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Abstract

Bus dwell time data collection typically involves labor-intensive ride checks. This
paper reports an analysis of bus dwell times that use archived automatic vehicle
location (AVL)/automatic passenger counter (APC) data reported at the level of
individual bus stops. The archived data provide a large number of observations that
serve to better understand the determinants of dwells, including analysis of rare
events, such as lift operations. The analysis of bus dwell times at bus stops is appli-
cable to TriMet, the transit provider for the Portland metropolitan area, and transit
agencies in general. The determinants of dwell time include passenger activity, lift
operations, and other effects, such as low floor bus, time of day, and route type.

Introduction

Bus dwell time data collection typically involves labor-intensive ride checks. This
paper reports an analysis of bus dwell times that use archived automatic vehicle
location (AVL)/automatic passenger counter (APC) data reported at the level of
individual bus stops. The archived AVL/APC data provides a rich set of dwell time
observations to better understand the determinants of dwells. In addition, the
large quantity of data allows analysis of rare events, such as lift operations. The
analysis of bus dwell times at bus stops was originally used to estimate delay asso-
ciated with bus lift use operations for passengers with disabilities in the Tri-County
Metropolitan Transportation District of Oregon (TriMet), the transit provider for
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the Portland metropolitan area (Dueker, et al. 2001). In addition, the analysis
yielded useful information about dwell times that has applicability to transit agen-
cies in general.

The estimated models provide a system-wide baseline. Stop-level, route-level, op-
erator-specific, and passenger boarding-level analyses can follow. This paper in-
cludes examples of applying the model results to simulate dwell times for different
times of day, route types, and various levels of passenger boardings and alightings.
The effects of fare payment method and bicycle rack usage on dwell times was
unable to be incorporated, but suggest how future research could extend the
model.

Prior Work

Literature on bus dwell times is sparse, due to the cost and time required for
manual data collection. Consequently, most prior analyses tend to be route-spe-
cific, focus on analyzing various issues causing bus delay, and are based on small
samples. Previous studies on dwell time have used ordinary least squares (OLS)
regression to relate dwell time to boardings and alightings, with separate equa-
tions estimated for different operating characteristics likely to affect dwell time.
Kraft and Bergen (1974) found that passenger service time requirements for AM
and PM peaks are similar, midday requirements are greater than those in peak
periods, boarding times exceed alighting times, and rear door and front door
alighting times are the same. They also found that dwell time is equal to 2 seconds
plus 4.5 seconds per boarding passenger for cash and change fare structures, and
1.5 seconds plus 1.9 seconds for exact fare.

Levinson’s (1983) landmark study of transit travel time performance reported
that dwell time is equal to 5 seconds plus 2.75 seconds per boarding or alighting
passenger. Guenthner and Sinha (1983) found a 10-20 second penalty for each
stop plus a 3-5 second penalty for each passenger boarding or alighting. However,
dwell time models based on small samples have low explanatory power, even when
controlling for factors such as lift activity, fare structure, and number of doors.
Guenthner and Hamet (1988) looked at the relationship between dwell time and
fare structure, controlling for the amount of passenger activity. Lin and Wilson
(1992) reviewed prior work and formulated a model of dwells as a function of
boardings, alightings, and interference with standees, which was then applied to
light rail transit dwells. Bertini and El-Geneidy (2004) modeled dwell time for a
single inbound radial route in the morning peak period in their analysis of trip
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level running time. They incorporated the results of the dwell time analysis directly
into the trip time model by estimating parameters for number of dwells and
number of boarding and alighting passengers.

Data Issues

Dwell time is defined as “the time in seconds that a transit vehicle is stopped for the
purpose of serving passengers. It includes the total passenger service time plus the
time needed to open and close doors” (HCM 1985).

In the past, dwell time data collection consisted of placing observers at highly
utilized bus stops to measure passenger service times, and by ride checks or on-
board observers for dwells at bus stops along routes. The ride check procedure as
prescribed in the Transit Capacity and Quality of Service Manual consists of the
following steps to collect field data for estimating passenger service times:

1. From a position on the transit vehicle, record the stop number or name at
each stop.

2. Record the time that the vehicle comes to a complete stop.
3. Record the time that the doors have fully opened.

4. Count and record the number of passengers alighting and the number of
passengers boarding. (The data collection form calls for front and rear
door specific counts).

