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Abstract

Experimental results are presented concerning the boundary shear stress distribution in a rectangular
compound section channel comprising rectangular main channel and two symmetrically disposed floodplains.
Different dimensionless ratios of shear stress distributions are obtained and related to relevant parameters.
The floodplains due to the momentum transfer between the deep section and floodplains has been investi-
gated. Some important results concerning the uniformity of shear stress distribution which is significant in
alluvial channels to state the possible locations of erosion and deposition have been presented.
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Kompozit Dikdortgen Kanallarda Duvar Kesme Gerilmesi

Ozet

Bilesik diktortgen kesitli kanallarda ana kanal ve tagma kanallardaki cidar kesme gerilmesi deney sonuglar:
sunulmugtur. Kesme gerilmesinin ilgili parametrelere dayanan boyutsuz oranlari elde edilmigtir. Ana kanal
ve tagma kanlallardaki geometrik degigsimin, alt kesit ve tagma kanallar arasindaki momentum transferi

incelenmigtir. Aliivyonlu kanallarda 6nemli olan, erozyon ve birikim lokasonlar: ile ilgili 6nemli kesme

gerilmesi dagilimlar1 sunulmustur.

Anahtar Soézciikler: Acik kanal, bilegik kesit, kesme gerilmesi, aliivyonlu kanallar.

Introduction

Many flood-routing methods assume a simple
cross section for purposes of calculation of the stage-
discharge characteristics of rivers. These methods
therefore ignore the transform of momentum be-
tween the main channel and its floodplains.

Owing to simplistic models, calibration with one
set of data does not necessarily ensure reliable re-
sults for other data, particularly if for one of the

cases the floodplains are inundaed. The reduced hy-
draulic radius of the floodplain and the often higher
hydraulic roughness results in lower velocities on the
floodplains than in the main channel. These differ-
ences result in a bank of vortices as demonstrated by
Knight and Hamid (1984) referred to as “turbulence
phenomenon”. There is therefore a lateral transfer
of momentum that results in apparent shear stress.
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Information regarding the nature of boundary
shear stress distribution in a flowing stream is needed
for various purposes: to give a basic understand-
ing of the resistance relationship, to understand the
mechanism of sediment transport, for designing sta-
ble channels and for designing revetments and so on
for channels where meandering phenomena are pre-
dominant (Ghosh and Jena, 1971).

The boundary shear stress distribution and flow
resistance in compound cross section channels have
been investigated by many authors (Lai, 1986; Lai
and Knight, 1988; Myers and Brennan, 1990; Rhodos
and Lamb, 1991; Rhodos and Knight, 1994; Knight
and Cao, 1994).

The aim of this study was to describe the effect
of the interaction mechanism on shear stress distri-
bution in channel of compound cross section. Spe-
cially the effect of the main channel width and step
height on the variation of shear stress distribution in
both main channel and floodplain channel for con-
stant flow discharges was investigated.

Experimental Apparatus

All series of experimets were conducted in a glass-
walled horizontal laboratory flume 9.0 m long, 0.67
m wide and 0.75 m deep, at the Hydromechanics
Laboratory of the Middle East Technical University.

The volumetric flow rate was measured with a
rectangular sharp-crested weir mounted in he inlet
box of the flume. Head measurements over the crest
for this weir was done by a point gauge of 0.01 cm
accuracy and predetermined calibration curve of the
weir was used to determine the discharges. The max-
imum capacity was around 110 1t/sec.

In the course of experiments, for head measure-
ments a point gauge was used along the centreline
of flume. All depth measurements were done with
respect to the bottom of the flume. A pitot tube of
circular section with external diameter of 7 mm was
used to measure the static and total pressures which
were used for velocities and shear stresses at required
points in the experiments conducted throughout this
study.

Models of rectangular compound cross sections
were manufactured from Plexiglas and placed at
about mid length of the laboratory flume. Fig. 1
shows the plan wiew, longitudinal profile and cross
section of the models with symbols designating im-
portant dimensions of model elements. The dimen-
sions of the various models used in the experiments
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are given in Table 1. In this study model types tested
are denoted by BIZI (I=0, 1, 2, 3). Here B and Z
are width and step height of the main channel of the
compound cross section, respectively. When 1=0, BI
and ZI become B0Z0, which means the first type of
model which is the laboratory flume, in which there
is no compound channel and the bottom slope has a
value of 0.005.
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Figure 1. Definition Sketch of the Flume used in the
Experiments.

