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Abstract

In this paper, the nonlocal continuum theory is applied to the problem of elastic half plane loaded at the
origin by a force P directed along x axis. The solution of this problem in the frame of classical elasticity can
be found in every reference book of elasticity. First constitutive equations of nonlocal theory is given. The
nonlocal stress field is determined. According to the classical elasticity solution of this problem, stresses
become infinite at the application point. That is, classical elasticity solution is not valid in the neigbourhood
of origin. To remedy this situation nonlocal continuum theory is used. The results are compared with the
classical elasticity solution. Interestingly enough none of the classical singularities exist in the nonlocal
solution.
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Orjin Noktasina Etkiyen Kesme Kuvveti ile Yiiklii Yarim Diizlem Probleminin

Yerel Olmayan Elastisitede Coziimi

Ozet

Bu galismada = ekseni dogrultusunda tekil yiikle yiiklii yarim diizlem problemi yerel olmayan elastisite
teorisi cergevesinde ¢Oziilmiigtiir. Bu problem klasik elastisitede daha 6nce ¢oziilmiis olup ¢6ziim herhangi
bir elastisite teorisi kitabinda kolayca bulunabilir. Ancak problem yerel olmayan teori kullamlarak heniiz
incelenmemigtir. Problemin klasik elastisitedeki ¢oziimiinde kuvvetin tatbik noktasinda gerilme tekillikleri
mevcuttur. Yani klasik ¢6ziim kuvetin tatbik noktasimin komsulugunda gegerli degildir. Bu bolgedeki
gerilmeleri hesaplamak igin yerel olmayan teorinin kullanilmasi uygundur. Yerel olmayan teorinin temel
denklemleri kisaca verildikten sonra, problemin yerel olmayan elastisitede ki ¢oziimii yapilmig ve sonuglar
klasik teorinin sonugclariyla karsilagtirilmigtir.

Anahtar So6zciikler: Yerel olmayan elastisite, Yerel olmayan elastik yarim diizlem, Yerel olmayan teori

Introduction

The problem of an elastic half-plane loaded at the
origin by a force P directed along the z axis is solved
in the frame of nonlocal elasticity. The classical elas-
ticity solution of this problem can be found in every

reference book on the mathematical theory of elastic-
ity. But the problem has not been solved in the frame
of nonlocal elasticity yet. According to the classical
elasticity solution of this problem, stresses at the ap-
plication point of the force become infinite. In other
words, the classical elasticity solution contains arti-
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ficial infinite stresses at the application point of the
force, but this solution does not display the actual
situation. In particular, the most important question
about the value of maximum pressure remains unan-
swered. In this paper, the classical elasticity singu-
larities are eliminated and the maximum stresses are
calculated.

In the nonlocal theory, the constitutive relations
are nonlocal in character and the stress at a given
point does not only depend on the strain at the
same point, but also on the strains at all points of
the body. The governing equations of the nonlocal
elasticity are given in Altan (1989), Eringen (1974),
Eringen (1976) and Eringen (1987). Some of the
early ideas for the nonlocal elastic solids were ex-
plored by Eringen, Edelen and Kunin. Eringen and
Edelen (1972), Kunin (1968). The program Mathe-
matica, Derive and LaTeX are used throughout.)

The Nonlocal Solution of the Elastic Half-
Plane Loaded at the Origin by a Force P Di-
rected Along the r Axis

The classical elasticity solution of the elastic half-
plane loaded at the origin by a force P directed along
the z axis in cartesian coordinates is Rekach (1979)
and (Figure 1)

Figure 1. Elastic half plane loaded at the origin by a

shear force
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Where

2
A=— 4
= (4)
¢ is the thickness of the medium. The nonlocal stress
field can be obtained as follows:

taawna) = [ [l = (e’ ds' dy' (5)
tler.0) = [ [ alx = xo (@) da'dy - (0)

taptana) = [ [ alx = xl)ry ') d'dy' (1)

where a(|x’ — x|) is called the kernel function and is
the measure of the effect of the strain at point x’ on
the stress at point x. Artan (1996a), Artan (1996b),
Artan (1996¢), Artan (1997), Eringen (1976). In this
article, the kernel function of the nonlocal medium
will be chosen as follows:

alx —x'|) =

where a is the atomic distance and B is a constant.
In the Cartesian coordinates (8) becomes (Figure 2)
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The values of a and B are Artan (1996b)