5. Record the time that the major passenger flows end.

6. When passenger flows stop, count the number of passengers remaining
on board. (Note: If the seating capacity of the transit vehicle is known, the
number of passengers on board may be estimated by counting the num-
ber of vacant seats or the number of standees).

7. Record time when doors have fully closed.

8. Record time when vehicle starts to move. (Note: Waits at timepoints or at
signalized intersections where dwell is extended for cycle should be noted
but not included in the dwell time. Delays at bus stops when a driver is
responding to a passenger information request are everyday events and
should be included in the calculation of dwell time. Time lost dealing with
fare disputes, lost property or other events should not be included.)

9. Note any special circumstances. In particular, any wheelchair movement
times should be noted. Whether this is included in the mean dwell time
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depends on the system. Dwell times due to infrequent wheelchair move-
ments are often not built into the schedule but rely on the recovery time
allowance at the end of each run. The observer must use judgment in
certain cases. At nearside stops before signalized intersections the driver
may wait with doors open as a courtesy to any late-arriving passengers.
The doors will be closed prior to a green light. This additional waiting time
should not be counted as dwell time but as intersection delay time. (TCRP
1999)

Automating the collection of dwell time data through the employment of AVL
and APC technologies compromises the procedures outlined above. The dwell
time is measured as specified, but the time the bus stops and starts is not re-
corded, nor is the starting and stopping of passenger flows. Our analysis deleted
dwells of over 180 seconds (3 minutes). This censoring was done to purge the
analysis of dwells that are abnormal. Also, TriMet’s Automated Passenger Counters
(APC) record total boardings and alightings rather than door-specific counts.
Finally, there is no guarantee that operators will behave similarly in closing the
doors while awaiting for traffic to clear or traffic signals to change. These compro-
mises to the conventional measurement of dwell time are offset by the ability to
collect data on large numbers of dwells, with any “special circumstances” included
in the error term of OLS regression models.

Automating Collection of Dwell Time Data

Uses of Archived AVL/APC Data to Improve Transit Performance and Management
(Furth, et al. forthcoming), identifies the bus stop as the appropriate spatial unit
for data aggregation and integration. This integration of scheduled and actual
arrival time at the level of the individual stop is crucial for research on bus opera-
tions and control strategies. Integrating data at the bus stop level supports real
time applications, such as automated stop annunciation and next-stop arrival
time information. Importantly, if bus stop data are archived, operations perfor-
mance and monitoring analysis can also be supported (Furth, et al. forthcoming).

TriMet has automated the collection and recording of bus dwell time and passen-
ger activity at the bus stop level, and archives the data consistent with the TCRP
recommendations. TriMet operates 97 bus routes, 38 miles of light rail transit, and
5 miles of streetcar service within the tri-county Portland metropolitan region.
TriMet’s bus lines carry approximately 200,000 trips per day, serving a total popu-
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lation of 1.3 million persons within an area of 1,530 square kilometers (590 square
miles).

TriMet implemented an automated Bus Dispatch System (BDS) in 1997 as a part
of an overall operation and monitoring control system upgrade.

The main components of the BDS include:

1. AVL based upon differential global positioning system (GPS) technology,
supplemented by dead reckoning sensors

2. Voice and data communication system using radio and cellular digital
packet data (CDPD) networks

3. On-board computer and control head displaying schedule adherence in-
formation to operators and showing dispatchers detection and reporting
of schedule and route adherence

4. APCs on front and rear doors of 70% of vehicles in the bus fleet
5. Computer-aided dispatch (CAD) center

The BDS reports detail operating information in real time by polling bus location
every 90 seconds, which facilitates a variety of control actions by dispatchers and
field supervisors. In addition, the BDS collects detailed stop-level data that are
downloaded from the bus at the end of each day for post-processing. The archived
data provide the agency with a permanent record of bus operations for each bus
in the system at every stop on a daily basis. These data include the actual stop time
and the scheduled time, dwell time, and the number of boarding and alighting
passengers. The BDS also logs time-at-location data for every stop in the system,
whether or not the bus stops to serve passengers. This archived data forms a rich
resource for planning and operational analysis as well as research.