The expeirments first were conducted in the mod-
els of smallest B (= 20 cm) with varying Z vlues (=5
cm, 10 cm 15 cm) and then B was increased to 30 cm
at the required amount of Z=5 cm, 10 cm, and 15
cm, and finally for B=45 cm with the same three val-
ues of Z. All the compound cross section models were
constructed on a horizontal bottom slope channel.

Measurement of Wall Shear Stress

Preston (1954) developed a simple technique for
measuring local shear on smooth boundaries in a
turbullent boundary layer using a pitot tube (or Pre-
ston tube) placed in contact with the surface. The
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method is based on the assumption of an inner law
(law of the wall) which relates the boundary shear
stress to the velocity distribution near the wall. As-
sessment of the near wall velocity distribution is em-
pirically inferred from the differential pressure be-
tween pitot tube and static wall pressure tapping.

Patel (1965) undertook further experiments to pro-
duce a reliable land definitive calibration curve to re-
place that developed by Preston. Patel’s calibration
curve which has been shown to be reliable may be
summarised as follows (Isaacs and Macintosh 1990).

Table 1. Dimensions and Dimensionless Values of Models

Types B Z B; Bo 0 BO/B; | BO/Z | BO/B | B;/Z | B;/B | B/Z
of models | (em) | (em) | (em) | (cm) | (degree) | (degree) Q) Q) Q) Q) Q) Q)
B0Z0 67 - - 67 - - - - 1 0.00 | 0.00 -
B1Z1 20 5 235 | 67 26.57 153.43 2.85 1340 | 3.35 | 470 | 1.18 | 4.00
B172 20 10 | 235 | 67 26.57 153.43 2.85 6.70 3.35 235 | 1.18 | 2.00
B17Z3 20 5 | 235 | 67 26.57 153.43 2.85 47 3.35 157 | 1.18 | 1.33
B27Z1 30 5 85 | 67 26.57 153.43 3.62 1340 | 2.23 370 | 0.62 | 6.00
B272 30 10 | 185 | 67 26.57 153.43 3.62 6.70 2.23 185 | 0.62 | 3.00
B273 30 15 | 185 | 67 26.57 153.43 3.62 147 2.23 123 | 062 | 2.00
B3Z1 15 15 | 11.0 | 67 26.57 153.43 6.09 1340 | 1.49 2.20 | 0.24 [ 9.00
B372 15 0 | 11.0 | 67 26.57 153.43 6.09 6.70 1.49 T10 | 024 | 4.50
B37Z3 15 5 | 11.0 | 67 26.57 153.43 6.09 47 1.49 0.73 | 0.24 | 3.00
2 .
X* = log APd (1) To determine the wall shear stress at the bottom
= l0g10 . .
4pv? of the main channel and along the floodplain bot-
d tom, the measurements were taken by Preston tube
an at successive points. Upon the analysis of data ob-
Tod? tained from experiments considering Eqs. 3-5, the
Y* =1lo 07 (2) . .
910 13 02 shear stress distributions at the main channel and

where AP= Preston tube pressure difference; d=
probe outside diameter; p= fluid density; v= kine-
matic viscosity of the fluid; 79 = boundary shear
stress; X*= the log of dimensionless differential pres-
sure; Y*= the log of dimensionless shear stress. Patel
(1965) produced three equatons covering the range
0.0 <Y*<5.3:

Y* = 0.5X" +0.037 (3)

Y* = 0.8287—0.1381.X%+0.1437X*2—0.0060.X *(4)

X" =YY" +2log10(1.95Y" + 4.10) (5)
where: Eq. 3 is applicable for 0.0 <Y*<1.5,

Eq.4 is applicable for 1.5 <Y* < 3.5

Eq. 5 is applicable for 3.5 < Y* < 5.3

As it is seen, the Preston-tube method to ob-
tain wall shear stress is much more simpler than the
Clauser plot which requires detailed velocity mea-
surements.

