•研究论文•

3-胺基取代苯并吡喃酮类化合物的设计合成及抗肿瘤活性

董环文 李 科 郑灿辉 刘 嘉 吕志良

李铁军 刘超美*

(第二军医大学药学院 上海 200433)

摘要 根据生物电子等排原理,设计并合成了一系列新颖的 3-胺基取代苯并吡喃酮类化合物.通过 ¹H NMR, ¹³C NMR, MS, IR 及元素分析确定其结构. 抗肿瘤活性测试结果表明,部分该系列化合物对人结肠癌细胞株 HCT116 和人肝癌细胞株 7721 具有较好的抑制活性,其中化合物 6c, 6f, 6i, 6m 和 6o 对人肝癌细胞株 7721 的半数抑制浓度(IC₅₀)值均小于对照品姜黄素(IC₅₀=10.53 μmol•L⁻¹),化合物 6f 对人结肠癌细胞株 HCT116 和人肝癌细胞株 7721 的 IC₅₀ 值分别为 5.57 和 4.92 μmol•L⁻¹,均小于姜黄素的相应值.

关键词 苯并吡喃酮; Buchwald-Hartwig 偶联反应; 抗肿瘤活性

Synthesis and Antitumor Activity of Novel 3-(Substituted Amino)chromone Derivatives

Dong, Huanwen Li, Ke Zheng, Canhui Liu, Jia Lü, Zhiliang Li, Tiejun Liu, Chaomei* (College of Pharmacy, Second Military Medical University, Shanghai 200433)

Abstract A series of new chromone analogues bearing a substituted arylamine moiety at position-3 were designed and synthesized by a key intermediate 3-iodo-7-methoxy-4*H*-chromen-4-one (**5**). All the synthesized compounds exhibited certain antitumor activities against two kinds of human tumor cell lines, colon cancer cell HCT116 and liver cancer cell 7721, *in vitro*. Five compounds (**6c**, **6f**, **6i**, **6m** and **6o**) were identified as the most promising candidates with the IC₅₀ values in the range of $4.92 \sim 12.59 \,\mu\text{mol}\cdot\text{L}^{-1}$. **Keywords** chromone; buchwald-Hartwig coupling reaction; antitumor activity

苯并吡喃酮类化合物具有抗肿瘤、抗病毒及抗氧化 等多种生物活性^[1,2],研究较多的有黄酮、异黄酮等^[3~5]. 构效关系研究表明,在苯并吡喃酮的3位有硫原子或氧 原子取代时,有利于提高化合物的抗肿瘤活性^[6,7],可能 因为该结构有助于化合物与受体的氢键结合^[8,9].

本文根据生物电子等排原理, 在苯并吡喃酮的 3 位 引入不同的取代胺基, 设计合成了 18 个目标化合物, 并 进行了结构表征, 其合成路线见图 1. 初步的抗肿瘤活 性测试结果表明, 部分该系列化合物对人结肠癌细胞株 HCT116和人肝癌细胞株 7721 具有较好的抑制活性, 其 中化合物 6c, 6f, 6i, 6m 和 6o 对人肝癌细胞株 7721 的抑 制活性均高于对照品姜黄素, 而化合物 6f 对人结肠癌 细胞株 HCT116和人肝癌细胞株 7721 的 IC₅₀ 值分别为 5.57和 4.92 μ mol·L⁻¹, 均小于姜黄素的相应值(分别为 9.50和10.53 μ mol·L⁻¹), 表明化合物 6f 对人结肠癌细胞 株 HCT116和人肝癌细胞株 7721 具有较高的抑制活性.

^{*} E-mail: liu_chaomei@hotmail.com Received October 3, 2008; revised November 24, 2008; accepted December 24, 2008.

Reagents and conditions: (a) Na, ethyl formate, ethyl ether, $0 \sim r.t.$, 18 h, 92.2%; (b) HOAc/conc.HCl, reflux, 30 min, 93.1%; (c) piperidine, CH₃OH, reflux, 3 h, 98.9%; (d) I₂, pyridine, CHCl₃, r.t., 20 h, 92.3%; (e) ArNH₂, Pd₂(dba)₃, rac-BINAP, Cs₂CO₃, dioxane, reflux, 18 h, 66.1% ~ 87.3%.

