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Reliable HHH∞ Filter Design for

Discrete-time Systems with

Sector-bounded Nonlinearities:

an LMI Optimization Approach

GUO Xiang-Gui1, 2 YANG Guang-Hong1, 2

Abstract This paper is concerned with the reliable H∞ fil-
tering problem against sensor failures for a class of discrete-time
systems with sector-bounded nonlinearities. The resulting de-
sign is that the filtering error system is asymptotically stable
and meets the prescribed H∞ norm constraint in normal case
as well as in sensor failure case. Sufficient conditions for the
existence of the filter are obtained by using appropriate Lya-
punov functional and linear matrix inequality (LMI) techniques.
Moreover, in order to reduce the design conservativeness and
get better performance, we adopt the slack variable method to
realize the decoupling between the Lyapunov matrices and the
system dynamic matrices. A numerical example is provided to
demonstrate the effectiveness of the proposed designs.

Key words H∞ filtering, reliable filtering, Lyapunov func-
tion, sensor failure, linear matrix inequality (LMI)

It has been well recognized that the well-known Kalman
fitlering scheme has some limitations in practical applica-
tions due to the assumption that the systems under consid-
eration have known dynamics described by a certain well-
posed model and have Gaussian noise disturbances with
known statistics[1]. H∞ filtering is introduced as an al-
ternative to classical Kalman filtering when the statistical
property of noise sources is unknown or unavailable. There-
fore, in the past decade, much research effort has been paid
to the H∞ filter design which makes the worst case H∞
norm from the process noise to the estimation error min-
imized. In particular, the linear matrix inequality (LMI)

approach to H∞ filtering[2] is more powerful in numerical
computations and suitable for handling the optimization
problems with multiple constraints.

Meanwhile, filtering for the nonlinear systems is an im-
portant research area that has attracted considerable in-
terest. Recently, a large number of papers about nonlinear
filtering problem have published, see, e.g., [1, 3−5], and the
references therein. References [3−4] investigated the filter-
ing problem for nonlinear stochastic systems. In particu-
lar, the filtering with variance-constrained was designed for
uncertain stochastic systems with missing measurements
in [4]. Another important type of noises/disturbances de-
scribed by Brownian motions (or Wiener processes) has

seldom been addressed for the filtering problems[5]. Ref-
erence [1] presented an H∞ filtering problem for uncertain
stochastic time-delay systems with sector-bounded nonlin-
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earities, and the nonlinear systems with sector-bounded
nonlinearities were also investigated in [6−8].

Note that all the above works are based on a common
assumption that the sensors can provide uninterrupted sig-
nal measurements. However, contingent failures are possi-
ble for all sensors in a system in practice. A large degree
of filter performances may degrade and possible hazards
may happen, see, e.g., [9]. Therefore, the design of reli-
able controller and filter have recently received increasing
attention, mainly in linear systems[9−11], while the reliable
controller and filter for nonlinear systems were investigated
in [12−14]. Reference [9] considered the reliable H∞ con-
troller design for linear systems with sensor or actuator
failure via the algebraic Riccati equation (ARE) approach.
References [10−11] studied the reliable filtering problem
against sensor failures for linear systems and a method of
designing adaptive reliable H∞ filter was proposed by com-
bining the LMI approach with adaptive method. The prob-
lem of reliable H∞ controller design for nonlinear systems
was investigated in [12−13] via LMI approach. Moreover,
[14] proposed a class of reliable variable structure control
laws, which were shown to be able to tolerate the outage of
actuators within a prespecified subset of actuators. Unfor-
tunately, to the best of the authors′ knowledge, up to now,
the reliable H∞ filtering problem for nonlinear systems has
not been fully investigated.