The technique has been widely used for measure-
ment of boundary shear stresses in both smooth and
rough open channels. Recent research utilising the
technique includes Knight and Macdonald (1979),
Knight (1981), Knight and Demetriou (1984), Baird
and Ervine (1984), Knight and Lai (1985) and Mec-
Kee et al. (1985).

the floodplain bottom were calculated for each ex-
periment carried out.

Presentation and Discussion of Results

The measured and calculated quantities from the
experiments conducted by Al-Khatib (1993) were
utilised. In the following section results of the ex-
periments are summarised.

Shear stress patterns were obtained for 11 dif-

ferent depths of flow, each corresponding to a cer-
tain discharge. Some of these depths were within
the main channel step height only while the others
were within the full cross section related to the ge-
ometry of each model. The following notations are
used in this study:
Tme= average shear stress at the bottom of the main
channel; 7p=mean channel shear stress and equals
pgRS.; g= gravitational acceleration; R=hydraulic
radius of the compound channel; S.= energy slope;
(Tme )maz= maximum shear stress at the bottom of
the main channel; 7y = average shear stress at the
bed of floodplains; (7f)maez= maximum sher stress
at the bed of the floodplains; Tpozo= average shear
stress at the bottom of the first model BOZO.

The following subsections give the details of the
effect of interaction mechanism on shear stress dis-

11
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tribution in models of different geometry.

Variation of 7, with Discharge, Q

The relationship between 7,,.= and Q for some of the
models tested are shown in Figs. 2 and 3. The wall
shear stress was integrated numerically over the bot-
tom of the main channel and an average value, Ty,
was obtained for each set of experiments and plotted
against discharge. It can be seen from all the related
figures that the average shear stress at the bottom
of the main channel increases as discharge increases.

In order to see the effect of the main channel
width, B, on the values of 7, for constant step
height, Z, Fig. 2 was plotted. From this figure it is
clearly seen that for a given discharge as B increases
Tme increases also. The same trend can easily be no-
ticed in the other models tested (Al-Khatib 1993).
Fig. 3 is another form of the data representation for
Tme and Q to investigate the effect of step height,
7, on T, as a function of ) for models of constant
main channel width. From this figure one can con-
clude that as the Z values increase in channels of
constant main channel with for a given discharge,
Tme values increase.

Variation of (Timc)maz/70 with the Relative
Depth, Y,

The experimental results are shown in Figs. 4-7 as
(Tme)maz /To versus the relative depth, Y;., which is
the floodplain to main channel water depths ratio,
for some of the models tested. The relative depth is
directly affected by the geometry of the compound
cross section. From these figures it can easily be
seen that shear ratios are significantly affected at
low depths with irregularities in the pattern and the
occurrence of high and low ratios. Since flow in al-
luvial channels is influenced significantly by shear it
is obvious that the previous conclusion will be rel-
evant in the analysis and design of such channels.
The increases and decreases in shear stress will in-
dicate regions of possible erosion and scour, while
the disturbance of shear ratios will indicate a similar
reaction by a channel in erodable material.

In order to see the effect of channel geometry on
the (Tme)maz/To versus Y, the figures were divided
into two categories. The first one covers Figs. 4
and 5 and similar figures in which B values were
fixed while changing Z values. The figures show that
the (Tme)maz/To ratio is mostly irregular for high Z
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values and reaches its maximum value of 1.6 in the
model of B2Z3. On the other hand Fig. 6 and sim-
ilar figures are plotted to see the effect of varying B
values on the (Tye)maz /70 ratio versus Y, for con-
stant Z values. The figures indicate that as B values
increase the (Tyne)maz/70 ratio increases for a given
Y, value and then does not significantly vary with
Y,
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Figure 2. Average Shear Stress at the Bottom of the
Main Channel Versus Discharge for models of Constant
Step Height, Z1
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Figure 3. Average Shear Stress at the Bottom of the
Main Channel Versus Discharge for models of Constant
Step Channel Width, B3.
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Figure 4. Variation of the Maximum Main Channel
Bed Shear Stress to Average Full Cross Sectional Shear
Stress Ratio Versus Relative Depth for Models of Con-
stant Main Channel Width, B1.
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Figure 5. Variation of the Maximum Main Channel
Bed Shear Stress to Average Full Cross Sectional Shear
Stress Ratio Versus Relative Depth for Models of Con-
stant Main Channel Width, B2.

