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The emphasis of this research effort was on using AVL and APC dynamic data to
develop a bus travel time model capable of providing real-time information on bus
arrival and departure times to passengers (via traveler information services) and to
transit controllers for the application of proactive control strategies. The developed
model is comprised of two Kalman filter algorithms for the prediction of running
times and dwell times alternately in an integrated framework. The AVL and APC
data used were obtained for a specific bus route in Downtown Toronto. The perfor-
mance of the developed prediction model was tested using “hold out” data and other
data from a microsimulation model representing different scenarios of bus opera-
tion along the investigated route using the VISSIM microsimulation software pack-
age. The Kalman filter-based model outperformed other conventional models in
terms of accuracy, demonstrating the dynamic ability to update itself based on new
data that reflected the changing characteristics of the transit-operating environ-
ment.

A user-interactive system was developed to provide continuous information on the
expected arrival and departure times of buses at downstream stops, hence the ex-
pected deviations from schedule. The system enables the user to assess in real time
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transit stop-based control actions to avoid such deviations before their occurrence,
hence allowing for proactive control, as opposed to the traditional reactive control,
which attempts to recover the schedule after deviations occur.

Introduction
Recently, a growing interest has been developing in various Advanced Public Trans-
portation Systems (APTS) solutions that mainly aim at maximizing transit system
efficiency and productivity using emerging technologies. Examples of such ad-
vanced technologies include Automatic Vehicle Location (AVL) and Automatic
Passenger Counting (APC) systems.

Several researchers (Kalaputapu and Demetsky 1995; Lin and Zeng 1999; Wall and
Dailey 1999) have used AVL (and less often APC) data to develop models specifi-
cally for bus travel time prediction. The motivation for developing these models
was mostly for providing information to transit riders on expected bus arrival
times with virtually no sensitivity of such models to operations control strategies.
Thus, these models included very simple independent variables such as historical
link travel times, upstream schedule deviations, and headway distributions, in
addition to the current location of the next bus.

This study develops a dynamic bus arrival/departure time prediction model, using
AVL and APC information, for dynamic operations control and dissemination of
real-time transit information. The study is part of a larger project that aims at
developing an integrated system for dynamic operations control and real-time
transit information. Currently, almost all transit operators implement control
strategies, such as bus holding and expressing, after detecting schedule/headway
deviations in the system, hence reactive in nature. The proposed system (shown in
Figure 1) takes a proactive approach to operations control that would enable the
controller to implement preventive strategies before the actual occurrence of
deviations. This innovative approach requires the use of arrival/departure time
models sensitive to the considered control strategies (mainly stop-based strate-
gies). This research study focuses on developing a model of such characteristics.
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Figure 1. Integrated Operations Control and Information-
Dissemination System

Data
The data used for this study were collected from bus route Number 5 in the
Downtown Toronto area in May 2001. The route length is approximately 6.5 km,
spanning 27 bus stops in each direction, 6 of which are time-point stops located
at points of high passenger demand (e.g., major intersections). The route starts at
the Eglinton subway station stop in the north and ends at the Treasury stop in the
south during the morning peak period. At the other times of the day, the route
ends further south at the Elm stop. There are 21 signalized intersections along the
route, 10 of which are actuated SCOOT system signals. The schedule headway
during the AM and PM peak periods is 12 minutes, increasing to 30 minutes
during off peak. For the duration of the study (five weekdays in May 2001), the
Toronto Transit Commission (TTC) assigned 4 buses to the route, each fitted with
a GPS (Global Positioning System) receiver and an APC (Automatic Passenger
Counter). Each time the bus stopped, the bus location was recorded using the
GPS receiver. Also, the numbers of passengers boarding and alighting at bus stops
were recorded using the APC. The route was segmented into 5 links in each direc-
tion, with each link starting and ending at two consecutive time-point stops. The
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links range from 0.40 to 1.7 km in length, depending on the spacing between the
time-point stops, and may include 2 to 8 minor bus stops. This study focused on
modeling travel times along those links for the morning peak-hour bus opera-
tion.