Motivated by the above points, a reliable H∞ filter is de-
signed for a class of nonlinear systems with sector-bounded
nonlinearities. The paper is organized as follows. First,
the sector-bounded nonlinearities and a general sensor fail-
ure model, which covers outage cases and the possibility
of partial failures, are introduced. Next, the designs that
guarantee the asymptotic stability of the estimation errors,
and the H∞ performance of the filtering error system from
the exogenous signals to the estimation errors less than a
prescribed level are described. In addition, a sufficient con-
dition for the existence of such a reliable H∞ filter is ob-
tained via appropriate Lyapunov functional and LMI tech-
niques. Then, we adopt the slack variable method[15] to
realize the decoupling between the Lyapunov matrices and
the filtering error system matrices, which reduces the de-
sign conservativeness. Furthermore, by this method, we
can adopt different Lyapunov matrices for the normal and
the sensor failure cases, respectively. Finally, a numerical
example is given to illustrate the effectiveness of the devel-
oped techniques.

The notations used throughout this paper are fairly
standard. Rn denotes the n-dimensional Euclidean space,
Rm×n is the set of all m×n real matrices, and the notation
P = PT > 0 (P = PT ≥ 0) means that P is a symmetric
positive definite (semidefinite) matrix. diag{ρ1, ρ2, · · · , ρn}
denotes a block diagonal matrix whose diagonal blocks are
given by ρ1, ρ2, · · · , ρn. In addition, we use “∗” as an ellip-
sis for the terms that are introduced by symmetry.

1 Problem formulation
Consider a class of nonlinear discrete-time systems with

sector nonlinearities described as

xxx(k + 1) = Axxx(k) + Ff(xxx(k)) + Bwww(k)

yyy(k) = Cxxx(k) + Hh(xxx(k)) + Dwww(k)

zzz(k) = Lxxx(k)

(1)

where xxx(k) ∈ Rn is the state vector, www(k) ∈ Rr is the
disturbance input, which is assumed to belong to L2[0,∞),
zzz(k) ∈ Rq is the regulated output, and yyy(k) ∈ Rp is the
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measured output. The system matrices A, F , B, C, H, D,
and L are known constant matrices of appropriate dimen-
sions. The known functions f(xxx(k)) and h(xxx(k)) are the
vector-valued nonlinear functions.

Before presenting the main objective of this paper, the
following basic assumption is assumed to be valid.

Assumption 1. The vector-valued nonlinear functions
f(·) and h(·) are assumed to satisfy the following sector-
bounded conditions:
{ [

f(xxx)− f(yyy)−M1ηηη
]T [

f(xxx)− f(yyy)−M2ηηη
] ≤ 0

[
h(xxx)− h(yyy)−N1ηηη

]T [
h(xxx)− h(yyy)−N2ηηη

] ≤ 0
(2)

where ηηη = xxx − yyy, ∀xxx,yyy ∈ Rn, M1, M2 ∈ Rn×n N1, N2 ∈
Rn×n are known constant matrices. For presentation im-
plicity and without loss of generality, we always assume
that

f(0) = 0, h(0) = 0 (3)

Remark 1. It is obvious that the conditions in Assump-
tion 1 are more general than the usual sigmoid functions
and the recent commonly used Lipschitz conditions. Note
that both the control analysis and model reduction prob-
lems for systems with sector nonlinearities have been in-
tensively studied, see, e.g., [1, 3, 6−8]. In addition, M1, N1

and M2, N2 are lower and upper slope bounds, respectively.
The sensor outage cases are considered as follows

yF
ij(k) = (1− ρj

i )yi(k), 0 ≤ ρj
i ≤ ρj

i ≤ ρj
i ≤ 1,

i = 1, · · · , p, j = 1, · · · , L
(4)

where ρj
i is an unknown constant. Here, the index j denotes

the j-th failure mode, L denotes the total number of the
failure modes, and yF

ij(k) represents the measured signal
from the i-th sensor that has failed in the j-th failure mode.

