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Starting from the basic conservation laws of fluid flow, we investigated
transition and breakdown to turbulence of a laminar flat plate bound-
ary layer exposed to small, statistically stationary, two-component,
three-dimensional disturbances. The derived equations for the statisti-
cal properties of the disturbances are closed using the two-point corre-
lation technique and invariant theory. By considering the equilibrium
solutions of the modeled equations, the transition criterion is formu-
lated in terms of a Reynolds number based on the intensity and the
length scale of the disturbances. The deduced transition criterion deter-
mines conditions that guarantee maintenance of the local equilibrium
between the production and the viscous dissipation of the disturbances
and therefore the laminar flow regime in the flat plate boundary layer.
The experimental and numerical databases for fully developed turbu-
lent channel and pipe flows at different Reynolds numbers were utilized
to demonstrate the validity of the derived transition criterion for the es-
timation of the onset of turbulence in wall-bounded flows.

Key words: transition to turbulence, two-point correlations, closure
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Introduction

There have been many theoretical and experimental studies of the processes
that cause laminar to turbulent transition in boundary layers and the phenomena occur-
ring in the inner region of fully developed turbulent flows. These studies led to conclu-
sion that there is a strong similarity between the mechanisms responsible for transition
and the continuous production of turbulence close to the solid boundaries. Hinze 1
provided a brief review of the subject based on linear and non-linear stability theory.
Hinze also presented experimental results deduced from hot-wire measurements and
flow visualizations which revealed interesting details of the sequence of the events dur-
ing the transition process. Studies of the dynamics of coherent structures close to the
wall by Kline et al., 2 , Kim, Kline, and Reynolds 3 , and Falco 4 showed remarkable
analogies to the sequence of events leading to transition which led Laufer 5, 6 to the
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conclusion that these processes are very closely interconnected and therefore should be
treated theoretically using the same mathematical concepts. This issue was raised by J.
Laufer, P. Klebanoff, R. Falco, and M. Landahl during participation in the round-table
discussion organized by Z. Zari¢ at the ICHMT Symposium on Structure of Turbulence
in Heat and Mass Transfer (Dubrovnik, 1980). Though there has been an explosion of
activity during last two decades, apparently no-one has yet succeeded in providing a de-
scription of transition and breakdown to turbulence using statistical techniques.

The purpose of this paper is to fill the gaps in the theoretical treatment of the
transition process using statistical techniques. An attempt is made to establish quantita-
tive links between the transition process and fully developed turbulence using stochastic
tools suitable for describing random, three-dimensional flow fields. We shall provide ra-
tional approximations for the mechanisms involved in the transition process using the
two-point correlation technique and invariant theory and finish with a closed set of
transport equations which are, however, identical with those describing the behaviour of
fully developed turbulent flow in the region of the viscous sublayer close to the wall. It is
expected that these model equations will serve as a starting point for developing meth-
ods for the prediction of transitional and fully developed turbulent flows with the same
set of transport equations.

Basic equations

Starting from the Navier-Stokes and the continuity equations for a viscous
incompressible fluid:

2
&ui+u Ou, :_lé’p+v 07 u; 0 uy

k , =0, i,k=1,273 (1)
ot 0 xy P O x; 0 X, 0xy, 0 xy,

and introducing the conventional method of separating the instantaneous velocity u,,
and the pressure p into the mean-laminar flow and disturbances u’, and p’ superimposed
on it:

u; =U; +u; p=P+p (2)

one obtains the equations for the disturbances:

’ ’ ’ 2 ’
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ot 0 xy o xy p O x; 6xk§xk, 0 xy,

=0 3)
In the derivation of the above equations, it is assumed that the disturbances are

much smaller than the corresponding quantities of the mean flow:
u; <U;, p' <P 4
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and that they satisfy the Navier-Stokes and the continuity equations. By systematic
manipulation of eq. (3) it is possible to obtain transport equations for the
“apparent”turbulent stresses (see, for example, 1, pp. 323-324):

o uju; U, o uju; :—u}_u}( AU, _mé’Uj .
ot 0 xy 0 x; 0 xy,
60 .op " ou ot U’
1 w P +u; op —ZVﬁu‘ Y — )
p| ! ox Jx; Ox, Ox,  Ox0x
Hij &

ij
In the above equations one can identify two different types of unknown
correlations: the velocity/pressure gradient correlations /7; and the dissipation

correlations g;. These correlations must be expressed in terms of U; and u;u’; in order to
close the resultant eq. (5) for the stresses.

