苏铁nrDNA ITS区的序列多态性: 不完全致同进化的证据

肖龙骞^{1,2} 朱 华^{1*}

1(中国科学院西双版纳热带植物园, 昆明 650223) 2(中国科学院研究生院, 北京 100049)

摘要:本研究对苏铁(Cycas revoluta) nrDNA ITS进行克隆测序,并以cDNA ITS为参照,比较分析获得的序列的碱基变异、GC含量、5.8S二级结构的稳定性和5.8S保守基序的有无以及系统发育关系。结果发现苏铁nrDNA ITS存在较高的基因组内多样性,同时,这些分化的nrDNA ITS拷贝中包含有假基因的存在,而且假基因与功能拷贝之间已经形成了较大的遗传分化,这暗示假基因起源有较长历史。苏铁核仁组织区不仅多达16个,而且分布在13条染色体上,这可能是其nrDNA ITS致同进化不完全的主要原因。 关键词: Cycas revoluta, nrDNA ITS,致同进化,假基因,多态性

Intra-genomic polymorphism in the internal transcribed spacer (ITS) regions of *Cycas revoluta*: evidence of incomplete concerted evolution

Longqian Xiao^{1,2}, Hua Zhu^{1*}

1 Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223 2 Graduate University of the Chinese Academy of Sciences, Beijing 100049

Abstract: In the present study, a high intra-genomic polymorphism was detected in the internal transcribed spacer (including ITS1, 5.8S and ITS2) regions of *Cycas revoluta*, suggestive of incomplete concerted evolution. Detailed comparisons of the ITS sequences from *C. revoluta* and those from other species further suggested that some divergent ITS paralogs from *C. revoluta* were likely pseudogenes. Some of these putative pseudogenes may have rather long evolutionary histories, because they have diverged substantially in sequences. We proposed that the incomplete concerted evolution in *C. revoluta* may have resulted from the high number and dispersed distribution of the nucleolus organizer regions (NORs) in the genome. **Key words:** *Cycas revoluta*, nrDNA ITS, concerted evolution, pseudogenes, polymorphism

编码rRNA的基因是一些由高度重复序列组成 的多基因家族。编码核糖体小亚基rRNA的18S基 因、大亚基5.8S基因和28S基因共同构成一个转录单 位。因为快速生长时期需要大量核糖体,真核生物 拥有数百个这种转录单位的拷贝,这些拷贝在基因 中串联重复,位于同一染色体或不同染色体上 (Eickbush & Eickbush, 2007)。18S与5.8S、5.8S与28S 基因之间分别存在着内转录间隔区ITS1和ITS2。通 常, nrDNA(包括ITS)基因家族在致同进化的作用下, 拷贝之间序列几乎没有变异。ITS这个特点方便于 PCR扩增和测序,加之具有较快的变异速率,ITS被 广泛应用于较低分类阶元,特别是属内种间或种内 群体的系统进化研究中(Baldwin *et al.*, 1995; Álvarez & Wendel, 2003)。然而,近年来,研究表明ITS 在植物基因组内可能存在着较高的多样性,暗示其 存在致同进化不完全现象,特别是在裸子植物中, 如所有的松科植物(Karvonen & Savolainen, 1993; Liston *et al.*, 1996; Wei *et al.*, 2003; Wei & Wang,

收稿日期: 2009-04-16; 接受日期: 2009-09-05

基金项目: 中科院知识创新工程青年人才领域前沿项目(O8LY081K01)

^{*} 通讯作者 Author for correspondence. E-mail: zhuh@xtbg.ac.cn

2004; Kan *et al.*, 2007)和买麻藤属(*Gnetum*)(Won & Renner, 2005)等, nrDNA ITS基因组内的多样性不仅 仅表现在碱基替换上, 其长度变异也非常明显。