1 实验部分

1.1 仪器与试剂

核磁共振谱用 Bruker Spectrospin AC-P 300 型共振 仪测定, CDCl₃, DMSO-d₆为溶剂, TMS 为内标; ESI-MS 由 Finnigan LCQ^{EDCA} 质谱仪测定; 元素分析用 Yanaco Chncorder MT-3 型元素分析仪测定; 红外光谱用 Shimadzu-435 型红外光谱仪测定, KBr 压片; 熔点用 Yamato model MP-21 型熔点测定仪测定, 温度未经校 正. 人结肠癌细胞株 HCT116、人肝癌细胞株 7721 及 MTT 均购于 Sigma 公司; DMEM、胰蛋白酶及小牛血清 均购于 GIBCO 公司; 所用化学试剂均为市售分析纯.

1.2 化合物的合成

1.2.1 3-(2-羟基-4-甲氧基苯基)-3-氧代丙醛(2)的合成^[10,11]

金属钠(12.7 g, 552.2 mmol)放入干燥过的二甲苯 (100 mL)中,在剧烈搅拌条件下加热至钠熔融,降至室 温,倒出二甲苯,用无水乙醚洗涤(50 mL×2).将新制 备的钠砂置于无水乙醚(100 mL)中,剧烈搅拌,降至 0 ℃.氦气保护,向该混合液中慢慢滴加丹皮酚 1 (30.7 g, 184.9 mmol)和甲酸乙酯(40.9 g, 552.2 mmol)的无水乙醚 溶液(100 mL). 滴加完毕, 继续在 0 ℃搅拌 1 h, 然后升 至室温搅拌过夜. 将反应液倒入含 12.5%醋酸的冰水 (400 mL)中, 乙酸乙酯(200 mL×3)萃取, 合并有机相, 饱和食盐水洗涤, 无水硫酸钠干燥, 滤除干燥剂后滤液 经减压浓缩得淡黄色固体 32.9 g, 收率 92.2%, m.p. 121~122 ℃.

¹H NMR (300 MHz, CDCl₃) δ : 7.85 (d, *J*=9.0 Hz, 1H, ArH), 6.60 (dd, *J*=9.0, 1.8 Hz, 1H, ArH), 6.43 (d, *J*= 1.8 Hz, 1H, ArH), 5.84 (s, 1H, OH), 3.84 (s, 3H, OCH₃), 3.50 (s, 1H, OH), 2.93~2.98 (m, 2H, CH₂); ¹³C NMR (300 MHz, CDCl₃) δ : 196.5, 192.3 (C=O), 163.2, 160.8, 130.7, 112.5, 106.8, 101.6 (Ar), 55.6 (CH₃), 52.5 (CH₂); ESI-MS *m/z*: 194 (M+H)⁺.

1.2.2 7-甲氧基苯并吡喃-4-酮(**3**)的合成^[10,11]

将 3-(2-羟基-4-甲氧基苯基)-3-氧代丙醛(2) (33.0 g, 170.9 mmol)与醋酸(150 mL)和浓盐酸(10 mL)混合,在 100 ℃条件下加热 30 min. 减压蒸除醋酸,加入水(300 mL),碳酸氢钠调节到 pH=8. 二氯甲烷(200 mL×3) 萃取,合并有机相,饱和食盐水洗涤,无水硫酸钠干燥, 滤除干燥剂后滤液经减压浓缩得黄色固体,倒入无水乙 醚(100 mL),搅拌 10 min,过滤得到淡黄色固体 28.0 g, 收率 93.1%, m.p.105~106 ℃.

¹H NMR (300 MHz, CDCl₃) δ : 8.12 (d, *J*=9.0 Hz, 1H, ArH), 7.78 (d, *J*=6.3 Hz, 1H, C=CH—O), 6.98 (dd, *J*=9.0, 2.4 Hz, 1H, ArH), 6.84 (d, *J*=2.4 Hz, 1H, ArH), 6.28 (d, *J*=6.3 Hz, 1H, O=C—CH=C), 3.90 (s, 3H, CH₃); ¹³C NMR (300 MHz, CDCl₃) δ : 179.6 (C=O), 163.2, 157.6 (Ar), 142.1 (CH=CH), 128.7, 116.2, 110.6 (CH=CH), 107.5, 102.6 (Ar), 55.2 (CH₃); ESI-MS *m/z*: 177 (M+H)⁺.