2
=4x10"%em, B=—= 10
a cm — (10)
When the distance to the boundary is less than one
atomic measure, the nonlocal stress field in the =z

direction is calculated as (Figure 4)

y<-a

(X% + (y-y)? = @2 |

Yy—a a2
tea(2,y,0) = /a(x,y)om(x', y') da'dy’ (11)
0 a1
where Figure 3. Integration domain for y < —a
Y aa T
ay = zH+ya®— (Y —y)? (12) y
When the distance to the boundary is greater than
one atomic measure, the nonlocal stress field in the X
2 direction is calculated as (Figure 3) ‘
)2 N2 = A2 y=-a
vha s XX+ (yy)=a L
o) = [ [ alog)onta'sy)dstdy (13)
y—a aq
In the above equations, the first integral over z’ is
calculated exactly, and then the second integral over Figure 4. Integration domain for y > —a
1y’ is calculated approximately. The nonlocal stress
field becomes
2PA
tos(X,y,a) = 5 (0.567(,y,0.5(y — a),a) + 0.22r(z,y,0.1(y — a),a))
Ta
x (a—y); —a<y<0
2PA 3 3a
ta:a:(xayaa) = 7ra2 (r(x,y,y—?)a/&a)?a +7“(x,y,y—a/4,a)§
a 3a a
+ T(xayayaa) g +T($,y,y + 3@/8, a)§ + T($,y,y - a/4a a) g
a
+ r(z,y.y.a) g); y<-—a
where
ccl
T(xa ya U) CL) - CC_2

(15)

(16)
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ccl and cc2 are given below

ccl = 4dx/a?2—v24+2vy—y?(a* +2a® (—2? + 20y —1?)
+ @+ )@+ a? —dvy+9?) +6va (a2 +2uy — P
+ 2x+a?2 —v2+2vy—12) (—a® — 2% —2vy+4?
— 2 _ 2 2 — 92
+ 2x+/a% —v? +2vy —y?) arctan( v+ Va2 — o2+ 20y —y )
v
+ 6vz(a®+22+20y—1? +22a2 —v2+2vy —1?)
x (—a®—a? —2vy+1> +22/a? — 02+ 2vy —y?)
x a2 —v2 +2vy —y?
X arctan( v Y y)+(a2+02—x2+2vy—y2)
v
(> + 2%+ 20y — 1>+ 22 /a2 — 02 + 20y — 1?)
x (—a?—x? —2vy+9® +22/a? — 02+ 20y —y?)
x log(a®+ 22 +2vy —1° =2z a2 — 2 +2vy —1?)
— (@ + v = 2vy— ) (@® + 2P+ 2vy — P
+ 2x+a2 —v2+2vy—12) (—a® — 2% —2vy+ 4
+ 2zva? =02+ 2v0y—1?) log(a® + 2% + 2vy — 1
+ 2za2— v +2vy—1?) (17)
c2 = 2a® (a2+x2+20y—y2 +22+/a? —UQ+2Uy—y2)
X (—a2—x2—2vy+y2+2x\/a2—1)2+2vy—y2) (18)
The polynomial t9B(¢) is fitted for words the approximate polynomial 27 (¢) is valid
tzx(—y tan(m/6), y,0.00000004) as follows (in other on the line OB, Figures 5 and 6):
P O
-(a/(AP))Stress
Local stresses — 0.35
6 E Nonlocal stresses 03
w4
Polynomial stresses - 025
3 D — 0.2
5 - 0.15
— 0.1
C — 0.05
| | | | |
5 5 -4 -3 ) -1
A Atomic distances
Figure 5. The stress diagrams are given on these lines Figure 6. Normal stresses in the direction z axis on the
line OB
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P
t9B(¢) ——(0.00015595 — 0.39657786¢ + 0.40881854¢>
a
4+ 1.08755198&3 4 1.67047100£* 4 1.88204434¢°
4+ 0.71096324€5); —1<€<0 (19)
o5 _ AP .
an (&) " (1.49263876 + 2.75486289¢ + 2.23324620¢
4+ 0.96245702¢% 4 0.22920226£* + 0.02846721&°
4+ 0.00143934¢%); €< —1; €=y/a (20)
The polynomial t2¢(¢) is fitted for words the approximate polynomial t2¢(¢) is valid
tzx(—ytan(m/4), y,0.00000004) as follows (in other on the line OC, Figures 5 and 7)
oc AP 2
tos (&) = T(—0.00078165 — 0.75428596¢ — 0.10498005¢
— 1.48323233¢3 — 3.90964497¢% — 2.04702453¢°
4+ 0.01528694£%); —1<€<0 (21)
oc AP 2
to (&) = 7(1.18520003 + 1.83861248¢ + 1.38846323¢
+  0.57617936€2 + 0.13407081£* + 0.01639597¢°
4+ 0.00081994¢%); €< —1; &=y/a (22)
The polynomial t2P(¢) is fitted for words the approximate polynomial t2P(¢) is valid
tzx(—ytan(m/3), y,0.00000004) as follows (in other on the line OD, see Figures 5 and 8)
-(a/(AP))Stress -(a/(AP))Stress
Local stresses Local stresses
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr - 08
— 0.6
Nonlocal stresses /| U
) — 04 \