For every fault mode, ρj
i and ρj

i represent the lower and

upper bounds of ρj
i , respectively. Note that when ρj

i =

ρj
i = 0, there is no failure for the i-th sensor yi in the j-th

failure mode. When ρj
i = ρj

i = 1, the i-th sensor yi is

outage in the j-th failure mode. When 0 < ρj
i < ρj

i < 1, it

corresponds to the case of partial failure of yi. Denote

yyyF
j (k) =

[
yF
1j(k), yF

2j(k), · · · , yF
pj(k)

]T
= (I − ρj)yyy(k)

(5)

where ρj = diag
{
ρj
1, ρj

2, · · · , ρj
p

}
and j = 1, · · · , L. The

scaling factors ρj satisfy

NNNρj = {ρj |ρj = diag
{

ρj
1, ρ

j
2, · · · , ρj

p

} ∈ Rp,

0 ≤ ρj
i ≤ ρj

i ≤ ρj
i ≤ 1, i = 1, 2, · · · , p} (6)

For convenience, in the following sections, for all possible
failure modes, we use a uniform sensor failure model

yyyF (k) = (I − ρ)yyy(k), ρ ∈ {ρ1, ρ2, · · · , ρL} (7)

where ρ can be described by ρ = diag{ρ1, ρ2, · · · , ρp}.
Then, system (1) with sensor failure (7) is described by

xxx(k + 1) = Axxx(k) + Ff(xxx(k)) + Bwww(k)

yyyF (k) = (I − ρ)(Cxxx(k) + Hh(xxx(k)) + Dwww(k))

zzz(k) = Lxxx(k)

(8)

The reliable filter is of the form

x̄xx(k + 1) = Afx̄xx(k) + BfyyyF (k) + Fff(x̄xx(k))

z̄zz(k) = Cfx̄xx(k)
(9)

where x̄xx(k) ∈ Rn is the filter state, z̄zz(k) ∈ Rq is the esti-
mation of zzz(k), Af , Bf , Cf , and Ff are the filter parameter
matrices to be designed. Here, we assume that the filter is
of the same order as the system model.

Applying filter (9) to system (8), we obtain the filtering
error system:

ξξξ(k + 1) = Āξξξ(k) + Āf1f(K1ξξξ(k)) + Āf2f(K2ξξξ(k))+
Āhh(K1ξξξ(k)) + B̄www(k)

eee(k) = C̄ξξξ(k)
(10)

where ξξξ(k) =

[
xxx(k)
x̄xx(k)

]
, K1 =

[
I 0

]
, K2 =

[
0 I

]
,

eee(k) = zzz(k)− z̄zz(k) is the estimation error, and

Ā =

[
A 0

Bf (I − ρ)C Af

]
, Āf1 =

[
F
0

]
, Āf2 =

[
0

Ff

]
,

Āh =

[
0

Bf (I − ρ)H

]
, B̄ =

[
B

Bf (I − ρ)D

]
, and C̄ =

[
L −Cf

]
.

For convenience, in the following sections, we denote the
filtering error system without sensor failures, i.e., ρ = 0, as
follows:

ξξξ(k + 1) = Ãξξξ(k) + Ãf1f(K1ξξξ(k)) + Ãf2f(K2ξξξ(k))+

Ãhh(K1ξξξ(k)) + B̃www(k)

eee(k) = C̃ξξξ(k)
(11)

where Ã =

[
A 0

BfC Af

]
, Ãf1 =

[
F
0

]
, Ãf2 =

[
0

Ff

]
,

Ãh =

[
0

BfH

]
, B̃ =

[
B

BfD

]
, and C̃ =

[
L −Cf

]
.

Our objective is to develop a filter of the form (9) such
that the filtering error systems (10) and (11) satisfy the
following requirements:

1) While there is no exogenous disturbance, i.e., www(k) =
0, the filtering error systems (10) and (11) are asymptoti-
cally stable.

2) For given constants γf > γn > 0, find filter (9) such
that

a) The filtering error system (10) in the normal case, i.e.,
(11), is with an H∞ performance index no larger than γn;

b) The filtering error system (10) in the sensor failure
case, i.e., ρ ∈ {ρ1, ρ2, · · · , ρL} with ρj ∈NNNρj , j = 1, · · · , L,
is with an H∞ performance index no larger than γf .