1.2.3 (E)-N-[3-(2-羟基-4-甲氧基苯基)-3-氧代-1-丙烯 基]哌啶(4)的合成^[11]

7-甲氧基苯并吡喃-4-酮(**3**) (4.3 g, 24.4 mmol)和哌 啶(6.2 mL, 62.5 mmol)溶解到甲醇(50 mL) 中, 回流 3 h, 减压蒸干溶剂得固体, 倒入无水乙醚(20 mL), 搅拌 10 min, 过滤得到淡黄色固体 6.3 g, 产率 98.9%, m.p. 102~103 °C; ¹H NMR (300 MHz, CDCl₃) δ: 14.5 (s, 1H, OH), 7.81 (d, *J*=12.3 Hz, 1H, C=CH—N), 7.58 (d, *J*= 9.0 Hz, 1H, ArH), 6.41 (d, *J*=2.4 Hz, 1H, ArH), 6.37 (dd, *J*=9.0, 2.4 Hz, 1H, ArH), 5.78 (d, *J*=12.3 Hz, 1H, O= C—CH=C), 3.81 (s, 3H, CH₃), 3.38~3.40 (m, 4H, 2×CH₂), 1.66~1.69 (m, 6H, 3×CH₂); ¹³C NMR (300 MHz, CDCl₃) δ: 182.7 (C=O), 166.8, 160.2 (Ar), 151.7 (CH=CH), 130.2, 114.7, 102.8, 100.4 (Ar), 91.7 (CH= CH), 54.9 (CH₃), 48.7, 25.6 (CH₂); ESI-MS *m/z*: 262 (M+ H)⁺.

1.2.4 3-碘-7-甲氧基苯并吡喃-4-酮(5)的合成[11]

(E)-N-[3-(2-羟基-4-甲氧基苯基)-3-氧代-1-丙烯基] 哌啶(4) (6.4 g, 24.5 mmol)溶解到氯仿(40 mL)中, 然后 依次加入吡啶(2 mL, 25 mmol)、碘(12.7 g, 50.0 mmol), 室温搅拌过夜.加入饱和硫代硫酸钠溶液(15 mL), 搅拌 0.5 h. 分离出有机相, 水相用氯仿萃取(30 mL×3), 合 并有机相, 饱和食盐水洗涤, 无水硫酸钠干燥, 滤除干 燥剂后滤液经减压浓缩得粗产品. 硅胶柱层析[V(二氯 甲烷): V(乙酸乙酯)=5:1], 得淡黄色晶体 6.8 g, 产率 92.3%, m.p. 158~159 ℃ (文献^[12] m.p. 103~105 ℃).

¹H NMR (300 MHz, CDCl₃) δ : 8.23 (s, 1H, O—CH= C), 8.15 (d, *J*=9.0 Hz, 1H, ArH), 7.01 (dd, *J*=9.0, 2.4 Hz, 1H, ArH), 6.84 (d, *J*=2.4 Hz, 1H, ArH), 3.91 (s, 3H, CH₃); ¹³C NMR (300 MHz, CDCl₃) δ : 186.5 (C=O), 163.2 (Ar), 158.7 (CH=CH), 153.4, 130.7, 113.2, 106.5, 101.3 (Ar), 67.8 (CH=CH), 55.3 (CH₃); ESI-MS *m/z*: 303 (M+H)⁺. 1.2.5 3-取代胺基-7-甲氧基苯并吡喃-4-酮(**6a**~**6r**)的合成^[13]

在氦气保护下,将 3-碘-7-甲氧基苯并吡喃-4-酮(5) (300.0 mg, 1.0 mmol), 胺 (1.5 mmol), Pd₂(dba)₃ (183.1 mg, 0.2 mmol), rac-BINAP (186.8 mg, 0.3 mmol), Cs₂CO₃ (651.6 mg, 2.0 mmol)依次加入盛有无水 1,4-二氧六环 (20 mL)的单口烧瓶中,反应液加热到 80 ℃,搅拌过夜. TLC 跟踪反应,原料反应完后,降至室温,将反应液倒入水(20 mL)中,搅拌 10 min.过滤除去固体,滤饼用乙酸乙酯洗涤(20 mL×3),滤液用乙酸乙酯萃取(3×20 mL),合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,滤除干燥剂后滤液用旋转蒸发浓缩得到粗产物.硅胶柱 层析[*V*(甲醇):*V*(二氯甲烷)=1:30]得到目标化合物 **6a**~**6r**,其理化数据见表 1、表 2 和表 3.

1.3 抗肿瘤活性测试

MTT 法测细胞增殖抑制率:分别收集对数生长期的人结肠癌细胞株 HCT116、人肝癌细胞株 7721.种入96 孔培养板,每孔 100 µL,培养 24 h 后细胞贴壁,分别按设计加入药液,阴性对照用相应培养液代之,置5%CO₂,37 ℃的培养箱中继续培养 24 h.处理后的细胞,移去 DMEM 培养基,D-Hank's 液洗 2 次,每孔加入100 µL DMEM 培养基和 10 µL MTT (5 mg/mL),37 ℃ 孵育4 h.弃去液体,每孔加入100 µL DMSO,放置数分钟,使 MTT 结晶溶解,在酶标仪上 540 nm 处测吸收值.活性测试数据见表 4,图 2 和图 3.