Polynomial stresses

Atomic distances Atomic distances

Figure 7. Normal stresses in the direction = axis on the Figure 8. Normal stresses in the direction x axis on the
line OC line OD
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T

AP
tOP(g) = (0.00198456 — 1.15248740¢ + 0.99820896¢2
a

—  0.13497878¢3 — 14.7541391¢* — 22.0957259¢°
—  9.30953289¢%); —1<€£<0

T

AP
t9P¢) = T(1.01589065+ 1.24964382¢ + 0.78512136£2

0.27699469¢% 4 +0.05554837¢ 4 0.00591481¢&°

+
+ 0.00025970¢%); €< -1; ¢{=y/a

(23)

(24)

The polynomial t9F(¢) is fitted for other words the approximate polynomial t2F(¢) is

tzr(—ytan(5m/12),y,0.00000004) as follows (in valid on the line OF, Figures 5 and 9)

-(a/(AP))Stress

Local stresses

Nonlocal stresses 0.6

Polynomial stresses

— 0.4

Atomic distances

Figure 9. Normal stresses in the direction z axis on the line OF

P
T(0.00299421 — 2.04372120¢ + 15.9852596&2
132.638002¢3 + 366.199774€* + 492.7305008°
327.614427¢5 4 86.243353167); —1 < £<0

tOF (&)

+ +

T

AP
t9F(¢) — (0.76009320 + 0.941979749¢ + 0.58651882£2

4+ 0.20296328¢°% + 0.03961192¢* + 0.00407712¢°
+ 0.00017191€%); €< —1; &=y/a

When the distance to the boundary is less than y direction is calculated as (Figure 4)
one atomic measure, the nonlocal stress field in the

Yy—a az

(25)

(26)

tyy(T,y,0) = //a(xay)ayy(x',y')dx'dy' (27)

