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Abstract

Two dimensional slow flow of an viscoinelastic fluid in a converging or diverging channel with porous
walls has been studied. It is assumed that, the magnitude of the velocity at the center line of the flow domain
is equal to unity. The flow phenomenon has been characterized by two parameters, R (suction Reynolds
number) and N (inelastic number). Effects of these numbers are carefully delineated.
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Reiner-Rivlin Akışkanının Daralan veya Genişleyen Gözenekli Kanal İçerisindeki
Yavaş Akımı

Özet

Daralan veya genişleyen gözenekli kanalda viskoinelastik akışkanın iki boyutlu yavaş akımı incelenmiştir.
Akım bölgesinin simetri ekseni üzerinde skaler hızın birim büyüklükte olduğu varsayımı yapılmıştır. Bu
varsayımın ışığında hareketin diferansiyel denklemi analitik olarak çözülmüştür. Akım, R emme Reynods
sayısı ve N inelastis sayısı cinsinden karakterize edilmiştir. Bu sayıların etkileri özenle incelenmiştir.

Anahtar Sözcükler: genişleyen veya daralan kanallar, gözenekli ortam, viskoelastik akışkan, kesişen
düzlemler

Introduction

The steady flow solution of viscous incompressible
fluids in converging or diverging channel is expressed
exactly in terms of elliptical functions (Pai 1956).
Rosenhead (1940) has worked on laminar two di-
mensional radial flow of an incompressible viscous
fluid between two impermeable intersecting planes.
If the Reynolds number is large and there is suc-
tion and blowing at the walls, whose magnitude is
inversely proportional to the distance along the wall

from the origin of the channel, a solution of the lami-
nar boundary layer equation can be obtained (Rosen-
head 1982). Terril (1965) obtained analytical solu-
tion for the slow flow as the viscous fluid running
through the channel for the case of suction at one
wall and equal blowing at the other walll. Sinha and
Nayak (1982) have obtained a solution by using series
for the steady two dimensional incompressible lami-
nar slow flow of a visco-elastic (Walters B’) fluid in
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a converging or diverging channel with suction and
injection. In the case of impermeable walls, R.K.
Bhatnagar et al. (1993) solved the same problem se-
rially for Oldroyd-B fluid. Öztürk et al (1995) also
worked on the same problem for a special form of
Oldroyd-B fluid and Reiner-Rivlin (visco-inelastic)
fluid, in diverging or converging channel. The main
purpose of this study is to solve the same problem
for Reiner-Rivlin fluid in the steady-state case and
slow motion of the fluid with suction and injection.
Constitutive equation of the Reiner-Rivlin fluid is,

T = −pI + µ0A1 + µ1A
2
1, (1)

where µ0 and µ1 are viscosity and cross-viscosity re-
spectively, and

A1 = ∇v + (∇v)T (2)

The equation of motion, in the absence of body forces
is

ρ
Dv
Dt

= ∇.T (3)

The continuity equation for velocity fields is

∇.v = 0 (4)

As it is seen in Fig.1 the flow field assumed to be
in (r, θ, z) cylindrical polar coordinates and compo-
nents of the velocity vector of the flow are given as
follows

vr = u(r, θ), vθ = v(r, θ), vz = 0. (5)

Let the boundaries of the channel be given by
θ = ∓α and assume that the velocities of blowing at
θ = −α and of suction at θ = α are both vθ = V r0

r
,

where, r0 is a typical length and V is independent
of θ. Then from the continuity equation u = kF (θ)

r
,

where k is a constant which we will write equal to
v0R1, where, R1 is the Reynolds number Ur0

v of the
flow. Using u = kF (θ)

r
and v = V r0

r
in A1 and A2

1 we
get the components of the stress

Trr = −p − 2kµ0
F

r2
+ µ1

[
4k2F 2

r4
+
(
kF ′

r2
− 2V r0

r2

)2
]
,

Trθ = Tθr = µ0

(
k

r2
F ′ − 2V r0

r2

)
,

Trz = Tzr = 0,

Tθθ = −p + 2kµ0
F

r2
+ µ1

[(
k

r2
F ′ − 2V r0

r2

)2

+
4k2F 2

r4

]
,

Tθz = Tzθ = 0,
Tzz = −p.