图 2 化合物 6c, 6f, 6i, 6m 和 6o 抑制 HCT116 的存活率和剂 量依赖关系

Figure 2 Relationship of survival rate and dosage of compounds 6c, 6f, 6i, 6m and 6o against HCT116

图 3 化合物 6c, 6f, 6i, 6m 和 6o 抑制 7721 的存活率和剂量依 赖关系

Figure 3 Relationship of survival rate and dosage of compounds 6c, 6f, 6i, 6m and 6o against 7721

Table 1 Thysical data of darget compounds of a of							
Compd.	m.p./°C	Yield/%	Appearance	Elemental analysis (%, calcd.)			
				С	Н	Ν	0
6a	198~199	79.2	yellow powder	71.90 (71.93)	4.90 (4.88)	5.24 (5.25)	17.96 (17.95)
6b	192~196	68.1	yellow powder	72.58 (72.56)	5.37 (5.39)	4.98 (4.96)	17.06 (17.08)
6c	$176 {\sim} 178$	70.8	yellow powder	72.58 (72.57)	5.37 (5.35)	4.98 (4.99)	17.06 (17.03)
6d	193~194	87.3	yellow powder	72.58 (72.60)	5.37 (5.37)	4.98 (4.96)	17.06 (17.03)
6e	186~188	81.2	yellow powder	73.20 (73.18)	5.80 (5.79)	4.74 (4.73)	16.25 (16.26)
6f	213~216	80.7	yellow powder	74.28 (74.26)	6.55 (6.56)	4.33 (4.35)	14.84 (14.83)
6g	$201 \sim 203$	76.2	yellow solid	63.69 (63.70)	4.01 (4.00)	4.64 (4.65)	15.91 (15.89)
6h	192~196	78.1	yellow solid	63.69 (63.67)	4.01 (4.02)	4.64 (4.63)	15.91 (15.92)
6i	173~175	68.9	yellow solid	67.36 (67.38)	4.24 (4.25)	4.91 (4.90)	16.83 (16.85)
6j	220~223	73.3	yellow solid	59.65 (59.66)	4.12 (4.12)	8.18 (8.15)	28.04 (28.05)
6k	186~187	67.1	yellow solid	67.16 (67.18)	4.51 (4.52)	10.44 (10.45)	17.89 (17.87)
61	190~192	72.3	yellow solid	67.16 (67.19)	4.51 (4.50)	10.44 (10.42)	17.89 (17.90)
6m	$172 \sim 173$	75.7	yellow solid	67.16 (67.16)	4.51 (4.50)	10.44 (10.43)	17.89 (17.88)
6n	$206 \sim 209$	69.2	yellow solid	59.52 (59.53)	3.66 (3.67)	9.25 (9.23)	15.86 (15.84)
60	$184 {\sim} 186$	66.1	yellow solid	60.47 (60.46)	3.90 (3.92)	10.85 (10.86)	24.78 (24.77)
6р	212~214	67.7	yellow solid	64.96 (64.97)	5.77 (5.78)	8.91 (8.93)	20.36 (20.35)
6q	226~229	70.3	yellow solid	71.69 (71.70)	4.43 (4.42)	8.80 (8.81)	15.08 (15.05)
6r	$180 \sim 182$	73.2	yellow solid	68.00 (68.02)	6.93 (6.93)	5.66 (5.63)	19.41 (19.42)

表1 目标化合物 6a~6r 的理化数据 Table 1 Physical data of target compounds 6a~6r

表2 目标化合物 6a~6r 的¹H NMR, ESI-MS 和 IR 数据 Table 2 ¹H NMR, ESI-MS and IR data of target compounds 6a~6r