0 a1
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When the distance to the boundary is greater than In the above equations the first integral over z’ is
one atomic measure the nonlocal stress field in the y calculated exactly, and then the second integral over
direction is calculated as (Figure 3) y' is calculated approximately. The nonlocal stress
field becomes
y+a oz
o) = [ [atonay) iy @)
Yy—a ay
2PA
tyy(x,y,a) = —3 (0.55s(x,y,0.5(y — a),a) + 0.22s(x, y,0.1(y — a),a))
x (a—-y); —a<y<O0 (29)
2PA 3 3
tyy(xayaa) = 7ra2 (s(x,y,y—3a/8,a)§a+s(x,y,y—a/4,a)§a
a 3a a
+ 5(30,9,9»@) g + 5($,y,y + 3@/8, a)§ + 5($,y,y - a/4a a) g
a
+ s(z,y,y,a) g); y<-—a (30)
where
v aurctan(_m—|r a2_:2+2”y_y2) v arctan(w—|r a2_”j+2”y_y2)
5(%%”&) = - a2 - a?
v? 10g(\/a2 + 224+ 20y —y2 —22+/a% —v2 +2vy — y?)
_ -
v? 10g(\/a2 + 224+ 2vy —y2 4+ 2x+/a2 — 2 + 20y — y?)
+ 5 (31)
a
The  polynomial tyo,f (&) is fitted for words the approximate polynomial tyo,f (&) is valid
tyy(—y tan(m/6), y, 0.00000004) as follows (in other on the line OB, Figures 5 and 10)
OB AP 2
tyy (&) = T(—O.OOO2O3O7 —0.16016250£ 4- 0.02111223¢
—  0.87036674£3 — 2.17658376£* — 2.29169096¢°
— 0.95039343¢%); —1<€£<0 (32)
AP
tOB(¢) = ——(0.18372122 — 0.21338880¢ — 0.29804238¢>
a
—  0.14811556£3 — 0.03710521&* — 0.00469058¢°
— 0.00023803£%); ¢<—-1; ¢=y/a (33)
The  polynomial tyo,f (&) is fitted for words the approximate polynomial tyo,f (&) is valid
tyy(—ytan(m/4),y,0.00000004) as follows (in other on the line OB, Figures 5 and 11):
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-(a/(AP))Stress -(a/(AP))Stress
— 0.4
Local stresses
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, . Local stresses
R A — 0.4
- 0.3 \
Polynomial stresses 03
Nonlocal stresses
— 0.2
— 0.1
| \ | \ |
-5 -4 -3 -2 -1
Atomic distances Atomic distances

Figure 10. Normal stresses in the direction y axis on the Figure 11. Normal stresses in the direction y axis on the

line OB line OC
t9¢ — AP 000001860 — 0.23945022¢ + 0.66939554¢”
4+ 2.3759313663 + 6.04416442¢* 4+ 7.64164157€°
4+ 3.278126806%); —1<€<0 (34)
ocC AP 2
toc) = T(0.46726459 4 0.40394993¢ + 0.19014221¢
+ 0.05065045£% + 0.00737001£* + 0.00050934£°
+ 0.00001050£%; €< -1; ¢£=y/a (35)
The  polynomial tyOyD (&) is fitted for words the approximate polynomial tyOyD (&) is valid
tyy(—ytan(m/3), y,0.00000004) as follows (in other on the line OD, Figures 5 and 12):
oD AP 2
toP&) = T(—0.00326344 — 0.75627802€ — 4.78694975¢
—  33.4209775¢3 — 101.618998¢* — 145.439415¢°
— 99.4157851£5 — 26.3215407¢7); —1<£<0
top = AP (.34328747 + 0.40974695¢ + 0.24615127¢”
4+ 0.08239331£% + 0.01558087¢* + 0.00155475&°
+ 0.00006352¢%); £<—-1; ¢£=y/a (36)
The  polynomial tyOyE (&) is fitted for other words the approximate polynomial tyOyE (&) is
tyy(—ytan(57/12),y,0.00000004) as follows (in valid on the line OF, Figures 5 and 13):
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-(a/(AP))Stress
Local stresses ~ 035

— 0.3
Nonlocal stresses Y 025
— 0.2

Polynomial stresses

- 0.15

0.1

Atomic distances

Figure 12. Normal stresses in the direction y axis on the

-(a/(AP))Stress

Local stresses “ — 015

Nonlocal stresses L 0.125

Polynomial stresses

A 4 T 1 | |

-5 -4 -3 -2 -1
Atomic distances

Figure 13. Normal stresses in the direction y axis on the

line OD line OF
OE AP 2
tOF(€) = ——(0.00875337 4 0.04121388¢ + 22.4609378¢
a
+  174.808977€3 + 575.7922106* + 1012.75344&°
4+ 997.239948¢° + 519.762780¢7
4+ 111.881302¢%); —1<¢<0 E=yla (37)
P
tOF(E) = ——(0.06890654 + 0.09932850¢ + 0.07140735¢>
a
+ 0.02858807¢3 + 40.00647292£* 4 0.00077484£5
4+ 0.00003809¢%); €< —1;¢6 =y/a (38)
When the distance to the boundary is less than calculated as (Figure 3)
one atomic measure, the nonlocal shear stress field
is calculated as (Figure 4) yie o
toy(T,y) = / (@, y)Tey (2, y') da'dy’ (40)
Yy—a as y—a aq
: = L@y da'dy (39
tay(2, 9, 0) /a(x,y)rly(x y)da'dy - (39) In the above equations the first integral over z’ is
0 a1