It will be of significance, however, to compare our
results with those of Ghosh and Jena (1971). Their
work was carried out in a complex channel consist-
ing of a deep section 204 mm wide by 102 mm deep
and two floodplains, each 76 mm wide by 102 mm
deep giving a total depth of 204 mm. Of particular
interest is a comparison of shear ratios in this com-
plex channel and in moels B1Z1 (I=1, 2, 3) since the
width of the main channel in all these models are

almost the same. Fig. 7 shows the variation of the
ratio of the maximum channel bed shear stress to
average full cross sectional shear stress with the rel-
ative depth for both the models tested in this study
and those of Ghosh and Jena. It can be seen that
the difference consists in significantly lower ratios in
the present work than those of Ghosh and Jena. It
would appear that the explanation of this lies in the
differences in channel geometry, in that the B1Z1
models had two floodplains of much larger widths
than those used by Ghosh and Jena. The wider
floodplains would give rise to lower channel shear,
because of loss of energy to the floodplain. This in
turn would result in lower ratios for the same cross
sectional area of the channel. Thus it is posseble,
even on the bases of these few results, to detect a
trend depending on channel geometry.
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Figure 6. Variation of the Maximum Main Channel Bed
Shear Stress to Average Full Cross Sectional Shear Stress
Ratio Versus Relative Depth for Models of Constant Step
Height, Z1.

Variation of 7,,./786z0 with Q

Figs. 8 and 9 show the variation of 7,,./Tpoz0 with
Q for some of the models tested. In order to see
the effect of channel geometry on the 7., /7520 ra-
tio with Q, the figures are divided into two groups.
The first group consists of Fig. 8 and similar figures
in which the effect of step height, Z, on the values
of Trme/TBOZO for models of constant main channel
width are searched for. The 7,,./Tozo ratio in-
creases with increasing Z for a given flow discharge.
For three different main channel widths, the step
height of Z3 gives the maximum value of 7, /TS Z0O-

13
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The second group of figures, include Fig. 9 and sim-
ilar figures, show the effect of varying B values on
the Tme/TBOZO ratio with Q for constant Z values.
It is clearly seen from Fig. 9 that for a given Q the
Tme/TBOZO ratio increases as the B values increase
for constant Z. Eventually we can conclude that B3ZI
models(I=1, 2, 3) give the maximum 7,,. /7520 ra-
tio for any Q investigated. We can also see from
the related figures that the 7,./T6z0 is always
less than 1.0. This is because of two reasons. The
first reason is that the slope of the first model B0Z0
is equal to 0.005 while the bottom slopes oof the
other models are zero. So as the bottom slope of the
main chnnel increases, the shear stress at the bot-
tom of the main channel will increase. The second
reason is that the first model, BOZ0 has a rectan-
gular cross section while the other models have two
symmetrical floodplains. The reduction in the main
channel shear stress is due to the presece of the in-
teraction mechanism between the main channel and
floodplains. This has the effect of reducing shear
values due to the momentum transfer from the main
channel to he floodplains. This effect is seen in all
the figures related to the compound cross sections,
where the 7,,./Tozo ratio is always less than unity.

Variation of (7/)mqe /70 With Floodplain Depth,
Yy

It is known from studies in channels with loose
boundaries that a ratio of significant importance is
that of maximum shear stress for any element of a
cross section to averge cross sectional shear stress.
This ratio is an indication of the uniformity of shear
distribution and it is significant in alluvial channels
to state the possible locations of erosion and depo-
sition. Figs. 10 and 11 show the variation of ratios
of maximum floodplain bottom shear stress to av-
erage full complex cross sectional shear stress with
floodplain depth for constant main channel widths
and constant step heights, respectively. From the re-
lated figures it can be noticed that (7f)mas/70 ratio
is almost regular for smallest step height Z1 and it
becomes irregular for larger step heights. It is quite
difficult to say something about the effect of main
channel width and step height on the (7f)mas/70 ra-
tio for a given Yy value due to the random variation
of the data points.