Compd.	¹ H NMR (300 MHz, CDCl ₃) δ	ESI-MS $(M+H^+)$	IR (KBr) ν/cm^{-1}
6a	7.55~7.71 (m, 2H, ArH), 7.25~7.37 (m, 2H, ArH), 7.05~7.07 (m, 3H, ArH), 6.67~6.68 (m, 2H, ArH), 4.52 (s, 1H, NH), 3.89 (s, 3H, CH ₃)	268	3562, 3250, 2824, 2131, 1733, 1635, 1435
6b	7.66~7.72 (m, 2H, ArH), 7.20~7.26 (m, 1H, ArH), 6.66~6.76 (m, 5H, ArH), 4.51 (s, 1H, NH), 3.88 (s, 3H, CH ₃), 2.35 (s, 3H, CH ₃)	282	3562, 3248, 2824, 2137, 1750, 1627, 1435
6c	7.66~7.72 (m, 2H, ArH), 7.20~7.25 (m, 1H, ArH), 6.67~6.89 (m, 5H, ArH), 4.51 (s, 1H, NH), 3.92 (s, 3H, CH ₃), 2.36 (s, 3H, CH ₃)	282	3567, 3250, 2819, 2173, 1714, 1627, 1429
6d	7.66~7.72 (m, 2H, ArH), 7.14~7.25 (m, 2H, ArH), 6.97~7.02 (m, 2H, ArH), 6.69~6.76 (m, 2H, ArH), 4.61 (s, 1H, NH), 3.92 (s, 3H, CH ₃), 2.32 (s, 3H, CH ₃)	282	3566, 3251, 2826, 2137, 1753, 1615, 1425
6e	7.53 \sim 7.72 (m, 2H, ArH), 7.16 \sim 7.25 (m, 2H, ArH), 6.97 \sim 7.01 (m, 2H, ArH), 6.66 \sim 6.76 (m, 2H, ArH), 4.53 (s, 1H, NH), 3.88 (s, 3H, CH ₃), 2.63 (q, <i>J</i> =7.5 Hz, 2H, CH ₂), 1.22 (t, <i>J</i> =7.5 Hz, 3H, CH ₃)	296	3553, 3251, 2824, 2132, 1730, 1631, 1432
6f	7.65~7.71 (m, 2H, ArH), 7.34~7.42 (m, 2H, ArH), 6.99~7.02 (m, 2H, ArH), 6.62~6.76 (m, 2H, ArH), 4.49 (s, 1H, NH), 3.92 (s, 3H, CH ₃), 1.30 (s, 9H, 3×CH ₃)	324	3562, 3237, 2821, 2135, 1723, 1665, 1431
6g	7.58~7.72 (m, 2H, ArH), 7.25~7.33 (m, 2H, ArH), 6.98~7.04 (m, 2H, ArH), 6.69~6.77 (m, 2H, ArH), 4.58 (s, 1H, NH), 3.89 (s, 3H, CH ₃)	302	3562, 3250, 2824, 2131, 1733, 1635, 1435
6h	$7.67 \sim 7.72$ (m, 1H, ArH), 7.58 (s, 1H, ArH), 7.29 (dd, $J=9.0$ Hz, $J=2.7$ Hz, 2H, ArH), $6.98 \sim 7.02$ (m, 2H, ArH), 6.75 (d, $J=9.0$ Hz, 1H, ArH), 6.69 (d, $J=2.7$ Hz, 1H, ArH), 4.62 (s, 1H, NH), 3.89 (s, 3H, CH ₃)	302	3562, 3256, 2824, 2131, 1734, 1635, 1435
6i	7.65~7.77 (m, 2H, ArH), 7.26~7.31 (m, 2H, ArH), 6.88~7.01 (m, 2H, ArH), 6.69~6.72 (m, 2H, ArH), 4.58 (s, 1H, NH), 3.89 (s, 3H, CH ₃)	286	3561, 3250, 2824, 2139, 1733, 1637, 1425
6j	7.66~7.72 (m, 2H, ArH), 7.26~7.50 (m, 3H, ArH), 6.74~6.78 (m, 2H, ArH), 4.57 (s, 1H, NH), 3.92 (s, 3H, CH ₃), 3.79 (s, 3H, CH ₃)	343	3560, 3250, 2831, 2117, 1733, 1635, 1436