The GPS-equipped buses calculate their position every second, with spatial accu-
racy of plus or minus 10 meters or better. Successive positions are weeded and
corrected by odometer input. When the bus is within 30 meters of the known
location of the next bus stop (which is stored on a data card along with the
schedule), an arrival time is recorded. When the bus is no longer within 30 meters
of the known bus stop location, a departure time is recorded. If the door opens to
serve passengers, a dwell is recorded and the arrival time is overwritten by the time
when the door opens. Dwell time (in seconds) is recorded as the total time that
the door remains open.
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When passenger activity occurs, the APCs count the number of boardings and
alightings. The APCs are installed at both front and rear doors using infrared
beams to detect passenger movements. The APCs are only activated if the door
opens. The use of a lift for assisting passengers with disabilities is also recorded.
TriMet has used on-board cameras to validate APC counts (Kimpel, et al. 2003).
The validation procedures could be extended to include dwell time and the tim-
ing of passenger flows, and perhaps even fare payment if the video clips are not too

choppy.

The archived AVL/APC data have been used in various studies of operations con-
trol and service reliability (Strathman et al. 1999; Strathman et al. 2000; Strathman
et al. 2001a; Strathman et al. 2001b), for route-level passenger demand modeling
(Kimpel 2001), for models of trip and dwell time (Bertini and El-Geneidy 2004),
and for evaluating schedule efficiency and operator performance (Strathman, et
al. 2002).

Dwell Time Data

The data are from a two-week time period in September 2001 for all of TriMet’s
regular service bus routes. For this analysis, dwell time (DWELL) is the duration in
seconds the front door is open at a bus stop where passenger activity occurs. The
data were purged of observations associated with the beginning and ending points
of routes, layover points, and unusually long dwell time (greater than 180 sec-
onds)." Observations with vehicle passenger loads (LOAD) of over 70 persons
were also excluded, indicating the automatic passenger counter data were sus-
pect. Two weeks of data generated over 350,000 dwell observations. Even though
lift operations (LIFT) occur in less than one percent (0.7 %) of dwells, the number
of lift operations is large enough for a robust estimation of separate model (N =
2,347).

Table 1 presents descriptive statistics for variables used in the full-sample dwell
time model. The mean dwell time is 12.29 seconds, with a standard deviation of
13.47 seconds. On average, there were 1.22 boardings and 1.28 alightings per
dwell. Also, 61% of the dwells involved low floor buses. Dwells by time of day
(TOD) are 15% in morning peak period (6-9 AM) (TOD1), 41% in midday (9 AM
-3 PM) (TOD2), 17% in afternoon peak period (3-6 PM) (TOD3), 21% in evening
(6-10 PM) (TOD4), and 7% in late night and early morning (10 PM- 6 AM) (TODS5).
The mix of dwells by route type is 71% for radial, 4% feeder, and 25% cross-town.
Also, the average dwell occurs 2.36 minutes behind schedule (ONTIME).
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Table 1. Bus Dwell Time Descriptive Statistics

Determinants of Bus Dwell Time

Name Mean 5i. D, War. Min. Max.
DWELL 12,29 1347 187,42 200 1RO
QNS 132 1.99 394 Q.00 4,00
QM52 5.43 2579 B54.92 000 193600
OFFS 124 1.50 163 000 &7,00
OFF52 526 1522 T 000 2009.00
OMNTIME 2136 1.56 1270 a0 57.50
LIFT QL7 0081 azy a 1
LOw A1 [LEL 0.24 a 1
TN 15 035 .13 a 1
TR LS 049 024 a 1
T3 w7 037 0,14 a 1
TOHD 0 .44 0,16 i 1
TS oy s [illi’ a 1
RAD [y (L5 .21 i] 1
FEED O (1N} 0.0 i} 1
KTOWMN 025 i3 .19 a 1
FRICTION 1.719 4.5 1946 a 73

The analysis includes information derived from three separate but related samples:
(1) a full sample consisting of all observations; (2) a lift operation-only sub-sample;
and (3) a without lift operation only sub-sample.