The filter of form (9) satisfying the above objective is
said to be a reliable H∞ filter for system (1) with (4) and
guarantees that the filtering error systems (10) and (11)
are asymptotically stable at the same time.

Now, we first provide some important lemmas, which will
be useful in the derivation of our main results.

Lemma 1 (S-procedure)[16]. Let T0(xxx), T1(xxx), · · · ,
Tp(xxx) be quadratic functions of xxx ∈ Rn

Ti(xxx) = xxxTΨixxx, i = 0, 1, · · · , p (12)

with Ψi = ΨT
i . Then, the implication

T1(xxx) ≤ 0, · · · , Tp(xxx) ≤ 0 ⇒ T0(xxx) < 0 (13)

holds if there exist nonnegative scalars τ1, · · · , τp such that

Ψ0 −
p∑

i=1

τiΨi < 0 (14)

Lemma 2. If f(·) is a vector-valued nonlinear function
and M1, M2 ∈ Rn×n are known constant matrices, then we
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have
[

f(xxx)−M1xxx
]T [

f(xxx)−M2xxx
] ≤ 0, ∀xxx ∈ Rn (15)

which implies

[
xxxT fT(xxx)

] [
M̂1 M̂2

M̂T
2 I

] [
xxx

f(xxx)

]
≤ 0 (16)

with M̂1 = (MT
1 M2+MT

2 M1)/2 and M̂2 = −(MT
1 +MT

2 )/2.
Proof. Due to the limit of the space, the proof is omit-

ted. ¤

2 Main result
To facilitate the presentation, we denote

M̂1 = (MT
1 M2 + MT

2 M1)/2, M̂2 = −(MT
1 + MT

2 )/2

N̂1 = (NT
1 N2 + NT

2 N1)/2, N̂2 = −(NT
1 + NT

2 )/2

π = τ1K
T
1 M̂1K1 + τ2K

T
2 M̂1K2 + τ3K

T
1 N̂1K1

Ω1 = −Pn − π, Ω11 = −Pf − π

ΩT
2 =

[
−τ1K

T
1 M̂2 −τ2K

T
2 M̂2 −τ3K

T
1 N̂2

]

Ω3 = diag{−τ1I,−τ2I,−τ3I}
Ω4 =

[
PnÃf1 PnÃf2 PnÃh

]

Ω41 =
[

Pf Āf1 Pf Āf2 Pf Āh

]

Ω5 =
[

GT
n Ãf1 GT

n Ãf2 GT
n Ãh

]

Ω51 =
[

GT
f Āf1 GT

f Āf2 GT
f Āh

]

Before continuing with the solution to the synthesis prob-
lem, we present the following theorem which guarantees
that the filtering error systems (10) and (11) are asymp-
totically stable and has H∞ performance criteria at the
same time.

Theorem 1. Given scalars γn > 0, γf > 0, and the

known constant matrices M̂1, M̂2, N̂1, and N̂2, if there exist
matrices Pn = PT

n > 0, Pf = PT
f > 0, Ã, B̃, C̃ Ā, B̄, C̄

and nonnegative scalars τi (i = 1, 2, 3) such that




Ω1 ∗ ∗ ∗ ∗
Ω2 Ω3 ∗ ∗ ∗
0 0 −γ2

nI ∗ ∗
PnÃ Ω4 PnB̃ −Pn ∗
C̃ 0 0 0 −I




< 0 (17)

holds for ρ = 0 and



Ω11 ∗ ∗ ∗ ∗
Ω2 Ω3 ∗ ∗ ∗
0 0 −γ2

fI ∗ ∗
Pf Ā Ω41 Pf B̄ −Pf ∗
C̄ 0 0 0 −I




< 0 (18)

holds for ρ ∈ {ρ1, ρ2, · · · , ρL} with ρj ∈ NNNρj , j = 1, · · · , L,
then the filtering error systems (10) and (11) are asymp-
totically stable and satisfy the H∞ performance constraint
simultaneously.