_

佥	耒
->	1

823

Compd.	¹ H NMR (300 MHz, CDCl ₃) δ	ESI-MS $(M + H^+)$	IR (KBr) v/cm^{-1}
6k	8.03~8.30 (m, 2H, ArH), 7.58~7.63 (m, 2H, ArH), 6.85~6.94 (m, 2H,	269	3571, 3238, 2821, 2133,
	ArH), 6.65~6.71 (m, 2H, ArH), 4.71 (s, 1H, NH), 3.84 (s, 3H, CH ₃)		1737, 1639, 1430
	8.09~8.13 (m, 1H, ArH), 7.75~7.77 (m, 1H, ArH), 7.25~7.53 (m, 3H,		3561 3226 2827 2131
61	ArH), 6.76~7.18 (m, 2H, ArH), 6.28 (s, 1H, ArH), 4.73 (s, 1H, NH), 3.89	269	1739 1627 1421
	(s, 3H, CH ₃)		1757, 1027, 1421
6m	8.42~8.50 (m, 2H, ArH), 7.58~7.72 (m, 2H, ArH), 6.75~6.92 (m, 2H,	269	3571, 3252, 2827, 2130,
om	ArH), 6.66~6.69 (m, 2H, ArH), 4.76 (s, 1H, NH), 3.90 (s, 3H, CH ₃)	20)	1721, 1639, 1461
6n	7.61~7.72 (m, 2H, ArH), 7.26~7.31 (m, 2H, ArH), 6.98~7.04 (m, 1H,	303	3571, 3251, 2814, 2121,
on	ArH), 6.72~6.77 (m, 2H, ArH), 4.58 (s, 1H, NH), 3.89 (s, 3H, CH ₃)		1727, 1615, 1437
60	7.65~7.70 (m, 1H, ArH), 7.27 (s, 1H, ArH), 6.65~6.76 (m, 2H, ArH),	250	3565, 3231, 2834, 2133,
00	5.78~5.81 (m, 2H, ArH), 4.69 (s, 1H, NH), 3.89 (s, 3H, CH ₃)	237	1727, 1642, 1422
	7.65~7.70 (m, 1H, ArH), 7.27 (s, 1H, ArH), 6.65~6.76 (m, 2H, ArH),	315	3572 3253 2820 2136
6р	5.78 (d, 1H, ArH), 4.53 (s, 1H, NH), 3.89 (s, 3H, CH ₃), 1.35 (s, 9H,		1723 1639 1431
	$3 \times CH_3$)		1723, 1059, 1151
6a	8.77~8.78 (m, 1H, ArH), 8.03~8.06 (m, 1H, ArH), 7.53~7.77 (m, 6H,	319	3562, 3252, 2824, 2136,
υq	ArH), 6.69~6.77 (m, 2H, ArH), 4.51 (s, 1H, NH), 3.90 (s, 3H, CH ₃)	517	1737, 1636, 1435
6r	7.64~7.67 (m, 1H, ArH), 7.20~7.32 (m, 1H, ArH), 6.61~6.72 (m, 2H,	248	3562, 3250, 2832, 2131,
01	ArH), 5.21 (s, 1H, NH), 3.85 (s, 3H, CH ₃), 1.29 (s, 9H, 3×CH ₃)	240	1753, 1618, 1437