θ=α θ=0 θ=−α

u

V

r

θ

Figure 1. Geometry of the flow
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Figure 2. Effect of R on F (θ)

Prime denotes differentiation with respect to θ. Us-
ing these stress components in equation (1.3) we have

− ∂p

∂r
+
kµ0

r3
F ′′ + µ1

[
−16k2F 2

r5
(6a)

+2
(
k

r2
F ′ −2V r0

r2

)(
−2kF ′

r3
+

4V r0

r3

)]
(6b)

= ρ

(
−k

2F 2

r3
+
V r0k

r3
F ′ − V 2r2

0

r3

)
(6c)

−1
r

∂p

∂θ
+

2kµ0

r3
F ′ + µ1

[
2k
r5

(kF ′ − 2V r0)F ′′

+
8k2FF ′

r5

]
= 0. (6d)
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By cross-differentiating (1.6) and (1.7) and using
the parameters which are listed below, we have

2R1FF
′− RF ′′+F ′′′+4F ′−16RNF ′′=0, (7)

where

R =
V r0

v0
, R1 =

Ur0

v0
, N =

v1

r2
, (8a)

v1 =
µ1

ρ
, v0 =

µ0

ρ
, k = v0r. (8b)

The boundary conditions are

F (∓α) = 0. (9a)

Term 2R1FF
′ in equation (1.8) is negligible for a

very slow flow. Then, the equation is reduced to

F ′′ − R(16N + 1)F ′′ + 4F ′ = 0. (10a)

Solution of Equation

It is difficult to have a closed form solution of equa-
tion (1.11) with two boundary conditions. Then one
more boundary condition is needed, for this reason,
we have chosen the convention by taking the mag-
nitude of the velocity at the center line to be unity.
Then for diverging flow F(θ)=1 and for converging
flow F(θ)=-1. We have chosen the case of diverging.
Then, we will solve the equation (1.11) by means of
the boundary conditions

F (∓α) = 0 and F (0) = 1. (11a)

Solving eq. (1.11) with (2.1), the following is ob-
tained.

F = K1e
(β−
√
β2−4)θ+K2e

(β+
√
β2−4)θ+K3 ,(12a)

where, K1, K2 and K3 are constants of integration,
and β = 1

2R(1 + 16N). Using the eq.(2.1) and
eq.(2.2), K1, K2 and K3 are obtained as follows;

K1 =
−K3

[
e−α(β+

√
β2−4) − eα(β+

√
β2−4)

]
e−2α(

√
β2−4) − e2α(

√
β2−4)

,(13a)

K2 =
−K3

[
eα(β−

√
β2−4) − eα(−β+

√
β2−4)

]
e−2α

√
β2−4 − e2α

√
β2−4

,(14a)

K3 =
cosh(α

√
β2 − 4)

cosh(αβ) − cosh(α
√
β2 − 4)

. (15a)

The solution is not valid for β = 2. When β = 2, the
required solution is

F = (γ1 + γ2θ)e20 + γ3, (16a)

where γ1, γ2 and γ3 are constants of integration.
They are calculated by means of boundary condition
(2.1) as follows;

γ1 =
e4α + 1

(1− e2α)2
, γ2 =

e−2α − e2α

αe−2α(1− e2α)2
,

γ3 = − 2e2α

(1− e2α)2
. (17a)

Discussion of Results

As it is seen in eq.(2.2), we have an oscillatory solu-
tion for β < 2. When β < 2, the solution is expo-
nential. In the case of R = 0 (that means there is no
suction and injection) the inelastic number N does
not play any role.

In order to discuss the effects of R on radial com-
ponent of the velocity field, we have plotted F(θ)−θ
graphics for diverging flow and various R (Fig.1). It
is clear that the solution depends on the angle of
the channel walls θ = 2α. To see what happens in
a right angle and an obtuse angle, we worked with
α = π/4 and α = 3π/8. It is also obvious that, all
profiles for negative R, are of the same shape but
reflected in the axis θ=0. The solution is obtained
for slow converging flow by reflecting the profiles in
the F (θ) = 0 axis. In both cases of the channel an-
gles, in the regions [−π/4, 0] and [−3π/8, 0, F (θ)] de-
creases with an increase in R. In regions [0, π/4] and
[0, 3π/8], F (θ) increases with increase in R. These
increases and decreases are stronger in the case of
obtuse angle than in the case of right angle. (See
Fig.1 and Fig.2.)

In order to study effects of the inelastic number
N on velocity component u, we have plotted F (θ)
for some values of R and various values of N . Fig.3
and Fig.4 represent the changes in F (θ) for R = 1,
and Fig.5 and Fig.6 for R = 5. As it is seen in
these figures and in figures 7 and 8, in the regions
(0, π/4) and (0, 3π/8) the inelastic number N cause
to increase in F (θ). But, in the case of obsute angle,
differences in F (θ) stronger than in the case of right
angle. For large values of R, big changes in F (θ)
occur in a thin layer near one wall.
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Figure 3. Effect of R on F (θ) Figure 4. Effect of R on F (θ)
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Figure 7. Effect of R on F (θ) Figure 8. Effect of R on F (θ)
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