Table 2 shows the effect of a lift operation on mean dwell time. Mean dwell times
for the sub-sample without lift operation average 11.84 seconds, while mean dwell
times for the sub-sample with lift operation average 80.70 seconds. The coefficient
of variation for dwell time with lift operation is 46.4%, and 100.7% for without lift
operation. An OLS model for the full sample of both lift and no lift operation had
a coefficient of 62.07 for a dummy variable for lift operation (LIFT).2 A Chow test
indicated that a separate model was needed for dwells where lift operations occur.
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Table 2. Bus Dwell Time Means

Dwell (seconds) Mean Time St. Dev. N

Sub-sample with lift operation 80.70 37.44 2,347
Sub-sample without lift operation 11.84 11.92 353,552
Both (full sample) 12.29 13.47 355,899

Dwell Time Estimation

Table 3 presents results of the model of the sub-sample without lift operation.
Dwell time is explained by boarding passengers (ONS), alighting passengers (OFFS),
whether the bus is ahead or behind schedule (ONTIME), if the bus is a low floor
bus (LOW), passenger friction (FRICTION)," time of day (TOD), and type of route
feeder (FEED) and cross-town (XTOWN) as compared to radial (RAD). The esti-
mation results indicate that each boarding passenger adds 3.48 seconds to the
base dwell time of 5.14 seconds (CONST) and each alighting passenger adds 1.70
seconds. Square terms of passenger activity are used to account for diminishing
marginal effects of additional boarding and alighting passengers on dwell time.
Each additional boarding passenger is estimated to take 0.04 seconds less, while
each additional alighting passenger takes 0.03 seconds less.> The negative coeffi-
cient of ONTIME indicates that dwell times tend to be less for late buses than for
early buses®. The CONST value of 5.14 seconds reflects the basic opening and
closing door process.

The other variables have small but significant effects. Time-of-day estimates are
referenced to the morning peak period (TOD1). Midday dwells (TOD2) are 1.36
seconds longer than morning peak dwells; afternoon peak dwells (TOD3) are 0.92
seconds longer than morning peak dwells; and evening period dwells (TOD4) are
1.25 seconds longer than morning peak dwells, while late evening and early morn-
ing period dwells (TODS5) are not significantly different than morning peak dwells.
The morning peak period is the most efficient in terms of serving passengers,
perhaps due to regular riders and more directional traffic. Regular riders may tend
to board using bus passes® and ask fewer questions. More directional traffic would
reduce the mix of boardings and alightings at the same stop.
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The type of route also affects dwell times. Feeder routes have 0.15 second longer
dwells than radials, the reference route type, and cross-town routes have 0.39
second shorter dwells than buses operating on radial routes.

Table 3. Bus Dwell Time Model: Without Lift Operation

Name Coeff. Std. Err. T-Ratio
ONS 3.481 0.015 231.90
ONS2 -0.040 0.001 -37.38
OFFS 1.701 0.015 113.00
OFFS2 -0.031 0.001 -29.11
ONTIME -0.144 0.005 -30.68
LOW -0.113 0.034 -3.30
FRICTION 0.069 0.005 12.92
TOD2 1.364 0.049 27.82
TOD3 0.924 0.059 15.77
TOD4 1.248 0.055 22.51
TODS5 0.069 0.076 0.91
FEED 0.145 0.086 1.70
XTOWN -0.388 0.039 -9.99
CONST. 5.136 0.051 99.96
N 353,552

AD). R2 0.3475

Lift Operation Effects

The estimated effect of a lift operation on dwell time in a full-sample model is
62.07 seconds. This lift operation effect is examined more closely in a separate
model of dwell times involving lift operations only.

Table 4 presents the results of the bus dwell time model for the sub-sample of lift
operation-only. The mean dwell time for lift operation-only dwells is 80.70 sec-
onds, and is explained by the same variables as the overall dwell time model, but
they differ and are less significant. For example, a low-floor bus reduces the dwell
time for lift operations by nearly 5 seconds. But the large CONST value of 68.86
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seconds indicates that the majority of time is for the lift operation itself. Boarding
activity is estimated to extend dwells at a diminishing marginal rate, while alighting
passenger activity does not substantially affect dwell time. However, wheelchairs,
walkers, and strollers may confound APCs. There are significant effects by time of
day, but they are not easily explained. Lift operations during the morning peak
(TOD1) take longer than lift operations at other times.