The closure problem for small, two-component,
three-dimensional disturbances

Let small disturbances be statistically stationary, two-component and
three-dimenstional consisting of longitudinal, ], and transverse, u5, velocity pulsations,
wihle the lateral component, u}, of the pulsations is assumed to be zero everywhere in
time and space. Such disturbances can be produced by a small, two-dimensional
roughness element placed at the wall in a laminar boundary layer as shown in fig. 1.
Measurements of the anisotropy invariants II, and I1I,, to be discussed in subsection to
follow, of the disturbances clearly demonstrate that these are almost two-component for
different free stream velocities and low Reynolds numbers. The laminar to turbulence
transition process initialized by the two-component disturbances is characterized by
abrupt and explosive breakdown to the fully developed turbulent state at a fixed value of
the Reynolds number which is very close those met in engineering practice. This is
indicated in fig. 2(c), from which it appears that approaching the break downpoint from
the laminar, two-component state and from the fully developed turbulent state results in
the same estimate of the critical Reynolds number. We shall exploit this experimental
evidence in order to provide the quantitative link between results of the theoretical
considerations of the transition process with those of fully developed turbulence which
are available from numerous experiments and also from direct numerical simulations.

A few remarks follow with respect to the role of the natural disturbances in the
transition process. Figure 2(b) shows that for such disturbances laminar to turbulence
transition is weaker than transition induced by the two-component disturbances shown
in fig. 2(c). Natural disturbances, which originate in technical practice, can be considered
in a statistical sense of fig. 3 as nearly axisymmetric. For this type of disturbances
theoretical considerations, following same analytical path as used in this study, show that
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Figure 1. Anisotropy-invariant mapping of the disturbances generated by small, two-dimensional
roughness element in a initially laminar flat plate boundary layer from [7]

(a) specially designed two-component laser-Doppler system for near-wall measurements; (b)
schematic of flat plate arrangement in the wind tunnel with layout of two different beam configurations
which allowed measurements of all components of the apparent stresses of the disturbances; (c) traces
of the joint variations of invariants II, and IIl, across the anisotropy invariant map confirm the
two-component nature of the disturbances
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Figure 2. Intermittency () measurements of the transition process from laminar to
turbulent states at the channel centreline from Fischer 8 : (a) channel flow test section; (b)
transition due to the natural disturbances is accompanied by large hysteresis in the experimental
data; (c) transition due to two-component disturbances
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Figure 3. Anisotropy invariant map and the asymptotic forms for the
unknown correlations involved in the equations for the apparent stresses

the critical Reynolds number for breakdown to turbulence depends strongly on the
anisotropy of the disturbances. If the intensity of the streamwise velocity component is
smaller than the intensities of the normal and lateral components, I11, < 0, the transition
process is promoted and occurs at low Reynolds numbers. For the reverse situation
when the intensity of the streamwise velocity component is larger than the intensities of
the normanl and lateral components, III, > 0, the transition process is delayed and
occurs at high Reynolds number. Since the continuity equation near the wall dictates
that III, > 0 the results in fig. 2(b) are logical and not surprising.

For small, statistically stationary, two-component, three-dimensional distur-
bances it is possible to attack the closure of eq. (5) using the two-point correlation tech-
nique developed by Chou 9 and invariant theory introduced by Lumley and Newman

10 . Application of the two-point correlation technique permits the separation of the
inhomogeneous effects in the treatment of the unknown terms involved in eq. (5) and re-
casting of the inhomogeneous problem into the corresponding problem of a statistically
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homogeneous flow field. Then, using invariant theory, it is possible to isolate the effects
of the anisotropy in the turbulent stresses from all other flow properties, which allows ra-
tional construction of the closure approximations that include all physically realistic
states of the disturbances.

Application of the two-point correlation technique for
interpretation of &

Let us first consider closure for the terms which are related to the dissipation
process:

gy =v UL Y 6)
ﬁxk 5xk

that appear in eq. (5). The most efficient procedure to treat these correlations is based
on the two-point correlation technique that was originally developed by Chou 9 and
subsequently refined by Kolovandin and Vatutin 12, and Jovanovi¢, Ye, and Durst
13 . However, application of this technique to the study of the dynamics of the
disturbances is complicated, tedious and very demanding for the reader. Here we shall
provide only a brief account of the parts of the subject which are relevant for the present
study.
In order to separate the effect of local character from global, large-scale fluid
motion, we must first express the dissipation correlations ¢; in a coordinate system
relative to two closely separated points A and B in space as follows:

ou: ou’ . ou ou'
g =V L7 =y lim i J =
ﬁxk 5xk A-B @xk A ﬁxk B
. o 3\ (7
=viim| — | | — | (u;)A (¥}
ﬁ[aj[ﬁ jB< INCAE