From the above mentioned figures and similar fig-
ures it is seen that the interaction between the main
channel and floodplains has the effect of decreasing
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the shear ratios at high depths and also gives rise to
significant distubance of the trend at lower depths.
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Figure 7. Comparison of Present Results with Those
of Ghosh and Jena. Ratio of Maximum Main Channel
Bed Shear Stress to Average Full Cross Sectional Shear
Stress Versus Relative Depth.
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Figure 8. Ratio of the Average Main Channel Bed
Shear Stress to Average Bottom Shear Stress of the First
Model B0Z0 Versus Discharge for Models of Constant
Main Channel Width, B2.
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Figure 9. Ratio of the Average Main Channel Bed Shear
Stress to Average Bottom Shear Stress of the First Model
BO0Z0 Versus Discharge for Models of Constant Main Step
Height, Z1.
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Figure 10. Comparison of Ratios of Maximum Flood-
plain Bed Shear Stress to Average Full Complex Cross
Sectional Shear Stress for Models of Constant Main
Channel Width, B1.
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Figure 11. Comparison of Ratios of Maximum Flood-
plain Bed Shear Stress to Average Full Complex Cross
Sectional Shear Stress for Models of Constant Main Step
Height, Z2.

It will be of significance, however, to compare the
experimental results with those of Myers and Elsawy
(1975). Their work was carried out in a complex
channel consisting of a deep section 254 mm wide by
101.6 mm deep and one floodplain of 355.6 mm wide
by 76.2 mm deep giving a total depth of 177.8 mm.
Of particular interest is a comparison of shear ratios
of this complex channel and those of models B1ZI
(I=1, 2, 3). Fig. 12 shows variations of maximum
floodplain bed shear stress to average full cross sec-
tional shear stresss with floodplain depth for both
the models used in this study and that of Myers and
Elsawy. It can be seen that the difference consists
in lower ratios in most of the points in the present
work than it that of Myers and Elsawy. It would ap-
pear that the explanation of this lies in the difference
in channel geometry, in that the present models had
two floodplains of much less width than that used
by Myers and Elsawy. The wider floodplains will ex-
tract larger amount of momentum transfer than that
of narrow floodplains.
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Figure 12. Comparison of Present Results with Those
of Myers and Elsawy, 1975. Ratios of Maximum Flood-
plain Bed Shear Stress to Average Full Complex Cross
Sectional Shear Stress.
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Figure 13. Comparison of Present Results with Those
of Myers and Elsawy, 1975. Ratios of Maximum Flood-
plain Bed Shear Stress to Average Floodplain Shear
Stress Versus Floodplain Depth.
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Variation of (7)maes/7r with Floodplain
Depth, Yf

Wariation of (7f)mas/7r with floodplain depth
Depth, Yy, is shown in Fig. 13. The wall shear
stress was integrated numenrically over the bed of
the floodplain, and an average value of the shear
stress at the floodplain for each set of data and
the ratio of (7f)mae/7r Was calculated and plotted
against the floodplain depth. As can be seen from
Fig. 13 and similar figures, the presence of inter-
action introdues irregularities of pattern. Again,
a comparison is made between the data of present
study and those of Myers and Elsawy mentioned in
the previous subsection as it is shown in Fig. 13.
The result of comparison is the same as that of the
previous subsection. The data of model B1Z2 and
those of Myers and Elsawy follow almost the same
path since these both models are geometrically very
similar to each other, considering B/Z and B/Bjy
ratios, one can talk about the consistency between
experimentally obtained data.