Table 4. Bus Dwell Time Model: With Lift Operation

Name Coeff. Std. Err. T-Ratio
ONS 10.206 0.488 20.91
ONS2 -0.359 0.029 -12.31
OFFS 0.513 0.396 1.30
OFFS2 -0.022 0.017 -1.33
ONTIME -0.037 0.176 -0.21
LOW -4.741 1.388 -3.42
FRICTION -0.234 0.208 -1.13
TOD2 -4.141 2.554 -1.62
TOD3 -6.271 2.869 -2.19
TOD4 -4,588 2.925 -1.57
TODS5 -14.447 4,542 -3.18
FEED 1.036 3.354 0.31
XTOWN -1.675 1.519 -1.10
CONST. 68.861 2.706 25.45
N 2,347

ADJ. R2 0.2848

An estimate of delay associated with lift operation can be used to modify arrival
time estimates provided to transit users at downstream stops. However, we have
three choices of delay estimates for lift operation. One is 62.07 seconds, the coef-
ficient on LIFT from the full model. Another is the difference between the mean of
all dwell time with lift operations (80.70 seconds) and without lift operations
(11.84 seconds). This difference is 68.86 seconds. The third choice is the effect of a
lift operation on running time from an earlier study of route running times
(Strathman, et al. 2001a). This third choice provides an estimate of the lift effect as
59.80 seconds. This smaller value indicates that before the end of their trip, opera-
tors make up some of the time lost due to lift operations.
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We recommend the middle estimate of 62.07 seconds (the coefficient on the LIFT
dummy variable from the full sample estimation) be selected as the delay estimate
at the outset of the lift event and that it be updated with the actual dwell time less
the mean dwell time without lift operation as the bus departs that stop. In this
manner, next stop bus arrival time estimates could be refined when impacted by
delays associated with lift operations. This would require a message from the bus
to the dispatch center at the onset of the lift operation and another at its conclu-
sion.

Low Floor Bus Effect

TriMet was also interested in the effect of low floor buses on dwells, particularly
dwells with lift operations. The dwell time model for the without lift operation
sub-sample yields an estimated effect of a low-floor bus of -0.11 seconds (-0.93%)
per dwell. A typical TriMet route has 60 bus stops. On an average bus trip, buses
actually stop at 60% of them. Thus, the 0.11 second reduction per dwell for a low
floor bus translates into a 3.96 second savings in total running time per trip.

The low floor bus effect is examined in a model of dwell times involving lift opera-
tions only. The mean dwell time for stops where the lift is operated is 80.70 sec-
onds. A low-floor bus reduces dwell time for lift operations by nearly 5 seconds
(4.74 or 5.8 %). The impact of low floor buses on dwell time with lift operation is
more substantial.

Simulation

Models can be used to simulate dwell times. The coefficients are multiplied by
assumed values of the variables that represent operating conditions of interest.
Table 5 presents simulated dwell times for various operating conditions. Although
the simulation produces precise dwell time estimates, the results should be viewed
in relative terms, because of large coefficients of variation in dwell time and the
explanatory power of the models are low (adjusted R2 values of 0.35 for without
lift operation and 0.28 for with lift operation).

The first condition simulated is a radial route in the AM peak period. Five boardings
(ONS) are assumed to load at a stop and there are no alightings (OFFS). The bus
is operating two minutes late. This simulation yields a dwell time estimate of 21.15
seconds. The second simulation is of a radial route in the PM peak operating with
five OFFS and no ONS. It also has 10 standees. The dwell time estimate is 13.99
seconds. In comparing the two estimates, a greater time associated with boardings
as compared to alightings is quantified. The third simulation is for a cross-town
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Table 5. Simulation of Bus Dwell Times

Name Coeff. Radial AM Radial PM Cross-Town
Inbound Outbound Midday
ONS 3.481 5 17.41 0.00 2 6.96
ONS2 -0.040 25 -0.99 0.00 4 -0.16
OFFS 1.701 0.00 5 8.50 2 3.40
OFFS2 -0.031 0 0.00 25 -0.78 4 -0.12
ONTIME -0.144 2 -0.29 5 -0.72 2.5 -0.36
LOW -0.113 1 -0.11 1 -0.11 0.00
FRICTION 0.069 0 0.00 10 1.04 0.00
TOD2 1.364 0.00 0.00 1 1.36
TOD3 0.924 0.00 1 0.92 0.00
TOD4 1.248 0.00 0.00 0.00
TODS5 0.069 0.00 0.00 0.00
FEED 0.145 0.00 0.00 0.00
CTOWN 0.145 0.00 0.00 1 0.15
CONST. 5.136 1 5.14 1 5.14 1 5.14
DWELLEST. 21.15 13.99 16.37
Lift Specific Model (w/lift only) Full Model (w/lift dummy)
Name Coeff. Midday Feeder Coeff. Midday Feeder
Service Service