苏铁植物是现存的最古老最原始的种子植物, 包括苏铁科、托叶铁科和泽米铁科等3科11属约240 种,斑块状分布在热带和亚热带的局部地区 (Osborne, 1995)。苏铁科仅有苏铁属(Cvcas), 约有98 个种,间断分布在以中国西南地区和邻近的印度支 那地区及澳大利亚为分布中心的旧世界热带地区, 北达日本南部、南至澳洲北部及东部、西至马达加 斯加及非洲东部沿岸、东至太平洋热带岛屿。形态 学和分子证据研究皆认为苏铁属植物是苏铁类植 物的基部类群(Stevenson, 1990; Chaw et al., 2005)。 苏铁(C. revoluta)是苏铁属植物中人们最为熟悉的 一个物种, 曾在我国福建有自然分布, 却因为过度 采挖,现已不复存在。目前,野生居群仅残留于琉 球群岛 (Shimabuku, 1997; Whitelock, 2002)。其树型 优雅,叶片别致,宛如孔雀开屏,因此在世界各地 都有栽培, 广泛用作观赏植物, 便于我们取材开展 相关研究。

如前所述,裸子植物中,nrDNA ITS致同进化 不完全现象在松柏纲和买麻藤纲皆有发现。本研究 以苏铁纲苏铁属的苏铁为材料,克隆测序ITS,检 测其基因组内的多样性,看是否同其他裸子植物一 样也存在nrDNA ITS致同进化不完全现象。如果存 在,进一步分析其多样性格局,并将它与松柏纲和 买麻藤纲的研究结果相比较,以期能更好地理解 nrDNA ITS致同进化的式样和动力。

1 材料和方法

1.1 材料

选取西双版纳热带植物园1株苏铁的少量未充 分展开的幼嫩羽片(标本保存在中国科学院西双版 纳热带植物园标本馆,凭证号为06010,采集人肖 龙骞)。

1.2 DNA提取和PCR扩增

采用改良CTAB法提取总DNA(Doyle *et al.*, 1991)。nrDNA ITS 扩增引物是ITS5* (5'-GGAAGG-AGAAGTCGTAACAAGG-3') (Liston *et al.*, 1996) 和 26S-25R(5'-TATGCTTAAACTCAGCGGGT-3') (Nickrent *et al.*, 1994)。PCR扩增的条件是: (1) 25 μL 的反应体系约30 ng DNA, 2.5 μL 10×buffer, 2.0 mM

MgCl₂, 0.2 mM dNTP, 0.6 μM引物, 0.75 U *Taq*酶, 再加双蒸水至25 μL。(2)扩增程序先96℃ 4 min,再 如下条件30个循环: 96℃ 30 s→55℃ 45 s→72℃ 80 s,最后在72℃的条件下延伸7 min。

1.3 RNA提取和RT-PCR

利用RNA反转录合成的cDNA ITS比较相关参数,可以很好地判断基因组5.8S序列是否具有功能(如Harpke & Peterson, 2006)。利用Trizol Kit试剂盒(Invitrogen, Carlsbad, CA),按照其说明提取总RNA,并用DNase消化总DNA以排除DNA污染。用PrimeScript RTase (大连宝生物)试剂盒合成cDNA第一链,再以与PCR扩增相同的引物和条件,用PrimeScriptTM RT-PCR Kit (大连宝生物)试剂盒RT-PCR获得cDNA ITS。

1.4 克隆和测序

PCR和RT-PCR产物用1.0%的琼脂糖凝胶电泳 割胶纯化后,用pGEM-T Easy Vector System I (Promega, Madison, USA)试剂盒进行克隆。然后, 挑选15个PCR产物克隆和6个RT-PCR产物克隆进行 PCR,纯化PCR产物送上海生工用T7和SP6引物测 序。

1.5 数据分析

利用CLUSTAL X (Thompson *et al.*, 1997)对所 有序列进行自动排序,并用BioEdit 5.0.6.(Hall, 1999)对自动序列排序进行人工校正,根据GenBank 中己有的苏铁属植物的ITS序列,确定ITS1、5.8S和 ITS2的边界。