Approach
As implied earlier, most of the models found in the literature (e.g., Kalaputapu and
Demetsky 1995; Lin and Zeng 1999; Wall and Dailey 1999; Farhan et al. 2002) have
included bus dwell times along any link in the travel time of that link (i.e., link travel
time includes running plus dwell times).  As such, these models cannot consider
explicitly the effect of late or early bus arrivals at bus stops on the dwell times at
those stops and vice versa. Ignoring such relationship yields these models insensi-
tive to the effects of variations at upstream bus stops, such as demand surge, bus
holding strategy, and bus expressing strategy, etc., on downstream bus arrivals
and subsequent dwell times. The approach taken in this study addresses this issue.

Conceptual Framework
The link running time and bus dwell time are modeled separately in this study but
in a consistent single modeling framework. It is assumed that real-time informa-
tion on vehicle location, numbers of boarding and alighting passengers at bus
stops, and bus arrival and departure times is known from the AVL and APC sys-
tems. The prediction modeling system consists of two separate algorithms, each
based on the Kalman filter method. To predict the bus running time along a
particular link at instant k+1, the first algorithm, Link Running Time Prediction
Algorithm, makes use of the last three-day historical data of the bus link running
time for the instant of prediction k+1, as well as the bus link running time for the
previous bus on the current day at the instant k. The study used data for the
previous three days only as this was deemed practical, given the limited historical
data available for the study. Obviously, in real-world applications, the algorithm
can make use of longer ranges of historical data. The second algorithm, Passenger
Arrival Rate Prediction Algorithm, employs similar historical data of passenger ar-
rival rate. To predict the dwell time at a particular stop, the predicted arrival rate is
simply multiplied by the predicted headway (i.e., the actual arrival time of the last
bus minus the predicted arrival time of the next bus) and by the passenger board-
ing time (assumed 2.5 seconds per passenger).
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Separating the bus dwell time prediction from bus running time prediction in this
modeling framework enhances the model’s ability to capture the effects of late-
ness or earliness of bus arrivals at stops on the bus dwell time at those stops, and
hence the bus departure from such stops. This is simply because bus dwell time at
a stop is affected by the actual arrival time of the bus at that stop, particularly for
high frequency transit routes where passengers are expected to arrive at a nearly
constant rate (i.e., the later the bus, the longer the dwell time and vice versa). In
addition, since the model treats dwell time separately, it is sensitive to stop-based
control strategies such as bus holding and expressing.

In order to better understand the prediction-modeling framework, Figure 2 shows
a schematic of a hypothetical transit route. The route is divided into a number of
links between bus stops. When the transit bus n leaves stop i, the actual departure
time is known from the AVL system. At this instant, the Kalman filter prediction
algorithm for link running times will predict the next link running time RTn (i,i+1).
Subsequently, the predicted arrival time of the bus at the downstream bus stop
i+1 can be determined.

Figure 2. Schematic of a Bus Route with Several Stops

Assuming that bus n is currently at stop i
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This predicted arrival time ATn (i+1) is used to predict the dwell time for bus n at
stop i+1 based on the passenger arrival rate and the average passenger boarding
time at stop i+1.
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Where:

DWTn (i+1) is the predicted dwell time for bus n at stop i+1

88888 
(i+1)

represents the predicted passenger arrival rate at stop i+1 from
Kalman filter prediction algorithm

AT
n-1

 
(i+1)

is the actual arrival time of the previous bus n-1 at stop i+1

[ATn (i+1) - ATn-1 (i+1)] is the predicted headway for bus n at stop i+1

DDDDDavg (i+1) represents average passenger boarding time at stop i+1, assumed
to be 2.5 seconds/passenger.

In equation (2), the assumption is that the boarding passengers at each bus stop
have a significant effect on bus dwell time at that stop, compared with alighting
passengers. The time points used in this study, for which equation (2) applies, are
located at high demand spots (i.e., subway station and major intersections) where
stop skipping because of no passenger demand is extremely rare. If stop skipping
at a particular time point were frequent, equation (2) would need to be modified
to address this problem.