Proof. Let us choose a Lyapunov functional candidate
as V (k) = ξξξT(k)Pfξξξ(k), where Pf is positive and symmetry.
Then, after some manipulation including applying Lemmas
1 and 2, we can obtain (17) and (18). Due to the limit of
the space, the detail is omitted. ¤

It is obvious that (17) and (18) are not LMIs, we need
to look for a suitable method to change the above inequal-
ities to LMIs. The common method, which can be found
in many papers concerning the reliable controlling and fil-
tering problems, see, e.g., [10−11], is to set

Pn = Pf (19)

before converting all the inequalities to LMIs. However,
the constraint (19) introduces significant conservativeness
into the design. Another obvious disadvantage is that one
unique Lyapunov matrix is adopted for both the normal
and the sensor failure cases, which contradicts to our design
objective. Moreover, the construct product between the
Lyapunov matrices and the filtering error system matrices
also introduces conservativeness. For the sake of overcom-
ing the above disadvantages, we design the reliable filter
with the following method. First, we give out an equiva-
lent condition to Theorem 1.

Theorem 2. Given scalars γn > 0, γf > 0, and

the known constant matrices M̂1, M̂2, N̂1, N̂2, if there exist
some matrices Pn = PT

n > 0, Pf = PT
f > 0, Ã, B̃, C̃ Ā,

B̄, C̄, Gn, Gf and nonnegative scalars τi (i = 1, 2, 3) such
that




Ω1 ∗ ∗ ∗ ∗
Ω2 Ω3 ∗ ∗ ∗
0 0 −γ2

nI ∗ ∗
GT

n Ã Ω5 GT
n B̃ Pn −GT

n −Gn ∗
C̃ 0 0 0 −I




< 0 (20)

holds for ρ = 0 and




Ω11 ∗ ∗ ∗ ∗
Ω2 Ω3 ∗ ∗ ∗
0 0 −γ2

fI ∗ ∗
GT

f Ā Ω51 GT
f B̄ Pf −GT

f −Gf ∗
C̄ 0 0 0 −I




< 0 (21)

holds for ρ ∈ {ρ1, ρ2, · · · , ρL} with ρj ∈ NNNρj , j = 1, · · · , L,
then the filtering error systems (10) and (11) are asymp-
totically stable and satisfy the H∞ performance constraint
simultaneously.

Proof. Due to the limit of the space, the proof is omit-
ted. ¤

Remark 2. Theorem 2 provides a new criterion of H∞
performance which exhibits a kind of decoupling between
the Lyapunov matrix P and the filtering error system ma-
trices. This feature is enabled by the introduction of aux-
iliary slack variables. Furthermore, it is the fact that the
extra variables Gn and Gf are full, i.e., they do not present
any structural constraint such as symmetry, which is sup-
posed to lead to potentially less conservative results.

Then, instead of imposing constraint Pn = Pf = P , we
can impose the following artificial constraint, which can be
found in many papers concerning the multiobjective prob-
lems, with positive scalar parameter λ to be searched before
converting all the inequalities to LMIs.

Gn = λGf = λG (22)

Consequently, we can adopt different Lyapunov matrices
for the normal and the sensor failure cases, respectively.
Then, the next theorem gives a solution, expressed in terms
of LMI, to the reliable H∞ filtering problem.
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Denote

W0 = −ST − S, W1 = −ST − S + NT + N

W2 = τ1M̂1 + τ3N̂1, R1 = (S −N)TA + B̂fC

R2 = (S −N)TB + B̂fD

R3 = (S −N)TA + B̂f (I − ρ)C

R4 = (S −N)TB + B̂f (I − ρ)D

R5 = (S −N)TA + NTBf (I − ρ)C

R6 = (S −N)TB + NTBf (I − ρ)D

Theorem 3. Given scalars γn > 0, γf > 0 and the

known constant matrices M̂1, M̂2, N̂1, and N̂2, a reliable
H∞ filter exists if, for scalar λ > 0, there exist matrices 0 <
P1n = PT