Expressing the partial differential operators in eq. (7) at points A and B as
functions of the position in space and the relative coordinates between these two points:

S =(xk ) —(Xi ) a 3)

and taking the limit A — Byields 13

ou. ou - _
yOou duj _ 14 ung -v(Azuju’) 9)
4 Xy EHiIj )0
Ox, 0xp
inhomogeneous ~ homogeneous
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where the double prime, (”) indicates a value of the two-point correlation function at
point B, (u )a(u})p =u;uj, the subscript zero () represents zero relative separatlon
in space £=0, and A corresponds to the Laplace operator(4, =0°%/dx; 0x;,

=0°108.08) .
Equation (9) shows that g; is composed of an inhomogeneous part
(1/4)vA,u;u; and a homogeneous part el :—v(Agu 7)o- Since the tensor g; is sym-

metrical, from eq. (9) it follows that:

(Agu o —(45“]” o (10)

the two-point velocity correlation of second rank in the limit when & — 0 satisfies the
same relationship as in a statistically homogeneous flow field. This peculiarity of the
two-point velocity correlation, deduced only from kinematic considerations, permits us
to introduce the concept of local homogeneity for the disturbances, which leads to
radical simplifications of the dynamic equations for the dissipation correlations.

Since the inhomogeneous part of ¢; can be directly related to u; u we need to
consider only the homogeneous part of eq. (9). Using the two- pomt correlation
technique, kinematic constraints and the continuity equation, it can be shown 9, 12, 14
that the components of the homogeneous part of eq. (9) can be 1nterpreted analytically
in terms of its trace &, =-V(A:uguy ), and the turbulent stresses u;u’. Therefore, only
the equation for ¢, needs to be considered. This equation is obtalned by operating the
dynamic equation for the two-point velocity correlation in a relative coordinate system
with respect to —vA; and setting & 0 to obtain 13 :

o — o - T
L (Al )y —vUy —Z—(Actiu] ) = 20 Agitfu] )y CYs
ot 0 Xy, 0 xy,
52 = ouU = =
2y —2__dlu k _2v2(AAulul ) - v 2A (Aulul) (11)
V{O’)éﬁgk s SJO @X éAé 0 & 0

The approximate equation for the homogeneous part of the dissipation rate
involves only the derivatives of two-point velocity correlations. In the derivation of this
equation the concept of local homogeneity was utilized by applying the relationships for
the derivatives of the two-point correlation functions for zero separation (£ = 0) that are
valid in a statistically homogeneous flow field.

The first two terms on the right-hand side of eq. (11) are the production terms
that originate from the mean velocity gradient. A firm analytical closure for these terms
can be formulated only for the case of axisymmetric disturbances. For such disturbances
Jovanovi¢, Oti¢, and Bradshaw 15 showed that the above-mentioned terms are equal,
and their sum is given by:
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_ 2 - u' .
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where k =1/ 2uju), =1/2¢* and the scalar function 4 depends on the anisotropy in
uju'; and gg, to be discussed later. Figure 1 shows that, for the limiting states of
axisymmetric disturbances which lie at the two-component limit, 4 = 1 and therefore we
may suggest closure for such a disturbance state in the following form:

_ 2 N u .
oAzl )y OYs v 0~ grr | Uk oo Eattith OU; (13)
é’xk é’éo”ék 0 5)6, k 5xk

The third term on the right-hand side of eq. (11) represents the viscous
destruction of g, and can be approximated using the scaling arguments based on the
asymptotic balance of the dissipation rate equation 16 in the form:

- 2
V3 (AAupul )y o -2v* 4 (14)
)’2772

where 4 and n are the Taylor's microscale and the Kolomogorov's length scale,
respectively. These scales can be interpreted in terms of the dissipation rate as:

,\1/2 NTZ
l:{qu J and nz[v—J (15)
&p &p

Using the above relations (14) can be written as:

2
23 (A A ), .5 R, i (16)
25 k

where R, = gA/v is the Reynolds number based on statistical properties of the
disturbances. The above result also follows from the asymptotic balance of the
dissipation rate eq. (11) at the wall where the viscous destruction —2v?(A Agugug ) isin
balance with the viscous diffusion (1/ 2)v2Ax(A,: uyuy )y 17 . Tt is therefore not
surprising that both of the suggested proposals (13) and (16) for the closure of (11) agree
closely with the available data from direct numerical simulations of wall-bounded flows
in the region of the viscous sublayer 18 .