Having the arrival time and dwell time for bus n at stop i+1 predicted, it is now easy
to calculate the predicted departure time for bus n from stop i+1 by adding the
predicted arrival time to the predicted dwell time at stop i+1.
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Where:

DTn (i+1) is the predicted departure time for bus n from stop i+1
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This departure time prediction DTn (i+1) is a function of both arrival time predic-
tion and dwell time prediction at stop i+1. Hence, the effect of any variations in
bus operation (i.e., bus early or late) could be captured in this stop and will be
reflected on all downstream bus stops.

Similarly, predictions of arrival times and departure times at all downstream stops
can be computed while the bus is still at stop i. This process is updated every time
the bus leaves or arrives at a new time-point stop.

Kalman-Filter Prediction Algorithms
As mentioned above, the prediction modeling system consists of two Kalman
flter algorithms.  In general, the Kalman flter is a linear recursive predictive update
algorithm used to estimate the parameters of a process model. Starting with initial
estimates, the Kalman flter allows the parameters of the model to be predicted
and adjusted with each new measurement. Its ability to combine the effects of
noise of both the process and measurements, in addition to its easy computa-
tional algorithms, has made it very popular in many research fields and applica-
tions, particularly in the area of autonomous and assisted navigation (for further
information on Kalman filters, see Maybeck 1979).

The main assumption used in developing the Kalman filters is that the patterns of
the link running time and passenger arrival rate at stops are cyclic for a specific
period of day. In other words, knowledge of the link travel time and number of
passengers waiting for a specific bus in a certain period of time will allow one to
predict these variables for the next bus during the same period, so long as condi-
tions remain steady. When conditions change (e.g., demand surge at a stop and/
or an incident occurred at a link), the model can update the effect of the new
conditions on the predictions, so long as the new conditions persist for a suffi-
cient length of time (at least one headway length).

The Kalman filter algorithm works conceptually as follows. The last three-day
historical data of actual running times along a particular link at the instant k+1
plus the last running time observation at the instant k on the current day are used
to predict the bus running time at the instant k+1. Similarly, passenger arrival rates
of the previous three days at the instant k+1 plus the passenger arrival rate at the
instant k on the current day are used to predict the passenger arrival rate at the
instant k+1. The historical passenger arrival rate is obtained from the APC data as
in this fashion: The number of on-passengers at a bus stop is divided by the most
recent headway (i.e., the arrival time of the previous bus minus the arrival time of
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the current bus). Below are the equations used for the Kalman filter prediction
algorithms.

Link Running Time Prediction Algorithm
Generally, a Kalman filter algorithm for bus link running time has the following
structure (Reinhoudt and Velastin 1997):

(4)

a(k + 1) = 1 – g(k + 1) (5)

e(k +1) = VAR[datain] AAAAA g(k + 1) (6)

P(k + 1) = a(k+1) AAAAA art(k) + g(k+1) AAAAA art
1
(k + 1) (7)

where:

g equals the filter gain

a is the loop gain

e represents filter error

p equals prediction

art(k) is actual running time of the previous bus at instant (k)

art
1
(k+1) is actual running time of the previous day at instant (k+1)

VAR[data out] equals the prediction variance

VAR[data 
in

] is the last three days “art3(k+1), art2(k+1) and art1(k+1)”
variance



Prediction Model of Bus Arrival and Departure Times Using AVL and APC Data

4 9

The input variance VAR[datain]  is calculated at each instant k + 1 using the actual
running time values for the last three days:  art1 (k + 1), art2 (k + 1) and art3 (k + 1):

VAR[datain]  = VAR[art1(k + 1),art2(k + 1),art3(k + 1)] (8)

where:

art1 (k+1) is the actual running time of the bus at instant (k+1) on
the previous day

art
2 

(k+1) is the actual running time of the bus at instant (k+1)
two days ago

art
3 

(k+1) is the actual running time of the bus at instant (k+1)
three days ago

The definition of the variance for a random variable is:

VAR[X] = E[(X – E[X])2]                                                                                          (9)

