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Single Machine Group Scheduling Problems with the

Effects of Deterioration and Learning
YAN Yang1 WANG Da-Zhi1 WANG Ding-Wei1 W. H. Ip2 WANG Hong-Feng1

Abstract This paper studies the single-machine scheduling problem with the effects of deterioration and learning under group
consumption, where the processing time of a job is defined by the function of the starting time and position in the group. Based on
the analysis of properties and polynomial algorithms, it can be shown that both the single-machine makespan minimization problem
and the total resource minimization problem under the group consumption are polynomially solvable, even though the deterioration
and learning effect on job processing time is introduced.
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Scheduling plays an important role in many real-
world applications, such as avionics, communications, sig-
nal processing, routing, industrial control, operations re-
search, production planning, project management, process
scheduling in operating systems, class arrangement, grid
computing and so on. Many different techniques have been
presented for solving the scheduling problems.

In the classical scheduling problem, it is assumed that
the job processing time is fixed and known as the time span
from the first job to be processed to the last one. However,
this assumption may be unrealistic in many cases, as sup-
ported by some industrial empirical studies via demonstrat-
ing that the unit cost declines as the firm produces more
products and gains knowledge or experience. For instance,
Biskup[1] pointed out that the repeated processing of sim-
ilar tasks continuously improves the worker skills; workers
are able to perform setup, deal with machine operations
and software, or handle raw materials and components fast.
This phenomenon is known as the “learning effect” in the
literature. In [2], two special flowshop scheduling models
of job processing time characterized by position-dependent
function were proved to be polynomially solvable.

Recently, the time dependent learning effect was investi-
gated in [3], where the actual job processing time was de-
signed as the function of the total normal processing time
of the previous scheduled jobs. Kuo[4] proved that short-
est processing time (SPT) rule was optimal for the total
completion time minimization problem. Wang solved the
other three problems, whose objectives were to minimize
the weighted sum of completion time, the maximum late-
ness, and the number of tardy jobs, respectively[5]. More-
over, Kuo[6] extended their model into the group scheduling
problem with setup time and they presented the optimal
algorithm for the extended model. It is obvious that the
time-dependent learning model is more practical because
it can reflect the fact that the job learning effect is influ-
enced by the normal processing time of the jobs processed
before.
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Empirical studies have shown that the decreasing deteri-
orating phenomenon is always common in the real life[7−9].
For example, when a worker is assumed to assemble a large
number of similar products, the time required by him to
assemble one product depends on his knowledge, his skill,
and the organization of his working place. After a learn-
ing period, the time for him to assemble one product can
decrease as a result of the increment of his knowledge, the
enhancement of his skill, and the improvement of his work-
ing place. Another example is the process of a radar station
to recognize aerial threats. When the radar station detects
some unidentified objects approaching, the time required
to recognize these objects would decrease as they become
nearer and nearer. As a result, the later the objects de-
tected, the less time for their recognition.

The phenomena of learning effect and deteriorating jobs
occurring simultaneously can be found in many real-life sit-
uations. As the manufacturing environment becomes in-
creasingly competitive, the organizations are moving to-
ward the shorter production runs and the more frequent
product changes in order to provide greater product vari-
ety to the customers. The learning and forgetting that the
workers undergo in this environment have thus become in-
creasingly important as they tend to spend more time in ro-
tating among the tasks and responsibilities rather than be-
coming fully proficient. The workers are often interrupted
by the product and process changes, which could cause the
decrement of performance. For simplicity, this phenomena
is regarded as forgetting in this paper. It should be helpful
in improving the accuracy of production planning and pro-
ductivity estimation to consider the learning and forgetting
effects in measuring productivity.

In [10−11], both the deteriorating phenomenon and
learning effects were considered in the single machine
scheduling problem. Lee[12] considered the single-machine
scheduling problem with the deteriorating jobs and the
learning effect, whose objective was to minimize makespan
and total completion time. He reported the polynomial
solutions for both the scheduling problems under the sim-
ple linear deterioration. Wang[13] considered the single-
machine scheduling problem with the effects of learning
and deterioration, where the job processing time was de-
fined by the functions of starting time and position in the
sequence. It was shown that even with the introduction
of learning effect and deteriorating jobs, the single ma-
chine makespan and sum of completion time minimization
problem remained polynomially solvable. Wang[14] con-
sidered the effects of deterioration and learning in both
the single machine and flowshop scheduling models. In
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[15], a new model of scheduling problem with learning ef-
fect and deteriorating jobs was constructed and discussed,
and both the single machine and flowshop cases were
analyzed.

However, most studies have ignored the fact that the effi-
ciency of a real production process usually can be increased
by grouping various parts and products with similar de-
signs and/or production processes during the production
period. This is known as the group technology which has
been widely studied in [16−17]. The application of the
group technology can bring a lot of benefits. For instance,
simplifying the changeovers between different parts can re-
duce the relevant costs; spending less time on waiting can
result in decreasing the work-in-process inventory; the parts
tending to move through production in a direct route can
reduce the manufacturing lead time; reducing the variabil-
ity of tasks is helpful in simplifying the worker′s training.
Wu[17] discussed two single machine scheduling problems
in the context of group technology where the job process-
ing time and setup time were designed as the simple linear
functions of starting time. The objectives were to minimize
the makespan and the total completion time.

