
using invariant theory

We shall now apply invariant theory developed by Lumley and Newman •10• to
formulate the closures for partition of the homogeneous part of the dissipation tensor
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and also for the velocity/pressure gradient correlations. These authors introduced the
tensor:
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two-com po nent dis tur bances, IIa = 2/9 + 2IIIa, de fines the ani so tropy in vari ant map

which, ac cord ing to Lumley •11•, bounds all phys i cally re al iz able dis tur bances. This plot

is shown in fig. 3 and the as ymp totic forms for the un known cor re la tions in volved in eq.

(5) that can be de rived for the two-com po nent dis tur bances.
For the axisymmetric disturbances, Jovanovi} and Oti} •19• showed that all

second-rank correlation tensors involved in eq. (5) are linearly aligned in terms of each
other. For such disturbances we may write:
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For  the two-component isotropic state and also for the one component state,
IIa = IIe, so that A = 1, and for these extreme cases, which both lie on the two-
-component state, eq. (19) satisfies

eij = aij (22)

We may assume, therefore, that this analytical relationship holds along the
entire two-component state and suggest an expression for partition of the dissipation
tensor eij for such a state as follows:
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It can be shown •14•, that a Taylor series expansion near the wall for the
instantaneous disturbances leads to relations for the asymptotic behaviour of the
components of eij in close agreement with those obtained from eq. (23).
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We may fol low the same an a lyt i cal path as out lined above for the treat ment of
the ve loc ity/pres sure gra di ent cor re la tions, which can be split into the pressure-
-trans port term and the pres sure-strain term:
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In wall-bounded flows the pressure-transport contribution is usually small and
we may seek closure for the pressure-strain part by considering the equation for the
anisotropy of the stresses in a statistically homogeneous field:
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asymptotic behaviour of Pij as ¶aij/¶t ® 0 and eij ® aij, which corresponds to the cases of
the axisymmetric distortions when the turbulent stresses approach the limiting states
located at the two-component limit:
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This behaviour suggests that the pressure-strain correlations for the two-
-component state may be approximated as follows:

¢ ¢
+

¢æ

è

ç
ç

ö

ø

÷
÷

@
¢ ¢

-
p u

x

u

x

u u

q
P Pi

j

j

i

i j
ss ij

r

¶

¶

¶

¶ 2
(27)

The suggested closure approximations (23) and (27) satisfy the concept of
realizability introduced by Schumann •20• and follow closely the data obtained from
direct numerical simulations of turbulent wall-bounded flows in the region of the viscous 
sublayer.

Determination of the transition criterion

Using the suggested forms for the dissipation and the pressure-strain
correlations and for the dissipation rate equation, the transport equations for the
two-component disturbances can be written as:
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where Pk = Pss / 2.
If we consider transition of the flow in the flat plate boundary layer, in the way

proposed by Taylor •21•, then eq. (28) immediately suggests stability towards small
disturbances if the production is balanced by the dissipation:

Pk @ eh (30)

The equilibrium constraint leads to the equations for the stresses:

¶

¶

¶

¶
n
¶

¶ ¶

¢ ¢
+

¢ ¢
@

¢ ¢u u

t
U

u u

x

u u

x x

i j
k

i j

k

i j

k k

1

2

2

(31)

which are of boundary layer character and do not allow amplification of disturbances in
the boundary layer •30•. In connection with this issue, it is interesting that the results of
Becker [22] on laser-Doppler measurements in the transitional boundary layer
developing in the presence of natural disturbances corroborate the findings mentioned
above. Inserting eq. (30) into the dissipation rate eq. (29):
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and specifying that the dissipation rate is always positive, eh ³ 0 , and at the critical point
follows the energy k (as emerges from the work of Kolmogorov •23•), we deduce the
transition criterion in terms of the Reynolds number based on the intensity and the
length scale of the disturbances:

( )Rl crit » 10 5 (33)

Thus, the derived transition criterion suggests the permissible magnitudes for
the intensity and the length scale of disturbances  R Rl l£ ( ) crit guarantee that equality
(30) holds, ( )Pk h h@ ³e ewith 0 , and therefore maintenance of the laminar flow regime
in the flat plate boundary layer.
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Analysis of the transition process in wall-bounded flows

The governing equations describing the behaviour of the laminar to turbulence

transition process, eqs. (28) and (29), are identical with those for fully developed

turbulent flows in the region of the viscous sublayer close to the wall. We may attempt,

therefore, to use the data for these flows to extract information about the functional

dependence of Rl in terms of the Reynolds number based on the global flow parameters

in order to demonstrate the validity of the derived criterion (33) for the onset of

turbulence in wall-bounded flows.

Figure 4 shows the data for Rl, of fully developed turbulent channel flow,

averaged over the cross-section, versus the Reynolds number, Re / ,t t n= Hu based on

the full height, H, of the channel and the friction velocity, ut. These data were calculated

from databases of direct numerical simulations (DNS) from Kim, Moin, and Moser [24],

Gilbert and Klelser •25•, Antonia et al. •26•, Horiuti et al. •27•, and Kuroda, Kasagi, and
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Figure 4. Cross plot of Rl versus Re /
t
1 2 for fully developed turbulent pipe and channel flows at

low Reynolds numbers



Hirata •28•. The plotted data closely follow the expected behaviour, proportional to 

Re /
t
1 2 , based on the evidence that, near the channel centreline, turbulence intensities

scale with the wall variables (Durst et al. •29•). The least-squares fit of the data from fig. 4 

yields:
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1 2

. .
/

(34)

By extrapolating relation (34) towards the transition criterion (33) using the
friction coefficient valid for laminar flow conditions, we obtain the critical Reynolds
number based on the full channel height and the centreline velocity as:

(Re)crit @ 2260 (35)

This result is in close agreement with all accumulated observations available
from either numerical simulations or flow visualization experiments (see, for example,
•31, 32, 33•).

We may consider, in an analogous way, transition in a pipe flow. For this flow

there exists only one set of published data from full numerical simulations, reported by

Eggels et al. •34•. An effort was made, therefore, to deduce the required information

using the published experimental data on fully developed turbulent pipe flow from

Laufer •35• and Durst, Jovanovi}, and Sender •36•. These authors provided information

for the mean flow and the intensities of all three fluctuating velocity components. To

determine Rl from these data the mean energy dissipation rate was calculated from the

mean energy production assuming flow equilibrium. The computed data for Rl are

displayed in fig. 4 in the same form as for the channel flow with the exception that the

Reynolds number Ret = Dut/n is defined in terms of the pipe diameter, D. A least-

-squares fit through the pipe data gives:
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1 2
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(36)

If we extrapolate eq. (36) in the same way as for the channel flow, the critical
Reynolds number based on the pipe diameter and the bulk velocity emerges as:

(Re)crit » 1930 (37)

The value obtained is in good agreement with the results deduced from flow

visualization experiments by Reynolds (1883) •37•, 1900 < (Re)crit < 2000, and many

other experimental studies reviewed in the revised and updated book by Monin and

Yaglom •38•.
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