When the distance to the boundary is greater than
one atomic measure the nonlocal shear stress field is

2PA

calculated exactly, and then the second integral over
1y’ is calculated approximately. The nonlocal stress
field becomes

tey(x,y,a) = W(Obi’) w(z,y,0.5(y — a),a) + 0.22w(x,y,0.1(y — a), a))
x (a—y); —a<y<0 (41)
2PA 3a 3a
tgyy(.ﬁ,ilj,@) = 7ra2 (w(x,y,y—?)a/&a)? —i—w(x,y,y—a/él,a)?
a 3a a
+ w(x,y,i%a) g +U}($,y,y + 3@/8, a)? + U}(.f,y,y - a/4a a) g
a
+ w(z,y,y,a) g); y<—a (42)
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where
nl
_ 43

nl and n2 are given below

nl = —((a®>+2v* —2? +2vy —y?) (® + 22 + 20y —¢*
+ 2x+a?2 —v2+2vy—12) (—a® — 2% —2vy+4?
— 2 _ 2 2 — 92
+ 2z+v/a? —v? 420y —y?) arctan( v+ Va vt +2vy -y ))

v

(a®>+2v* =22 +2vy —oy?) (a®> + 2% +2vy — ¢°

22va? =02 +2vy —1y?) (—a® — 2% — 20y + 1

T4 /a2 —v2 +2vy —y?

v

v(—((a®+ 22+ 20y —y? + 22 /a? — 02+ 20y — ?)

(=6a%z+62% /a2 — 02 +2vy — 2 +2(a® —v* +2vy — y?)

2 (40 — 22 —6vy +3y*) + (a® +20* —2? +2vy — 3?)

(—z+ Va2 =2 +2vy —y?))) + (—a® —2” —2vy +y°

22/a2 —v2 +2vy —y?) (6a’z+ 622 /a2 — v + 20y — 12
2 2 23 2 2 2

2(a* —v'4+2vy—y°)? —2x(4v°—z°—6vy+ 3y°)

(a®>+20% =22 +2vy —1?) (z + Va2 — 02 + 20y — y2))

2z (a®+ 2%+ 2vy — > + 222 — 02 + 20y — ?)

(—a? — 22 —2vy+1y? +22Va2 — 02 + 20y — ?)

log(a®? + 2% 4+ 2vy —y® — 22 /a2 —v2 +2vy —3?)

2z (a® + 2% +2vy — y® + 22 /a2 —v2 + 20y — 32)

(—a? — 2% —2vy+ 1> +22Va2 — 02 + 20y — ?)

log(a? + 22 +2vy —y* + 22 /a2 — 12 + 20y — 12)) (44)

22/a? —v2 4+ 2vy — y?) arctan(

)

+ o+ o+

wlw

X X + + 4+ 4+ x + x

X

X

n2 = 2d®(a®+ 22 +2vy— 1 +2x a2 —v2+2vy —1?)
(—a® —2® —2vy+ 12 + 22?2 — 02 + 20y — y?) (45)

The  polynomial tgyB (&) is fitted for words the approximate polynomial tgyB (&) is valid
tyy(—ytan(n/6),y,0.00000004) as follows (in other on the line OB, Figures 5 and 14):

AP
OB = T(0.25985230 — 0.23481033¢ — 0.37333829¢2

— 0.27716391€3 — 0.71705619¢* — 0.63648440¢°
— 0.13470999¢%); —1<€£<0 (46)

AP
OB = T(0.59436457 + 0.78791738¢ + 0.54534940¢2
0.21381195£% 4 0.04778151£* 4+ 0.00566876£°

0.000276870¢%); ¢ < -1 ¢=y/a (47)