Variation of 7,,./7; with Relative Depth, Y,

Some of the experimental results are shown in Figs.
14 and 15 in the form of 7,,./7} versus Y. These two
figures and similar figures also reveal that the pres-
ence of interaction introduces irregularity of pattern.
For small Y, values the shear ratio is greater than
unity. But at large Y, values the ratio approaches
to unity or falls a little bit below unity. The reason
is that for small Y, values we have large momentum
transfer from the main channel to the floodplains,
but at high Y. values the momentum transfer is in
the opposite direction. In order to see the effect of
B and Z values on the 7,,./7 ratio the figures were
divided into two groups. In the first one the main
channel width, B, was fixed and the step height, Z,
was changed (Fig. 14 and similar figures). Even
though it is not possible to give a general conclusion
about the variation of 7,,./77 for the whole range of
Y, tested, in general one can say that 7,,./7; ratio
increases as Z values increases. The figures of the
second group (Fig. 15 and similar figures) present
the data of models of constant step heights. Due to
random distribution of data points it is very difficult
to say something about the main channel width on
the variation of 7,,. /7y ratio for a given value of ¥,
Finally it can be stated that for a wide range of Y,
the value of 7,,./77 ratio varies around unity.
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Figure 14. Variation of Ratio of Average Main Chan-
nel Bed Shear Stress to Average Floodplain Bed Shear
Stress with Relative Depth for Models of Constant Main
Channel Width, B2.
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Figure 15. Variation of Ratio of Average Main Chan-
nel Bed Shear Stress to Average Floodplain Bed Shear
Stress with Relative Depth for Models of Constant Step
Height, Z1.

Conclusions

A series of laboratory experiments have been con-
ducted in a smmetrical rectangular compound cross
section channel to investigate the geometry effect on
the shear stress distirbution in the main channel and
floodplains due to the momentum transfer between
the deep section and floodplains. From the analysis
of the experimental results the following conclusions
can be drawn:

1. For a given discharge, in models of constant
step height as B increases, 7,,. values increase, and in
channels of constant main channel width, if Z values
increase, 7,,. values increase.

2. The (Tme)maz /70 ratio is mostly irregular for
high Z values and reaches its maximum values of 1.6
in the model of B2Z3.

3. As the B values increase the (Tme)maz/70 ra-
tio increases for a given Y, value and then does not
significantly vary with Y;. for constant Z values.

4. Tme/TBOZO Tatio increases with increasing Z
for a given discharge. Among three different main
channel widths, the step height Z3 gives the maxi-
mum value of Tone/TBOZO-

5.For a given Q, Time/TBoZO Tratio increases as B
values increase for constant Z. Eventually B3ZI mod-
els (I=1, 2, 3) give the maximum 7p,./Tpozo ratio
for any Q investigated.

6. Variation of (7 )maqe /70 ratio with Yy is an in-
dication of uniformity of shear stress distribution and
is important in sediment trasportation. (7f)maz/70
ratio is almost regular for smallest step height Z1
and it becomes irregular for larger step heights.

7. The general trend of the (7f)mas/7 versus
Y, curve given by Myers and Elsawy, and the one of
model B17Z2 are quite similar due to proper B/Z and
B/Bj values.

8. For small Y, values the 7,./7; ratio ap-
proaches to unity. The reason is that for small Y,
values we have large momentum transfer from the
main channel to the floodplains. For a wide range of
Y, the value the 7;,./7F ratio varies around unity.

Notation

The following symbols are used in this paper:

B = bottom width of the approach
channel;

BO = bottom width of the upstream
channel;

g = gravitational accaleration;

d = probe outside diameter;

17
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Q = volume rate of flow;

R = hydraulic radius of the compound
channel;

Se = energy slope;

X* = the log of dimensionless differential
pressure;

Yy = floodplain water depth;

Yne = main channel water depth;

Y. = relative depth which equals the
Ys /Yo ratio;

Y* = the log of dimensionless shear stress;

V4 = step height;

p = fluid density;

AP = Preston tube pressure difference;

v = kinematic viscosity of the fluid;

To = boundary shear stress;

Trme = average shear stress at the bottom of
the main channel;

o = mean channel shear stress and equals
peRSe;

(Tme)maz = maximum shear stress at the bottom
of the main channel;

Ty = average shear stress at the bed of
floodplains;

(Tf)maz = maximum shear stress at the bed of
the floodplains;

TBOZO = average shear stress at the bottom of

the first model B0ZO0.
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