1n ∈ Rn×n, P2n ∈ Rn×n, 0 < P3n = PT
3n ∈ Rn×n,

0 < P1f = PT
1f ∈ Rn×n, P2f ∈ Rn×n, 0 < P3f = PT

3f ∈
Rn×n, N ∈ Rn×n, S ∈ Rn×n, Âf ∈ Rn×n, B̂f ∈ Rn×p,

Ĉf ∈ Rq×n and nonnegative scalars τi (i = 1, 2, 3) such
that 



Σ1 ∗ ∗ ∗ ∗
Σ2 Ω3 ∗ ∗ ∗
0 0 −γ2

fI ∗ ∗
Σ3 Σ5 Σ6 Σ7 ∗
Σ4 0 0 0 −I




< 0 (23)

holds for ρ = 0 and




Σ11 ∗ ∗ ∗ ∗
Σ2 Ω3 ∗ ∗ ∗
0 0 −γ2

fI ∗ ∗
Σ13 Σ15 Σ16 Σ17 ∗
Σ4 0 0 0 −I




< 0 (24)

holds for ρ ∈ {ρ1, ρ2, · · · , ρL} with ρj ∈ NNNρj , j = 1, · · · , L,
where

Σ1 =

[
−P̄1n −W2 − τ2M̂1 ∗

−P̄2n −W2 −P̄3n −W2

]

Σ2 =



−τ1M̂

T
2 −τ1M̂

T
2

−τ2M̂
T
2 0

−τ3N̂
T
2 −τ3N̂

T
2


 , Σ4 =

[
L− Ĉf L

]

Σ3 =

[
λSTA λSTA

λ(R1 + Âf ) λR1

]
, Σ6 =

[
λSTB
λR2

]

Σ5 =

[
λSTF 0 0

λ(S −N)TF λF̂f λB̂fH

]

Σ7 =

[
P̄1n + λW0 ∗
P̄2n + λW0 P̄3n + λW1

]

Σ11 =

[
−P̄1f −W2 − τ2M̂1 ∗

−P̄2f −W2 −P̄3f −W2

]

Σ13 =

[
STA STA

R3 + Âf R3

]
, Σ16 =

[
STB
R4

]

Σ15 =

[
STF 0 0

(S −N)TF F̂f B̂f (I − ρ)H

]

Σ17 =

[
P̄1f + W0 ∗
P̄2f + W0 P̄3f + W1

]

Moreover, if there exist solutions of these inequalities,

then the reliable filter can be given by

Af = N−TÂf , Bf = N−TB̂f , Ff = N−TF̂f , Cf = Ĉf

(25)
Proof. Due to the limit of the space, the proof is omit-

ted. ¤
Remark 3. It is noted that for given λ, the condi-

tions in Theorem 3 are LMI conditions with respect to the
scalars γn and γf . Therefore, γn and γf can be minimized
by using convex optimization algorithms. Then, the prob-
lem of reliable H∞ filter can be converted to the following
optimization problem:

min
τi, P̄in, P̄if (i = 1, 2, 3),

S, N, Âf , B̂f , Ĉf , θn, θf

αθ2
n + βθ2

f

s.t. (23), (24), θn = γn, θf = γf

(26)

The minimal disturbance attenuation γ∗n = θ∗n, γ∗f = θ∗f ,
and α and β are weighting coefficients. Usually, we can
choose α > β in (26), since systems operate under the nor-
mal condition most of the time. In addition, the parameters
of the designed filter can be obtained by (25).

Remark 4. The sufficient conditions expressed in LMIs
are presented in Theorem 3, where sensor failures exist.
When the sensor failures are not considered, i.e., ρ = 0, the
problem reduces to a standard H∞ filter design, where (23)
should be satisfied.

3 Numerical simulation
To illustrate the validity and effectiveness of the reliable

H∞ filter, a numerical simulation is carried out to provide
a comparison of the approaches proposed in this paper.