             (10)

Now the variance can be calculated as shown in equation (14):

∆1 = [art1(k+1) – avg(art)]2               (11)

∆2 = [art2(k+1) – avg(art)]2               (12)

∆
1
 = [art

3
(k+1) – avg(art)]2               (13)

             (14)
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VAR[dataout] is based on the model prediction output and the corresponding
future observation. Both pieces of data are not available, since the prediction is
not made yet and the future trip has not been made either. Ideally, VAR[data

out
]

should be equal to VAR[datain] for good prediction performance (Maybeck 1979).
Now, a new variance is introduced VAR[localdata]. It is equal to the variance of the
input and output data.

VAR[local
data

] =  VAR[data
in

] = VAR[data
out

]               (15)

and equations (4) and (6) become:

              (16)

e(k + 1) = VAR[localdata] AAAAA g(k + 1)               (17)

Now it becomes easy to implement the actual Kalman filter algorithm to predict
the bus running times along the links. The order of applying the equations should
be (16), (5), (17), and (7).

Passenger Arrival Rate Prediction Algorithm
A Kalman filter algorithm was also developed to predict the passenger arrival rate
using data from the APC and AVL systems.  At the prediction instant k+1, the
historical passenger arrival rates (at instant k+1 of the previous three days and
instant k of the current day) at a particular stop are computed based on the
number of corresponding boardings divided by the actual previous headway.
Similar equations to those of the running time Kalman filter were developed and
used to predict the passenger arrival rate at instant k+1.
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Model Performance Evaluation
In order to assess the predictive performance of the Kalman filter model, it is
compared with three previously developed models for the same route. They in-
clude historical average model, regression model, and an artificial neural network
(specifically, Time Lag Recurrent Network [TLRN]). A more detailed exposition of
the models can be found elsewhere (Farhan et al. 2002). Similar to most models
found in the literature, the regression and TLRN models predict individual link
travel times, which include running plus dwell times. Another distinct feature of
those models is their static nature, in that the model parameters are not updated
with new available data. As mentioned earlier, the AVL and APC data for the study
route were available for five consecutive days. The regression and TLRN models
were developed using data of four days only, with the fifth day’s data held out for
testing.

Four testing datasets were used for the comparison; the first set includes the hold
out data of the fifth day of observations, while the remaining three sets include
artificial data collected from three different bus operation scenarios representing:
normal-condition bus operation, special-event scenario where there is a demand
surge on transit service, and lane-closure scenario where one lane on a specific link
is blocked (e.g., due to an accident or construction work). In contrast to the hold
out data and normal condition scenario, the lane closure and special event sce-
narios represent atypical conditions. Because real-world data of such conditions
are hard to obtain, the VISSIM traffic microsimulation software was used to simu-
late these scenarios. Simulation of the entire corridor, calibration results and simu-
lation of the scenarios are described elsewhere (Farhan 2002). After each simula-
tion run, all the necessary data required for model testing was extracted and ana-
lyzed. Three prediction error measurements were computed for all developed
models to test the model performance (Okutani and Stephanedes 1984). These
error indices include:

Mean relative error (gggggmean), which indicates the expected error as a fraction of the
measurement

              (18)
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Root squared relative error (gggggrs), which captures large prediction errors

(19)

Maximum relative error (gggggmax
), which captures the maximum prediction error

              (20)

where:

N is the number of samples (here N=50) X true(t) = measured value
at time t

X pred (t) is the predicted value at time t.

Table 1.  Relative Error Results of the Prediction Models
Using “Hold Out” Data
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Table 1 shows the three error measures gmean, grs, gmax for the hold out dataset,
while Figure 3 (a, b, c) summarize the performance of the three prediction models
for each simulated scenario. Obviously, the lower the error, the better the model
performance.