+ +
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The  polynomial tfyc (&) is fitted for words the approximate polynomial tfyc (&) is valid
tyy(—ytan(n/4),y,0.00000004) as follows (in other on the line OC, Figures 5 and 15):
-(a/(AP))Stress -(a/(AP))Stress
— 0.6
Local stresses _Local stresses
————————————————————————————— ~ 0.4 ‘
Nonlocal stresses \
Polynomial stresses
| | \ | | \ | \ |
5 -4 -3 -2 -1 5 -4 -3 -2 -1
Atomic distances Atomic distances
Figure 14. Shear stresses on the line OB Figure 15. Shear stresses on the line OC
AP
tfyc(g) = —(0.26083403 — 0.18340326¢ + 0.07662246£2
a
+  1.85895975¢3 + 2.96445409¢* + 1.80965063&°
4+ 0.382351806%); —1<€<0 (48)
P
t9F(€) = ——(0.34996374 + 0.17731323¢ + 0.01088870¢>
a
— 0.02316578¢3 — 0.00930792¢% — 0.00145299¢°
— 0.00008360£%); ¢<—1; ¢€=yla (49)
The  polynomial tfyD (&) is fitted for words the approximate polynomial tfyD (&) is valid
tyy(—ytan(n/3),y,0.00000004) as follows (in other on the line OD, Figures 5 and 16):
P
t9P (&) = ——(0.26000015 — 0.21858457¢ — 0.48035308¢>
a
+  1.4712986663 + 4.457680406* + 4.089035658°
4+ 1.27404293¢%); —1<€<0 (50)
AP
tfyD (€) = ——(0.46652603 + 0.52637802¢ + 0.32272794¢2
a
+ 0.11458830€2 + 0.023523556% + 0.00259044&°
4+ 0.00011840¢%); €< —1; &=y/a (51)
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The polynomial tQF(¢) is fitted for
tyy(—ytan(bm/12),y,0.00000004) as follows (in

-(a/(AP))Stress

Local stresses 0.4

-5 -4 -3 -2 -1
Atomic distances

Figure 16. Shear stresses on the line OD

other words the approximate polynomial tgyE (&) is
valid on the line OF, Figures 5 and 17):

-(a/(AP))Stress

— 0.3
Local stresses

“ |/l 0.25
Nonlocal stresses

— 0.2
Polynomial stresses

— 0.15

0.1

+ 0.05

| |
-5 -4 -3 -2 -1

Atomic distances

Figure 17. Shear stresses on the line OF

tor©) = %(0.25676691 — 0.43454903¢ — 5.04966107&2

—  13.0728768¢3 — 15.787065406 — 9.23202576£°

— 2.09963882¢%); —1<¢<0 (52)
o0 = TP(0.18080841 + 0.22475544¢ + 0.14903892¢2

+  0.05675152€3 + 0.012424176* + 0.00145206&°

4+ 0.00007013¢%); €< —1; &=y/a (53)

For a = 0 the nonlocal stress field reverts to the
classical stress field. That is

tow(2,9,0) = 0.975044; tyy(x,y,0) = 0.9750,,;
toy(2,y,0) = 0.9757,, (54)

Conclusion

The most important difference between the stress
distributions of the local and nonlocal theories is of
course the disappearence of the infinite stress at the
tip of the singular force. This property can be seen
in Figures 6-17. The unbounded stress obtained in
the classical theory was a great obstacle in the in-
terpretation of the actual situation and the efforts
of finding the limits of the safe loading remained
unanswered, despite the known physical character-
istics of the medium. The most striking property in
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the nonlocal stress distribution is that the maximum
stress does not occur at the application point of the
force but further down. Similar results have previ-
ously been obtained in some other problems Artan
(1996b), Artan (1996¢), Artan (1997), Eringen and
Balta (1979), Kunin (1968). The following signifi-
cant results are observed:

a) The nonlocal stresses are finite even at the
points where local stresses are infinite

b) The maximum stress does not occur at the
boundary but further down. Similar results have pre-
viously been obtained in some other problems (see
Artan (1996a), Artan (1996b), Artan (1996¢), Artan
(1997), Artan (2000), Eringen and Balta (1979).

¢) For a = 0 the nonlocal solution reverts to the
classical solution.
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