Construction of the closure approximations
using invariant theory

We shall now apply invariant theory developed by Lumley and Newman 10 to
formulate the closures for partition of the homogeneous part of the dissipation tensor
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and also for the velocity/pressure gradient correlations. These authors introduced the
tensor:

ay =528, (17)

and its scalar invariants:

I, =aa; and III, =00y (18)

to quantify the anisotropy and define the limiting states of the disturbances. A cross plot
of 11, versus III, for axisymmetric disturbances, II, =(3/2)[(4/3)|IL,[] 73 and
two-component disturbances, II, = 2/9 + 2III,, defines the anisotropy invariant map
which, according to Lumley 11 , bounds all physically realizable disturbances. This plot
is shown in fig. 3 and the asymptotic forms for the unknown correlations involved in eq.
(5) that can be derived for the two-component disturbances.

For the axisymmetric disturbances, Jovanovi¢ and Oti¢ 19 showed that all
second-rank correlation tensors involved in eq. (5) are linearly aligned in terms of each
other. For such disturbances we may write:

12
e; = Aa;, A :(%J (19)

where ¢; is the anisotropy tensor of the homogeneous part of ;;:

gl.}} 1
& 3
and
II, =eje; and 1M, =e eyey (21)

For the two-component isotropic state and also for the one component state,

II, = II, so that A = 1, and for these extreme cases, which both lie on the two-
-component state, eq. (19) satisfies

€j = daj (22)

We may assume, therefore, that this analytical relationship holds along the
entire two-component state and suggest an expression for partition of the dissipation
tensor g;; for such a state as follows:

T
VA uju & (23)

£ =

I

It can be shown 14, that a Taylor series expansion near the wall for the
instantaneous disturbances leads to relations for the asymptotic behaviour of the
components of g; in close agreement with those obtained from eq. (23).
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We may follow the same analytical path as outlined above for the treatment of
the velocity/pressure gradient correlations, which can be split into the pressure-
-transport term and the pressure-strain term:

1 é’p ' ﬁp 1 0 = 1 06 = _p'|du 514
IT; = u' +u; -—— puj-——— pui+L | L (24)
/ v ox; ax; ; ! 5x] &x

pressure-transport pressure-stram

In wall-bounded flows the pressure-transport contribution is usually small and
we may seek closure for the pressure-strain part by considering the equation for the
anisotropy of the stresses in a statistically homogeneous field:

Jda
ot

i 1 1 2e
’ =—2[a~,»<ai,~ +3%>Pss} + 5+ 2 a5 —e) (25)
q q q

where P; = = —ulu), 0U;/10x;) - u'u}C (0U;/0 x ). From this equation we deduce the
asymptotlc behaviour of IT; as da, /81 — 0 and e; — a;, which corresponds to the cases of
the axisymmetric distortions When the turbulent stresses approach the limiting states
located at the two-component limit:

1
(Ht_'j )ZCfiso - aiszs +§ Pss5ijPij

(I )1c —>a P, +;

(26)
P35, P;

This behaviour suggests that the pressure-strain correlations for the two-
-component state may be approximated as follows:

1[5”5 +5”3‘] Ui p—p, 27)
pl\dx; Ox q°

The suggested closure approximations (23) and (27) satisfy the concept of
realizability introduced by Schumann 20 and follow closely the data obtained from
direct numerical simulations of turbulent wall-bounded flows in the region of the viscous
sublayer.

Determination of the transition criterion
Using the suggested forms for the dissipation and the pressure-strain

correlations and for the dissipation rate equation, the transport equations for the
two-component disturbances can be written as:
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oulu ouu.  _uu orulu;
Mty g, S MY p gy by 2 (28)
ot 8 x;, q° 2 0x,0x,
and
- 2 2
&) +U, D o _pEntithy U, —ﬁng_h-i—lv—ﬁ “h (29)
ot 0x;, k Jx, 25 k 2 0x,0x

where P, = P /2.