为确定苏铁基因组中ITS假基因是否存在,进 行了以下分析: (1) 利用MEGA 4 (Kumar *et al.*, 1994)计算各个序列ITS1、5.8S 和ITS2的长度和GC 含量,以及序列分歧度(sequence divergence);并基 于Kimura's(1980)双参数模型构建NJ无根基因树, 以bootstrap方法2,000次重复取样分析分支支持度。 同时,检测是否存在种子植物5.8S特有的基序 (motif)5'-GAATTGCAGAATC-3' (Jobes & Thien, 1997; Won & Renner, 2005); (2)相对于ITS1和ITS2, 5.8S长度更为保守。利用Mfold (Zuker, 2003)测算所 有序列的5.8S的二级结构最小自由能(Δ G at 37°C); (3)利用 Recombination Detection Program package3b27 软件包 (Padidam *et al.*, 1999)中的 GENECONV软件,基于替代模型检测重组体。

在初步确定假基因的基础上,再用DnaSP (Ro-

zas & Rozas, 1999)计算功能序列和假基因的核苷酸 变异的核苷酸多态性(π),以进一步验证前面的分析 结果。

2 结果与讨论

2.1 nrDNA ITS基因组内多样性

结果发现,基因组和cDNA的ITS序列中,分别 有一对序列是完全一致的,各排出一条相同序列后 分别由14和5条多态性序列。那么,在15个基因组 ITS克隆检测到了14个不同拷贝,6个cDNA ITS中有 5个不同拷贝。这些ITS序列长度变异范围从1,001-1,086 bp,其中ITS1从598-679 bp,ITS2 从230-246 bp,而5.8S长度均为161 bp,唯独序列D7有一个核 苷酸的缺失(表1)。所有ITS的序列平均分歧度是 14.26% (0-26.91%),其中cDNA ITS的平均分歧度 是0.81%,而基因组ITS平均分歧度却高达18.84% (表2)。大体上,其序列分歧度与被子植物一些类群 的nrDNA ITS致同进化不完全时表现的多样性水平 相当,如酒椰属(*Raphi*a)中基因组内最大序列分歧度 是26% (Baker *et al.*, 2000),乳突球属(*Mammillaria*)

表1	苏铁中ITS1、	5.8S和ITS2的特征

中是32% (Harpke & Peterson, 2006), 栎属(Quercus) 中是26% (Mayol & Rossello, 2001)。但与裸子植物中 ITS的长度变异幅度相比较,苏铁nrDNA ITS基因组 内多样性偏低。如雪松属(Cedrus)(Liston et al., 1996), 松属(Pinus)(Karvonen & Savolainen, 1993), 落叶松 属(Larix)(Wei et al., 2003; Wei & Wang, 2004)和买麻 藤属 (Won & Renner, 2005)等基因组内nrDNA ITS长 度差异都远远超过100 bp。松科植物nrDNA ITS长度 差异主要是亚重复单元(sub-repeat)的存在以及伴随 的非同源性重组和不等交换产生的重复次数变异造 成的(Kan et al., 2007), 但是苏铁ITS序列中, 却很少 有重复单元发现,这也许是其序列长度变异幅度相 对较小的原因。但买麻藤属中,同样很少有重复单 元,而其ITS长度变异幅度却和松科植物ITS的长度 变异幅度相当(Won & Renner, 2005)。这是否暗示苏 铁中长度变异幅度大的ITS拷贝可能存在而只是还 没有被检测到呢?尚需更多实验予以证明。