ONS 10.206 2 20.41 3.551 2 7.10
ONS2 -0.359 4 -1.43 -0.042 4 -0.17
OFFS 0.513 1 0.51 1.703 1 1.70
OFFS2 -0.022 1 -0.02 -0.033 1 -0.03
ONTIME -0.037 -1 0.04 -0.145 -1 0.14
LOW -4.741 0.00 -0.143 62.07
LIFT . . . 62.07 1 0.00
FRICTION -0.234 0.00 0.067 0.00
TOD2 -4.141 1 -4.14 1.352 1 1.35
TOD3 -6.271 0.00 0.902 0.00
TOD4 -4.588 0.00 1.231 0.00
TODS5 -14.447 0.00 -0.013 0.00
FEED 1.036 1 1.04 0.148 1 0.15
CTOWN -1.675 0.00 -0.390 0.00
CONST. 68.861 1 68.86 5.117 1 5.12
DWELLEST. 85.26 77.43
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route in the midday at a stop with two ONS and two OFFS and running 2.5
minutes late. This produces an estimated dwell time of 16.36 seconds.

Table 5 also contains two simulations of a lift operation with two ONS and two
OFFS on a feeder line in the midday period with a bus that is running one minute
early. This condition is estimated using the lift specific model (dwell estimate of
85.26 seconds) and using coefficients from the full-sample model with a lift dummy
variable (77.43 seconds). The difference in estimates is less than the standard de-
viations of either sample.

For a better understanding of boarding and alighting passenger activity, two addi-
tional sub-samples were drawn. Both are for radial routes with no lift operation.
One was AM peak period dwells with boardings but no alightings, and the other
was PM peak period dwells with alightings but no boardings. This allows the
estimation of parameters for boardings and alightings that are not confounded
by a mixture of boardings and alightings. Table 6 is the dwell time model for
boardings only and Table 7 the model for alightings only. The parameter for
boardings is 3.83 seconds per boarding passenger and the parameter for alightings
is 1.57 seconds per alighting passenger. Again, both parameters have a significant
square term that indicates a declining rate for each additional passenger. Simula-
tions for 1, 2, 5, 10, and 15 boarding passengers are contained in Table 8, and
simulations for alighting passengers are contained in Table 9. Both simulations
assumed an average lateness (ONTIME) value of 1.56 minutes for the boarding
passenger sub-sample and 4.46 minutes for the alighting passenger sub-sample.
Both simulations also assumed a low floor bus and a bus load of less than 85
percent of capacity. The simulations calculate dwell time in seconds for various
boarding and alighting passengers. For instance, dwell time for five boarding pas-
sengers is estimated to be 21.01 seconds (from Table 8) and is estimated to be
12.75 seconds for five alighting passengers (from Table 9). These two simulations
illustrate the benefit of working with large amounts of data that is made possible
by automated data collection. We were able to select route type, time of day, and
dwells with boardings or alightings, but not both.

Comparison of the simulation of five boarding passengers in Tables 5 and 8 yield
results that are within a second. Focusing on just the boarding passengers, param-
eters for the basic stop (CONST) is 4.05 seconds versus 5.14, 19.12 seconds versus
17.41 to board five passengers, and -1.45 versus -0.99 seconds for the diminishing
effect of the multiple of five passengers. Similarly, the comparison of five alighting
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passengers in Tables 5 and 9 yield results that are within a second when comparing
only the alighting times and the constant.

Again, the results of the simulation should be used in comparing scenarios and
not be used for precise estimates of dwells.