表3 目标化合物 6a~6r 的 ¹³C NMR 数据

Table 3	13 C NMR data of target compounds 6a ~ 6r

Compd.	13 C NMR (300 MHz, CDCl ₃) δ
6a	178.2 (C=O), 167.6, 156.3, 142.6, 130.8, 128.5 (Ar), 125.3, 122.5 (HC=C), 119.2, 116.3, 108.6, 102.8 (Ar), 58.9 (CH ₃ O)
6b	178.2 (C=O), 167.6, 156.5, 143.2, 131.6, 129.6, 128.3, 125.5 (Ar), 124.9, 122.3 (HC=C), 118.3, 116.2, 108.5, 103.6 (Ar), 55.8 (CH ₃ O), 16.2 (CH ₃)
6c	178.4 (C=O), 167.2, 157.6, 144.2, 139.1, 132.5, 128.2 (Ar), 126.5, 122.4 (HC=C), 118.6, 116.8, 116.2, 113.5, 109.2, 103.5 (Ar), 55.6 (CH2O), 25.1 (CH2)
6d	178.2 (C=O), 167.3, 159.2, 141.2, 131.2, 129.9, 128.6 (Ar), 126.6, 122.5 (HC=C), 116.3, 115.9, 109.6, 103.5 (Ar), 55.9 (CH2O) 24.9 (CH2)
6e	$(CH_3O)_{22}$ (C=O), 167.2, 158.2, 141.3, 131.6, 129.5, 127.3 (Ar), 126.1, 122.3 (HC=C), 116.3, 116.0, 109.2, 103.8 (Ar), 55.8 (CH_2O)_{32} (CH_2O)_{32} 1 (CH_2)_{14.8} (CH_2)
6f	(2-3, 5), $(2-2)$,
6g	178.3 (C=O), 167.2, 158.3, 145.1, 135.2, 131.3, 131.0 (Ar), 126.1, 122.3 (HC=C), 118.5, 116.2, 116.0, 114.2, 108.1, 130.2 (Ar), 55.9 (CH3O)
6h	178.4 (C=O), 167.1, 158.4, 143.1, 132.1, 127.9 (Ar), 125.1 (HC=C), 123.9 (Ar), 122.3 (HC=C), 117.7, 116.0, 109.2, 103.5 (Ar), 55.1 (CH3O)
6i	178.3 (C=O), 167.1, 158.1, 152.3, 140.1, 131.9 (Ar), 125.8, 122.5 (HC=C), 117.4, 116.2, 109.1, 103.2 (Ar), 55.2 (CH ₃ O)
6j	178.4 (C=O), 167.1, 158.2, 151.6, 136.1, 134.2, 131.8 (Ar), 126.9, 122.5 (HC=C), 117.4, 116.5, 110.1, 109.2, 103.9 (Ar) 55.6 (CH ₂ O)
6k	$(11, 50.0 (CH_3O))$ 178.5 (C=O), 167.4, 158.3, 148.1, 138.1, 131.4 (Ar), 128.0, 125.9 (HC=C), 116.3, 113.1, 109.6, 108.2, 103.8 (Ar), 55.1 (CH_3O)
61	178.2 (C=O), 167.3, 157.9, 138.4, 137.1, 133.9, 131.5 (Ar), 128.7, 126.4 (HC=C), 124.7, 122.8, 116.2, 109.2, 103.5 (Ar), 55.2 (CH ₃ O)
6m	178.2 (C=O), 167.5, 157.9, 155.2, 150.4, 131.2 (Ar), 128.4, 126.1 (HC=C), 116.2, 108.9, 103.5 (Ar), 55.3 (CH ₃ O)
6n	178.3 (C=O), 167.5, 158.2, 145.6, 139.5, 137.2, 131.9 (Ar), 128.6, 126.5 (HC=C), 123.5, 116.9, 109.6, 103.8 (Ar), 55.1 (CH ₃ O)
60	178.2 (C=O), 167.8, 158.4, 150.2, 138.9, 131.5 (Ar), 128.9, 126.3 (HC=C), 116.3, 108.9, 103.6 (Ar), 55.6 (CH ₃ O)
6p	178.5 (C=O), 167.2, 158.9, 150.1, 131.5 (Ar), 128.9, 126.9 (HC=C), 116.5, 109.8, 103.6, 95.2 (Ar), 55.8 (CH3O), 32.6 (C(CH3)2)
6q	178.3 (C=O), 167.2, 158.4, 142.5, 139.5, 137.2, 131.5, 128.9 (Ar), 127.6, 127.0 (HC=C), 126.2, 125.9, 124.1, 116.2, 109.6, 103.6 (Ar), 55.2 (CH3O)
6r	178.3 (C=O), 167.2, 158.3, 130.2 (Ar), 127.9, 126.1 (HC=C), 115.9, 108.8, 103.6 (Ar), 55.3 (CH3O), 51.2, 32.0 (C(CH3)3)

表4 目标化合物 6a~6r 的体外抗肿瘤活性数据 " Table 4 *In vitro* antitumor activity of target compounds 6a~6r

C	IC ₅₀ /(μι	$mol \cdot L^{-1}$)	Commit	$IC_{50}/(\mu mol \cdot L^{-1})$	
Compa.	HCT116	7721	Compa.	HCT116	7721
6a	31.91	26.14	6k	>50	>50
6b	30.46	28.89	61	23.84	34.44
6c	10.53	8.79	6m	12.05	7.95
6d	26.76	32.85	6n	26.13	29.0
6e	>50	>50	60	12.59	8.22
6f	5.57	4.92	6р	26.21	24.07
6g	27.70	24.78	6q	>50	>50
6h	>50	>50	6r	>50	>50
6i	11.61	9.29	Curcumin	9.50	10.53
6j	27.07	24.06			

^a HCT116: Human colon cancer cell; 7721: Human liver cancer cell.