2.2 nrDNA ITS 假基因

基于所有ITS拷贝序列的遗传距离构建的NJ树中, cDNA ITS与基因组ITS D1, D2, D4, D5, D9, D12

克隆编号	GenBank序列号 GenBank accession no.	长度(GC含量%)			5.8S基序	最小自由能5.8S ΔG
Clone No.		Le	Length (bp) (GC content %)			
		ITS1	ITS2	5.8S		(kcal/mol)
D1	FJ907980	678(64.2)	246(65.0)	161(55.9)	V	-16.39
D2	FJ907972	677(64.2)	246(65.0)	161(55.9)	V	-16.39
D3	FJ908060	674(51.0)	243(46.1)	161(44.7)	V	-13.79
D4	FJ907973	677(63.8)	246(65.9)	161(55.9)	V	-16.39
D5	FJ907974	677(64.1)	246(65.0)	161(55.9)	V	-16.39
D6	FJ908059	676(49.4)	243(49.4)	161(43.5)	V	-8.54
D7	FJ908058	598(49.3)	243(46.1)	160(43.1)		-11.51
D8	FJ908051	672(51.0)	243(50.6)	161(37.9)		-10.95
D9	FJ907982	676(63.8)	246(65.0)	161(55.9)	V	-16.39
D11	FJ908056	679(50.5)	242(50.0)	161(42.9)		-9.42
D12	FJ907981	677(64.0)	246(65.0)	161(55.3)	V	-16.90
D13	FJ907983	674(62.7)	246(62.6)	161(54.7)	V	-19.39
D14	FJ908045	658(50.2)	243(50.6)	161(43.5)		-10.37
D15	FJ908067	671(48.7)	243(50.2)	161(44.7)	V	-13.21
C1	FJ907976	678(64.2)	246(65.0)	161(55.9)	V	-16.39
C2	FJ907979	678 (64.0)	246(65.0)	161(55.9)	V	-16.39
C3	FJ907978	679(64.1)	246(65.0)	161(55.3)	V	-16.59
C4	FJ907977	677 (64.1)	246(64.6)	161(55.9)	V	-16.39
C5	FJ907975	681(64.2)	230(65.6)	161(55.9)	V	-16.39

V表示该ITS序列中存在5.8S基序 V denotes the ITS sequence where 5.8S motif was detected.

ITS区域	序列类型	序列数目	多态位点数	总突变数	核苷酸多态性
ITS region	Sequence type	Sequence number	Polymorphic site no.	Total mutation	Nucleotide diversity (π)
ITS1	cDNA ITS	5	11	11	0.007
	功能 ITS Functional ITS	7	25	25	0.011
	假基因 Pseudogene	7	258	283	0.191
ITS2	cDNA ITS	5	2	2	0.003
	功能 ITS Functional ITS	7	11	11	0.013
	假基因 Pseudogene	7	120	142	0.222
5.8S	cDNA ITS	5	1	1	0.002
	功能 ITS Functional ITS	7	4	4	0.007
	假基因 Pseudogene	7	64	72	0.174
ITS	cDNA ITS	5	14	14	0.005
	功能 ITS Functional ITS	7	40	40	0.011
	假基因 Pseudogene	7	442	497	0.196

表2	苏银	共ITS核苷酸多态性
Table	2	Nucleotide diversity of the ITS region in Cycas revoluta

和D13形成一个支长很短的独立分支(bootstrap值 =100%),这一分支嵌入其他基因组ITS组成的支长 较长的分支当中(图1)。从以5个cDNA ITS为参照的 系统发育分析来看,可以初步认定基因组ITS D1, D2, D4, D5, D9, D12和D13是功能序列, 其他的为 假基因。进一步的分析也支持这一判断: (1) cDNA ITS和功能序列,以及假基因D3, D6和D15皆发现 5.8S基序5'-GAATTGCAGAATC-3',但假基因D7, D8, D11和D14中,这一保守基序却发生核苷酸替换 (表1)。(2) cDNA ITS和功能序列具有明显较高的GC 含量,这两者的ITS1、ITS2和5.8S平均值分别是 64.12±0.08%, 65.04±0.2%, 55.78±0.3%和64.83± 0.18%, 64.79±0.37%, 55.64±0.25%; 假基因GC含 量却明显偏低, ITS1、ITS2和5.8S平均值分别是 50.01±0.75%, 49.00±2.14%, 42.90±2.39%。显著 性检验表明ITS1、ITS2和5.8S GC含量三组数据在 cDNA ITS 和功能序列之间不存在显著差异 (P>0.05), 而在假基因和cDNA ITS之间, 以及和功 能序列之间均为极显著差异(P<0.01)。(3) cDNA ITS 和功能序列的5.8S二级结构最小自由能(ΔG at 37 ℃)平均值分别是-16.43±0.1和-16.46±0.21, 而假 基因的是-11.11±1.83(表1)。(4) cDNA ITS和功能序 列的核苷酸多态性(π)相对较低,分别是0.00544和 0.01058, 而假基因的高达0.19566 (表2)。