Figure 3. Relative Error Results of the Prediction Models
Using Artificial Data (a, b, c)

(a)

         Normal Condition Scenario

Total Historical Avg Regression Neural Network Kalman Filter
ε mean 0.330 0.124 0.111 0.097
ε rs 0.305 0.132 0.120 0.124
ε max 1.253 0.695 0.584 0.299
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(c)

        Special Event Scenario

Total Historical Avg Regression Neural Network Kalman Filter
ε mean 0.679 0.218 0.220 0.123
ε rs 0.685 0.240 0.239 0.127
ε max 1.411 0.998 0.830 0.349

(b)

         Lane Closure Scenario

Total Historical Avg Regression Neural Network Kalman Filter
ε mean 0.881 0.392 0.316 0.232
ε rs 0.933 0.428 0.442 0.349
ε max 2.362 1.324 0.830 0.547
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Discussion
The results summarized in Table 1 show that for all links, the Kalman flter model
provides the minimum value for the error measures gggggmean, gggggrs, gggggmax, pointing to the
fact that its performance was the best compared with the other prediction mod-
els, except for link #4 where the regression and TLRN models perform slightly
better than the Kalman flter model.

Table 1 and Figure 3 (a, b, c) shows there is no significant difference in the perfor-
mance of the regression and artificial neural network models for the three differ-
ent scenarios. Both models give similar performance results for each scenario;
their accuracy performance decreased for the special event and lane closure sce-
narios. But in general, the artificial neural network model always gives lower values
for the relative error indices.

The Kalman filter model shows the best prediction performance in the simulated
scenarios. In particular, it showed superior performance to the other models in
the special event and lane closure scenarios. These results show the superior per-
formance of the Kalman filter model compared with other prediction models in
terms of relative error.  The results also demonstrate how this model can capture
dynamic changes due to different bus operation characteristics.

In addition to its highly accurate performance in dynamic environments, the
model has the advantage of capturing the effects of control strategies, such as
holding and expressing at upstream bus stops.  For example, if the bus is currently
at a time point where it will be held for an additional one minute, the model
appropriately captures the effect of this extra time on the arrival time at the next
bus stop and the dwell time at the next stop (which is function of number of
passengers waiting at that bus stop when the bus is predicted to arrive) and so
forth for the prediction of arrival and dwell times at subsequent stops.

User-Interactive Decision Support System
The developed arrival/departure time prediction model was used to build a DSS
(Decision Support System) for dynamic control. This system simply uses the time-
table of the time points to develop a time profile for each scheduled trip along the
route (i.e., schedule travel time profile; see Figure 4), which is done for each bus at
the start of its journey. Another prediction travel time profile is constructed using
the Kalman filter prediction model. The prediction travel time profile is updated
dynamically every time the bus arrives and departs from a time point.
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By using these two travel-time profiles, we are able to predict if the bus is running
early or late at each time point. This is shown in Figure 4 as ∆. A positive value of ∆
means that the prediction profile is currently lying above the scheduled one (bus
will reach the downstream time points late), while a negative value of ∆ occurs
when the prediction profile lies below the schedule (bus will be ahead of sched-
ule). In these cases, implementation of a corrective proactive control strategy is
required to prevent expected schedule deviation downstream. A value of 0 refers
to the compliance of the bus to the schedule. The value of ∆ is the key factor for
deciding what type of control strategy to implement. If ∆ is positive, an expressing
type of control is required to be applied, while a negative value of ∆ indicates
implementation of some type of holding strategy.

Figure 4. Schedule Travel Time Profile
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System Design and Architecture
The proposed system, shown in Figure 5, is an interactive program developed
using the Visual Basic programming language. This program effectively utilizes
AVL and APC data for dynamic bus arrival/departure information and perfor-
mance analysis at downstream bus stops for the purpose of applying real-time,
proactive control strategies.