Consider the nonlinear discrete-time system (1) with the
following parameters:

A =




0.6 −0.3 −0.3
0 0.2 −0.7

−0.1 0.3 0.7


 , F =




0.4 0.2 0.3
0.2 0.5 0
0.3 0.1 0.1




B =



−0.2 0.4
0.4 −0.5
−0.6 0.3


 , C =

[
0 1 −8
1 −3 2

]

H =

[
0.5 −0.1 0
0.2 0 0.1

]
, D =

[ −1 1
0 −0.8

]

LLL =
[

0.2 0.1 −0.3
]

M1 = N1 =




0.01 0.01 −0.01
0.01 0.02 0.04
−0.02 0.01 0.02


 , M2 = N2 =



−0.01 0.01 −0.01
−0.03 −0.02 −0.02
0.02 −0.03 −0.04


 , f(xxx(k)) = h(xxx(k)) =




0.02x1(k)sin2(x1(k))− 0.01(x1(k)− x2(k) + x3(k))

−0.01(x1(k)− x3(k))

−0.01(x2(k) + x3(k))




where f(xxx(k)) and h(xxx(k)) satisfy (2).
Here, the following four possible sensor failure modes are

considered:
Normal mode 1: Both of the two sensors are normal,

that is, ρ1 = diag{ρ1
1, ρ

1
2} = diag{0, 0}.

Sensor failure mode 2: The first sensor is normal and the
second is outage, that is, ρ2 = diag{ρ2

1, ρ
2
2} = diag{0, 1}.

Sensor failure mode 3: The first sensor is outage and the
second is normal, that is, ρ3 = diag{ρ3

1, ρ
3
2} = diag{1, 0}.
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Sensor failure mode 4: The two sensors are partial fail-
ure, that is, ρ4 = diag{ρ4

1, ρ
4
2}, where 0 ≤ ρ4

1 ≤ 0.4 and
0 ≤ ρ4

2 ≤ 0.5.
Then, by applying Remark 3 and the fminsearch with

the initial value of λ = 1, the optimal reliable H∞ per-
formances are 0.3175 (normal) and 0.4867 (failure) when
α = 10, β = 1, and λ = 1.2478. Due to the limit of the
space, the filter gain matrices are omitted.

Table 1 presents a comparison between Theorem 3 and
Remark 4. Table 1 shows that the standard filter has the
best performance in the normal case. However, the optimal
H∞ performance of the standard filter is seriously deterio-
rative in the sensor failure case, while the reliable H∞ filter
performs well.

Table 1 Comparison between Theorem 3 and Remark 4

Design Methods Normal Sensor failures

Theorem 3 Reliable filter γ∗n = 0.3175 γ∗f = 0.4867

Remark 4 Standard filter γ∗n = 0.2440 γ∗f = 1.0312

In order to show the effectiveness of our method more
clearly, a simulation is also performed. In the following sim-
ulation, let the system initial state be xxx0 =

[
0 0 0

]
and the filter initial state be x̄xx0 =

[
0 0 0

]
. In addi-

tion, we assume the disturbance input www(k) =

[
w1(k)
w2(k)

]

as follows:

w1(k) = w2(k) =

{
0.2 (0.1 + cos(1.7k)), 5 ≤ k ≤ 10
0, otherwise

(27)
Fig. 1 shows the estimation error eee(k) responses of the fil-
ters designed by the proposed methods for the reliable filter,
the standard filter, and the standard filter with (4), respec-
tively. From Fig. 1, we can easily find that the standard
filter performs well in the normal case, while it is seriously
deteriorative in the sensor failure case. This phenomenon
shows the effectiveness of our design methods.

Fig. 1 Comparison of different design methods

4 Conclusion

The problem of reliable H∞ filtering is discussed for
a class of discrete time nonlinear systems with sector-
bounded nonlinearities and sensor failures. Sufficient con-
ditions for the existence of the filter are obtained to en-
sure the asymptotic stability with sensor failures and H∞
performance. A new LMI formulation is also proposed to
reduce the conservativeness in the design. Finally, a nu-

merical example is given to illustrate the effectiveness of
the main results.
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