nrDNA ITS基因家族有成千上万的拷贝, 在进 化过程中一些拷贝可能会功能退化而变成假基因。 自Buckler和Holtsford (1996)首先在玉蜀黍属(Zea)

Fig. 1 Neighbor-joining tree topology constructed on Kimura two-parameter distance matrix using ITS entire region of all paralogs in C. revoluta. Numbers indicate the over 50% bootstrap values with 2,000 replicates.

假基因,如烟草属(Nicotiana)、摩擦禾属(Tripsacum)、棉属(Gossypium) (Buckler et al., 1997)、栎 属(Muir et al., 2001)、梨属(Pyrus) (Zheng et al., 2008)以及松属(Gernandt et al., 2001)和落叶松属 (Wei & Wang, 2004)等。以RNA反转录合成的cDNA ITS为参照进行比较分析,初步认定苏铁基因组ITS D3、D6、D7、D8、D11、D14和D15是假基因。进 一步分析表明苏铁nrDNA ITS假基因的核苷酸多态 性(π)明显偏大,说明其序列拥有较多的变异,包括 碱基替换和长度变异; GC含量明显偏低, 表明其甲 基化C位点碱基突变频繁;而其5.8S二级结构最小 自由能(ΔG at 37℃)却明显偏高,显示其二级结构 已经变得相对不稳定。这些序列碱基变异速率加 快、GC含量降低和二级结构稳定性降低等特点支持 了它们功能已经退化的判断。其中, D3、D6和D15 虽然和功能拷贝一样, 5.8S基序5'-GAATTGCA-GAATC-3'没有变异,但在基因树上却和其他假基 因聚集在一起,并且,同样具备了GC含量降低和碱 基变异速率加快以及二级结构稳定性降低等特点。 苏铁nrDNA ITS的假基因与功能拷贝有较大的序列 分歧度;同时,利用GENECONV软件没有检测到 重组体的存在;而且,在基因树上(图1),功能拷贝 独立形成一个分支, 与假基因分离开来。而在其他 裸子植物,如落叶松属(Wei & Wang, 2004)和买麻 藤属 (Won & Renner, 2005)中, ITS 假基因和其功能 拷贝则是形成一个混合分支。这说明苏铁ITS假基 因已经聚集了相对较多的遗传变异, 其起源时间也 可能相对较长。但假基因并没有形成一个独立的单 系,说明它们可能不是一次起源,或者一次起源后 变异分化的速度差异很大。