Figure 5. Illustration of the Interactive Decision Support System
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The program records the dynamic actual location and time of the transit vehicle
when it arrives and leaves all time points along the transit route based on the AVL
data. Also, it records the number of passengers alighting and departing the bus at
each stop.  Real time AVL and APC information is transferred instantly from the
server to the program. For a specific bus trip, at the departure instant of bus from
the terminal station, the prediction algorithms will automatically be activated to
predict arrival and departure times of the bus at all downstream time points
(prediction profile). At the same time, the associated bus departure schedule for
all time points along the route is also displayed (schedule profile). The difference
between the predicted and the schedule departure (∆ information) is automati-
cally computed for all time points. If the value of the predicted bus time deviation
∆ is within an accepted range (e.g., 0 to 2 minutes), the predicted departure times
are within the schedule, and no control strategies are required to be implemented.
In such a case, the program will display black font color with white background
for ∆ value labels. On the other hand, when ∆ values are more than 2 minutes (i.e.,
bus expected to arrive/depart late at downstream time points), the font color will
display red. The transit controller can interact with the program to assess the
effect of bus expressing at one or more downstream time points (by setting dwell
times at 0 for such time points) so as to as reduce predicted deviations. If the ∆
value is less than 0 (i.e., bus expected to be ahead of schedule), then the ∆ value
label background is displayed red and the font color is black. The controller can
assess the effect of bus holding at one or more downstream time points (by
increasing the dwell times at those time points). The interaction with the program
could be done by setting values under the “arrive” or “depart” button of the
selected current/downstream time point (as shown on the left hand side of Figure
5), then clicking on the corresponding “arrive” or “depart” button to update
model predictions.

The prediction algorithms of the system will be dynamically updated based on the
AVL and APC data. As soon as the bus arrives or departs a new time point, new
arrival and departure time predictions and new ∆ values for the remaining time
points downstream will be processed.

At the end of each trip, the system records the observed AVL arrival and departure
times as well as the real APC data regarding the number of passenger boardings
and alightings at each bus stop. These data are used to update the system histori-
cal database (link running time and passenger arrival rate at time points) to be
used for the Kalman filter predictions of future trips.
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In addition, the system computes the on-time route performance for each trip by
comparing the actual bus arrival/departure with the schedule arrival/departure
times for all time points. The average on-time performance is automatically calcu-
lated and displayed on the screen for all trips. This feature provides the transit
management with an easy tool to evaluate the route level of service in terms of on-
time performance. The information and analysis provided by this system could
possibly be used for updating and adjusting schedules.

Conclusion
An innovative model was developed for dynamic bus arrival and departure time
prediction. The model is based on two Kalman filter algorithms for the prediction
of running times and dwell times alternately in an integrated framework. As such,
the model can capture the interaction between the two variables (i.e., the effect of
one on the other). The model was shown to outperform other traditional models
(regression and neural network models) in terms of predictive ability when tested
on “hold out” real-world data.  More importantly, the superiority of the model
was even more prominent when tested on two simulated scenarios representing
passenger demand surge (e.g., because of a special event) and lane closure (e.g.,
because of an incident). This is primarily due to continuous updating of the model
parameters based on dynamic real-time data, as opposed to traditional models
which are typically calibrated using historical data, with infrequent recalibration of
the model, if any.

Because dwell time is predicted separately and its effect on bus arrival times at
downstream stops is accounted for, the model can be used for assessing transit
stop-based dynamic control actions (e.g., bus holding, bus expressing). A user-
interactive DSS was developed to provide continuous information on the ex-
pected arrival and departure times of buses at downstream stops; hence the ex-
pected deviations from schedule. The system enables the user to assess in real time
transit stop-based control actions to avoid such deviations before their occur-
rence, allowing for proactive control, as opposed to the traditional reactive con-
trol which attempts to recover the schedule after deviations occur.

The model developed here was based on data from one bus route in downtown
Toronto. However, the same modeling approach is applicable to other medium-
to low-frequency routes where schedule control and dissemination of expected
arrival times are relevant.
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Further work can improve the model developed here in several ways. For example,
better representative distributions of passenger arrivals at bus stops could be
attempted instead of the implied uniform distribution assumed here. Also, fur-
ther investigation is required to develop predictive models for overlapping routes
that serve the same bus stops. In such cases, a special consideration should be
given to dwell time prediction. Finally, the assessment of the model developed
here would be greatly enhanced if tested in the field under both normal and
atypical conditions.
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