2 结果与讨论

2.1 化合物的合成

以丹皮酚为初始原料, 经四步反应得到关键中间体 5, 总收率为 78.3%(文献^[12]方法收率 35.4%), 然后中间 体 5 与不同的胺发生 Buchwald-Hartwig 偶联反应^[13]得 到目标化合物. 该合成路线反应条件温和, 纯化简单, 产率理想. 在制备中间体 2 的过程中, 首先要把钠块制 成细小的钠砂, 以保证其充分反应, 并且有利于后处理 操作; 在应用 Buchwald-Hartwig 偶联反应制备目标化合 物(6a~6r)过程中要注意严格无水无氧操作,以保证较 高收率. 另外, 由于中间体 2 的亚甲基氢化学位移值范 围较大(δ: 2.93~2.98),并且峰型裂分较复杂,可能是存 在醇醛互变异构的原因;中间体 5 的熔点(m.p. 158~ 159 ℃)与文献^[12]值(m.p. 103~105 ℃)相差较大, 可能 是因为我们得到的中间体5为纯度较高、晶形较好的淡 黄色晶体, 而文献上给出的是淡褐色固体(a pale brown solid), 纯度和晶形可能偏差, 从而导致我们得到的中间 体5的熔点较文献值高(但氢谱数据基本一致).

2.2 目标化合物的抗肿瘤活性

大部分目标化合物对人结肠癌细胞株 HCT116 和人 肝癌细胞株 7721 表现出一定的抑制活性, IC₅₀ 值为 20~ 50 µmol•L⁻¹. 化合物 6c, 6f, 6i, 6m 和 6o 的活性较好, 其 对人结肠癌细胞株 HCT116 的 IC₅₀ 值分别为 10.53, 5.57, 11.61, 12.05 和 12.59 µmol·L⁻¹, 对人肝癌细胞株 7721 的 IC₅₀ 值分别为 8.79, 4.92, 9.29, 7.95 和 8.22 µmol·L⁻¹. 该 结果与对照品姜黄素的 IC₅₀ 值(分别为 9.50 和 10.53 µmol·L⁻¹)相当. 值得一提的是化合物 6c, 6f, 6i, 6m 和 6o 对人肝癌细胞株 7721 的抑制活性都比对照品姜黄素高, 并且化合物 6f 对这两个细胞株的抑制活性均高于对照 品姜黄素. 存活率和剂量依赖关系研究表明(图 2 和图 3), 化合物 6c, 6f, 6i, 6m 和 6o 对 HCT116 和 7721 的抑制活性均随给药浓度的增加而增大.

以上结果表明, 在苯并吡喃酮骨架的 3 位引入带有 不同取代基的氮原子有助于化合物的抗肿瘤活性. 该类 化合物的构效关系及进一步的生物活性测试结果将陆 续报道.

References

- 1 Cochet, C.; Feige, J. J.; Pimllet, F.; Keramidas, M.; Chambaz, E. M. *Biochem. Pharmacol.* **1982**, *31*, 1357.
- 2 Srivastava, A. K. Biochem. Biophys. Res. Commun. 1985, 131, 1.
- 3 Li, N.-G.; You, Q.-D.; Huang, X.-F.; Wang, J.-X.; Guo, Q.-L.; Chen, X.-G.; Li, H.-Y. Chin. J. Nat. Med. 2008, 6, 37.
- 4 Wiley, P. F. J. Am. Chem. Soc. 1952, 74, 4326.
- 5 Wang, B.-D.; Yang, Z.-Y.; Patrick, C.; Wang, D.-Q. J. Inorg. Biochem. 2007, 101, 1492.
- 6 Beutler, J. A.; Hamel, E.; Vlietinck, A. J.; Haemers, A.; Rajan, P.; Roitman, J. N.; Cardellina, J. H.; Boyd, M. R. J. Med. Chem. 1998, 41, 2333.
- 7 Huang, W.; Liu, M.-Z.; Li, Y.; Tan, Y.; Yang, G.-F. *Bioorg. Med. Chem.* 2007, 15, 5191.
- 8 Elzbieta, B.; Julita, G. W.; Remigiusz, Z.; Barbara, N. New J. Chem. 2002, 26, 1799.
- 9 Lee, J.; Park, T.; Jeong, S.; Kim, K. H.; Hong, C.-Y. Bioorg. Med. Chem. Lett. 2007, 17, 1284.
- 10 Kataoka, K.; Shiota, T.; Takeyasu, T.; Mochizuki, T.; Taneda, K.; Ota, M.; Tanabe, H.; Yamaguchi, H. J. Med. Chem. 1995, 38, 3174.
- 11 Lin, G.-Q.; Hong, R. J. Org. Chem. 2001, 66, 2877.
- David, A. V.; Andrew, D. W.; Charles, S. M.; Tracey, D. B.; Malcolm, F. G. S. J. Med. Chem. 2006, 49, 3973.
- 13 Xie, X.; Zhang, T.-Y.; Zhang, Z. J. Org. Chem. 2006, 71, 6522.

(A0810032 Lu, Y.; Fan, Y.)