2.3 致同进化不完全原因

所谓"致同进化"是基因家族的一种进化模式。 在这种进化模式下,基因家族成员的进化是以协同 的方式,而不是各自独立地进行。当突变在基因家 族的某个成员中发生,它就能够反复地通过不等交 换或基因转换,传播到其他所有成员中去(Nei & Rooney, 2005)。在致同进化作用下,植物nrDNA(包 括ITS)基因家族普遍不存在基因组变异。但我们的 研究表明:苏铁基因组内存在显著的nrDNA ITS多 样性,这说明其致同进化不完全。致同进化速度减 缓,甚至被阻止,这既有物种进化和生活史方面的 原因,如多倍体化(Suh *et al.*, 1992)、异源多倍体化 (Karvonen & Savolainen, 1993)、孤雌生殖(Campbell *et al.*, 1997)、世代周期长(Sang *et al.*, 1995)和杂交 (Muir *et al.*, 2001)等,也有基因家族在染色体上、基 因组中组织结构方面的原因,也就是核仁组织区 (Nucleolus Organizer Region, NOR)在染色体中的数 目多少和分布位置好坏造成的。18S-5.8S-26S rDNA重复序列与其RNA产物共同组成NOR的主 体,那么NOR数目的多和少,以及分布位置的好和 坏,如是否在同一染色体上,这些都影响着nrDNA ITS致同进化的速率(Álvarez & Wendel, 2003)。 松属 植物有6-8个NOR, 而落叶松属植物却只有3个 NOR、因此、落叶松属的nrDNA致同进化速率较松 属快(Wei et al., 2003)。苏铁属植物都是22条染色体, 也就是说苏铁没有发生多倍体化(Johnson & Wilson, 1990)。同时, 也没有苏铁存在杂交现象的证 据。但苏铁的NOR最多达16个,并且至少分布在13 条不同的染色体上(Hizume et al., 1992)。苏铁存在 如此多而分散的NOR,在nrDNA致同进化过程中, 部分ITS就可能难以与其他位点的基因进行不等交 换(uneven crossing over)和重组等过程,结果是其功 能限制逐渐得以摆脱, 进化逐渐趋向中性, 进化速 率日趋加快,最后是其功能丧失而变成假基因。这 也能够合理解释苏铁nrDNA ITS假基因可能不是一 次起源的观点。同时,苏铁具有较长的世代周期, 可能也进一步延缓了致同进化的完成。值得注意的 是,裸子植物中,mrDNA ITS假基因虽然已有报道, 如落叶松属(Wei et al., 2003; Wei & Wang, 2004)和买 麻藤属(Won & Renner, 2005)中都发现个别假基因存 在,但苏铁中nrDNA ITS假基因的比例明显偏高。这 可能与其NOR数量相对多而散有关。

参考文献

- Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. *Molecular Phylogenetics and Evolution*, 29, 417–434.
- Baker WJ, Hedderson TA, Dransfield J (2000) Molecular phylogenetics of subfamily Calamoideae (Palmae) based on nrDNA ITS and cpDNA rps16 intron sequence data. *Molecular Phylogenetics and Evolution*, **14**, 195–217.
- Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA—a valuable source of evidence on angiosperm phylogeny. *Annals of the Missouri Botanical Garden*, 82, 247–277.
- Buckler ES, Holtsford TP (1996) Zea ribosomal repeat evolution and mutation patterns. *Molecular Biology and Evolution*, **13**, 623–632.
- Buckler ES, Ippolito A, Holtsford TP (1997) The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. *Genetics*, 145, 821–832.
- Campbell CS, Wright WA, Cox M, Vining TF, Major CS, Arsenault MP (2005) Nuclear ribosomal DNA internal tran-

scribed spacer 1 (ITS1) in *Picea* (Pinaceae), sequence divergence and structure. *Molecular Phylogenetics and Evolution*, **35**, 165–185.