Table 6. Bus Dwell Time Model: Boardings Only - AM Peak Period

Name Coeff. Std. Err. T-Ratio
ONS 3.825 0.063 61.000
ONS2 -0.058 0.005 -11.340
FRICTION 0.040 0.014 2.845
ONTIME -0.164 0.020 -8.021
LOW -0.464 0.103 -4.483
CONST. 4.054 0.126 32.230
N 16,509

AD). R2 0.3819

Table 7. Bus Dwell Time Model: Alightings Only - PM Peak Period

Name Coeff. Std. Err. T-Ratio
OFFS 1.566 0.057 27.610
OFFS2 -0.016 0.006 -2.703
FRICTION 0.119 0.012 10.150
ONTIME -0.046 0.008 -5.971
LOW 0.523 0.079 6.651
CONST. 5.001 0.100 49.850
N 18,098

ADJ. R2 0.1616
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Table 8. Simulation of Bus Dwell Times by Number of Boardings
AM Peak Period

Boardings

Name Coeff. 1 2 5 10 15
ONS 3.825 3.82 7.65 19.12 38.25 57.37
ONS2 -0.058 -0.06 -0.23 -1.45 -5.80 -13.04
FRICTION 0.040

ONTIME -0.164 -0.26 -0.26 -0.26 -0.26 -0.26
LOW -0.464 -0.46 -0.46 -0.46 -0.46 -0.46
CONST. 4.054 4.05 4.05 4.05 4.05 4.05
TOTAL DWELL 7.10 10.75 21.01 35.79 47.67

Table 9. Simulation of Bus Dwell Times by Number of Alightings
PM Peak Period

Alightings

Name Coeff. 1 2 5 10 15
ONS 1.566 1.57 3.13 7.83 15.66 23.49
ONS2 -0.016 -0.02 -0.06 -0.39 -1.58 -3.55
FRICTION 0.119

ONTIME -0.046 -0.21 -0.21 -0.21 -0.21 -0.21
LOW 0.523 0.52 0.52 0.52 0.52 0.52
CONST. 5.001 5.00 5.00 5.00 5.00 5.00
TOTAL DWELL 6.87 8.39 12.75 19.40 25.26
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Discussion

The original purpose of this research was to identify the effects of delay that occur
at unexpected times, such excess dwell time resulting from bus lift operations.
Our research provides an estimate of delay at the time of initiation of the occur-
rence, which needs to be updated with the actual time of delay at the ending time
of the occurrence. This research provides a basis for shifting from predicting tran-
sit bus arrival times for customers based on normal operating conditions to one
that predicts transit vehicle arrival time when operating conditions are not nor-
mal (Dueker, et al. 2001).

An ancillary benefit of this research identified the general determinants of bus
dwell time. As expected, passenger activity is an important determinant. In addi-
tion, the archived AVL/APC data provided a large sample size that allowed exami-
nation of determinants, such as low floor buses, time of day, and route type
effects, and allowed estimation of a separate model for dwells with lift operation
only.

Automation of dwell time data collection results in a tradeoff of labor-intensive
direct observation but small sample data with the large samples of more consis-
tent data. While directly observing door-specific passenger activity, fare payment
method, and unproductive door opening time, as called for in the Transit Capac-
ity and Quality of Service Manual, improvements in automated data collection
may be able to deal with these issues. For example, integration of farebox and
bicycle rack with a BDS data collection system is possible in the future. This would
deal with the effect of fare payment method and use of the bicycle rack on dwell
time. In addition, validation of dwell time data is needed. TriMet has validated its
APC data by viewing on-board video camera data. This procedure could be ex-
tended to record the time of passenger activity to the door opening time from the
automated data.” This would provide evidence to determine a better cutoff value
for maximum dwell time. The current value of 180 seconds is too arbitrary; it
needs to be replaced with a value that includes most passenger activity and re-
duces the amount of unneeded door opening time. In addition, the validation
procedure could include observation of fare payment method and bicycle rack
use prior to integration at the hardware level.
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Endnotes

' Long dwells are likely to be associated with vehicle holding actions or operator
shift changes, and thus should be excluded from the analysis.

2 Table 5 contains coefficients of the full-sample dwell time model.

3 A passenger friction factor was constructed to account for passenger activity on
buses with standees. It was posited that heavily loaded buses have greater dwell
times. A proxy variable was constructed by adding ONS, OFFS, and STANDEES.
STANDEES are the number of passengers when LOAD minus 85% of bus capacity
is positive. LOAD is an APC calculated number that keeps a running count of ONS
and OFFS.

“ Kraft and Deutschman (1977) did not find any difference in the average service
time for each successive passenger to board.

> Operators tend to hurry to regain schedule adherence.

¢ The farebox is not integrated with the BDS, so we do not know the proportion
of cash paying boarding passengers at the stop level.

7 Kraft and Deutschman (1977) used photographic studies of passenger move-
ments through bus doors.
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