If we consider transition of the flow in the flat plate boundary layer, in the way
proposed by Taylor 21, then eq. (28) immediately suggests stability towards small
disturbances if the production is balanced by the dissipation:

Pk =&y (30)

The equilibrium constraint leads to the equations for the stresses:

- - 277
Juju; +U, Juju; ;lv 0 uju; (31)
ot Ox, 2 Jx,0x

which are of boundary layer character and do not allow amplification of disturbances in
the boundary layer 30 . In connection with this issue, it is interesting that the results of
Becker [22] on laser-Doppler measurements in the transitional boundary layer
developing in the presence of natural disturbances corroborate the findings mentioned
above. Inserting eq. (30) into the dissipation rate eq. (29):

de, dey . [, A5 g 1. 0%,
—hiU, = |2 R; +-_v—— (32)
25 k 2 0x,0x

>0
to insure that £, >0

and specifying that the dissipation rate is always positive, &, >0, and at the critical point
follows the energy k (as emerges from the work of Kolmogorov 23 ), we deduce the
transition criterion in terms of the Reynolds number based on the intensity and the
length scale of the disturbances:

(Ri )crit ~ 10‘/5 (33)
Thus, the derived transition criterion suggests the permissible magnitudes for
the intensity and the length scale of disturbances R, <(R;) . guarantee that equality

(30) holds, (P, =¢;,, with g, >0), and therefore maintenance of the laminar flow regime
in the flat plate boundary layer.
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Analysis of the transition process in wall-bounded flows

The governing equations describing the behaviour of the laminar to turbulence
transition process, eqs. (28) and (29), are identical with those for fully developed
turbulent flows in the region of the viscous sublayer close to the wall. We may attempt,
therefore, to use the data for these flows to extract information about the functional
dependence of R, in terms of the Reynolds number based on the global flow parameters
in order to demonstrate the validity of the derived criterion (33) for the onset of
turbulence in wall-bounded flows.

Figure 4 shows the data for R;, of fully developed turbulent channel flow,
averaged over the cross-section, versus the Reynolds number, Re, = Hu_/v, based on

300
m channel

® pipe

2501 channel flow pipe flow

/

Laufer [35]

200 Antonia et. al. [26]

Gilbert & Kleiser [25]

1501 Horiuti et al. [27],
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Kuroda, Kasagi
& Hirata [28]

50F

Laufer [35]

Durst, Jovanovi¢ & Sender [36]

Eggels et. al. [34] |
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Re;

10V5 |-~

Figure 4. Cross plot of R, versus Re,l/ 2 for fully developed turbulent pipe and channel flows at
low Reynolds numbers

the full height, H, of the channel and the friction velocity, u,. These data were calculated
from databases of direct numerical simulations (DNS) from Kim, Moin, and Moser [24],
Gilbert and Klelser 25 , Antonia et al. 26 , Horiutiet al. 27 , and Kuroda, Kasagi, and
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Hirata 28 . The plotted data closely follow the expected behaviour, proportional to
Rei/ 2 based on the evidence that, near the channel centreline, turbulence intensities
scale with the wall variables (Durstetal. 29 ). The least-squares fit of the data from fig. 4
yields:

Hu 1/2
R, = 2.971( j ~6.618 (34)
\%

By extrapolating relation (34) towards the transition criterion (33) using the
friction coefficient valid for laminar flow conditions, we obtain the critical Reynolds
number based on the full channel height and the centreline velocity as:

(Re) o = 2260 (35)

This result is in close agreement with all accumulated observations available

from either numerical simulations or flow visualization experiments (see, for example,
31,32,33).

We may consider, in an analogous way, transition in a pipe flow. For this flow
there exists only one set of published data from full numerical simulations, reported by
Eggels et al. 34 . An effort was made, therefore, to deduce the required information
using the published experimental data on fully developed turbulent pipe flow from
Laufer 35 and Durst, Jovanovié, and Sender 36 . These authors provided information
for the mean flow and the intensities of all three fluctuating velocity components. To
determine R, from these data the mean energy dissipation rate was calculated from the
mean energy production assuming flow equilibrium. The computed data for R; are
displayed in fig. 4 in the same form as for the channel flow with the exception that the
Reynolds number Re, = Du,/v is defined in terms of the pipe diameter, D. A least-
-squares fit through the pipe data gives:

Du
v

1/2
Rlz1.996( j +0.108 (36)

If we extrapolate eq. (36) in the same way as for the channel flow, the critical
Reynolds number based on the pipe diameter and the bulk velocity emerges as:

(Re) i #1930 (37)

The value obtained is in good agreement with the results deduced from flow
visualization experiments by Reynolds (1883) 37, 1900 < (Re); < 2000, and many
other experimental studies reviewed in the revised and updated book by Monin and
Yaglom 38 .
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