- Chaw SM, Walters TW, Chang CC, Hu SH, Chen SH (2005) A phylogeny of cycads (Cycadales) inferred from chloroplast matk gene, trnK intron, and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution, 37, 214–234.
- Doyle J (1991) DNA protocols for plants CTAB total DNA isolation. In: *Molecular Techniques in Taxonomy* (eds Hewitt GM, Johnston A), pp. 283–293. Springer, Berlin.
- Eickbush TH, Eickbush DG (2007) Finely orchestrated movements, evolution of the ribosomal RNA genes. *Genetics*, 175, 477–485.
- Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series*, 41, 95–98.
- Harpke D, Peterson A (2006) Non-concerted ITS evolution in Mammillaria (Cactaceae). Molecular Phylogenetics and Evolution, 41, 579–593.
- Hizume M, Ishida F, Kondo K (1992) Differential staining and in situ hybridization of nucleolar oraganizers and centromeres in Cycas revoluta chromosomes. Japanese Journal of Genetics, 67, 381–387.
- Jobes DV, Thien LB (1997) A conserved motif in the 5.8S ribosomal RNA (rRNA) gene is a useful diagnostic marker for plant internal transcribed spacer (ITS) sequences. *Plant Molecular Biology Reporter*, **15**, 326–334.
- Johnson LAS, Wilson KL (1990) General traits of the Cycadales. In: *The Families and Genera of Vascular Plants* (eds Kramer KU, Green PS), pp. 363–368. Springer-Verlag, Berlin.
- Kan XZ, Wang SS, Ding X, Wang XQ (2007) Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications. *Molecular Phylogenetics and Evolution*, 44, 765–777.
- Karvonen P, Savolainen O (1993) Variation and inheritance of ribosomal DNA in *Pinus sylvestris* L. (Scots pine). *Heredity*, 71, 614–622.
- Kumar S, Tamura K, Nei M (1994) MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers. *Bioinformatics*, 10, 189–191.
- Liston A, Robinson WA, Oliphant JM, Alvarez-Buylla ER (1996) Length variation in the nuclear ribosomal DNA internal transcribed spacer region of non-flowering seed plants. *Systematic Botany*, **21**, 109–120.
- Mayol M, Rossello JA (2001) Why nuclear ribosomal DNA spacers (ITS) tell different stories in *Quercus. Molecular Phylogenetics and Evolution*, **19**, 167–176.
- Muir G, Fleming CC, Schlotterer C (2001) Three divergent rDNA clusters predate the species divergence in *Quercus petraea* (Matt.) Liebl. and *Quercus robur* L. *Molecular Biology and Evolution*, 18, 112–119.
- Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. *Annual Review of Genetics*, **39**,

121-152.

- Nickrent DL, Schuette KP, Starr EM (1994) A molecular phylogeny of *Arceuthbium* (Viscaceae) based on nuclear ribosomal DNA internal transcribed spacer sequences. *American Journal of Botany*, **81**, 1149–1160.
- Osborne R (1995) The world cycad census and a proposed revision of the threatened species status for cycad taxa. *Biological Conservation*, **71**, 1–12.
- Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. *Virology*, 265, 218–225.
- Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. *Bioinformatics*, 15, 174–175.
- Sang T, Crawford J, Stuessy TF (1995) Documentation of reticulate evolution in peonies (*Paeonia*) using internal transcribed spacer sequences of nuclear ribosomal DNA, implications for biogeography and concerted evolution. *Proceedings of the National Academy of Sciences*, USA, **92**, 6813– 6817.
- Shimabuku K (1997) Check List Vascular Flora of the Ryukyu Islands, pp. 1–855. Kyushu University Press, Fukuoka. (in Japanese)
- Stevenson DW (1990) Morphology and systematics of the Cycadales. *Memoirs of the New York Botanical Garden*, **57**, 8–55.
- Suh Y, Thien LB, Zimmer EA (1992) Nucleotide sequences of the internal transcribed spacers and 5.8S rRNA gene in *Canella winterana* (Magnoliales; Canellaceae). *Nucleic Acids Research*, **20**, 6101–6102.
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Research*, **24**, 4876–4882.
- Wei XX, Wang XQ (2004) Recolonization and radiation in *Larix* (Pinaceae): evidence from nuclear ribosomal DNA paralogues. *Molecular Ecology*, 13, 3115–3123.
- Wei XX, Wang XQ, Hong DY (2003) Marked intragenomic heterogeneity and geographical differentiation of nrDNA ITS in *Larix potaninii* (Pinaceae). *Journal of Molecular Evolution*, 57, 623–635.
- Whitelock LM (2002) *The Cycads*. Timber Press, Inc., Portland.
- Won H, Renner SS (2005) The internal transcribed spacer of nuclear ribosomal DNA in the gymnosperm *Gnetum*. Molecular Phylogenetics and Evolution, 36, 581–597.
- Zheng XY, Cai DY, Yao LH, Teng YW (2008) Non-concerted ITS evolution, early origin and phylogenetic utility of ITS pseudogenes in *Pyrus. Molecular Phylogenetics and Evolution*, 48, 892–903.
- Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Research*, **31**, 3406–3415.

(责任编委: 孔宏智 责任编辑: 时意专)