The manufacturing process can always be influenced by
the resources. Zhao[18] provided the optimal solutions for
the three different scheduling problems to minimize the
sum of earliness penalties subject to no tardy jobs, the re-
source consumption with the makespan constraints, and the
makespan with the total resource consumption constraints,
respectively. Cheng[19] discussed a single machine schedul-
ing problem to minimize the total resource consumption,
with the assumption that the release time of a job was
a positive strictly decreasing continuous function of the
amount of resources consumed. In [20], the resource con-
strained scheduling problem was combined into a start time
dependent processing time model, and the optimal resource
allocation method was given. In many industrial cases,
such as the catalyst in the chemical industry or the spe-
cial lubrication oil during the mechanism processing, the
setup time of a group is usually influenced by some kind
of resources, which have seldom been considered by the re-
searchers.

In [21], the polynomial time algorithms were presented
to find an optimal job sequence and the resource values in
order to minimize the total weighted resource consumption
subject to the job deadlines. The bi-criterion problem in-
dicated that the time and resource need to be considered
together for the resource constrained scheduling problem.
Thus, the scheduling model which considers the bi-criterion
objectives is more applicable and practical. Cheng[22] gave
this kind of bi-criterion model with assumption that the re-
sources for each group are as the same as those consumed
by each job.

In this paper, we consider the scheduling model with
the effects of deterioration and learning, where the jobs
are under group consumption and the setup time of each
group is dependent on the resource it consumes. During
the practical production process, the same or similar jobs
are assigned together to form several groups in order to
improve the manufacturing process. Setup time is required
if the machine switches from one group to another. And
the setup of a group is usually constrained by a kind of
resource or several resources.

The remainder of this paper is organized as follows. In
Section 1, the problem formulation is given. In Section 2,
the makespan minimization problem with the resource con-

straints is discussed, whereas the total resource consump-
tion minimization problem with the makespan constrains
is discussed in Section 3. In Section 4, a computational
instance is presented to illustrate the effectiveness of the
algorithm. The final section concludes this paper with dis-
cussions on the future work.

1 Problem formulation

It is assumed that there are n jobs J1, J2, · · · , Jn, which
are grouped into m groups and are to be processed on a
single machine. All jobs are available at time 0 and pro-
cessed one by one in the groups on the machine. It is
also assumed that there are ni jobs Ji1, Ji2, · · · , Jini in
group Gi. The normal processing time of Jij is pij and
n1 + n2 + · · · + nm = n. Setup time is required if the ma-
chine switches from one group to another. The setup time
of each group is sequence independent. The setup time si

of group Gi is dependent on the resource it consumes, i.e.,

si = f(ui), 0 ≤ ui ≤ ū, i = 1, 2, · · · , m (1)

The resource consumption ui of group Gi is restricted
within [0, ū], where ū is the upper bound of the resource
consumption. f is a decreasing function of the resource
that group Gi consumes and its reverse function is f−1.

The processing of a job may not be interrupted. It is
assumed that the starting time of Jij is t and its normal
processing time is pij . Its actual processing time is depen-
dent on not only the time it starts, but also its scheduled
position in the group. If it is scheduled in the r-th position
in group Gi, the actual processing time of Jij is

p
[r]
ij = pij(b− ct)rai , i = 1, 2, · · · , m, j = 1, 2, · · · , ni (2)

where ai is a learning index of group Gi, b and c are two
positive constants.

Two versions of objectives are considered. The first one
is to minimize the makespan under the resource constrains,
whereas the other is to minimize the total resource con-
sumption with the makespan constrains. All the problems
considered in this paper will be denoted via using the three-
field notation schemas α|β|γ introduced by Graham[23].
Then, the problems described above can be denoted as fol-
lows:

1|si = f(ui), G, pij(b− ct)rai ,
∑

ui ≤ U |Cmax (3)

1|si = f(ui), G, pij(b− ct)rai , Cmax ≤ C|
∑

ui (4)

2 Makespan minimization

Lemma 1[14]. The makespan of 1| = pij(b−ct)ra|Cmax

can be solved by scheduling the jobs in the nonincreasing
order of their normal processing time. If the starting time
of the first job is t0 , then the makespan is

Cmax(t0|J1, J2, · · · , Jn) = (t0 − b

c
)

n∏
j=1

(1− cpjj
a) +

b

c
(5)

Theorem 1. For the problem 1|G, pij(b − ct)rai |Cmax,
if the starting time of the first group is t0 = 0, then the
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makespan is

Cmax =

m∑

k=1

(
sk

m∏

i=k

ni∏
j=1

(1− cpijj
ai)

)
−

b

c

m∏
i=1

ni∏
j=1

(1− cpijj
ai) +

b

c
(6)

Proof. Assume π = [Gπ(1), Gπ(2), · · · , Gπ(m)] =
[G1, G2, · · · , Gm] is a schedule of the groups. There are
ni jobs in group Gi (i = 1, · · · , m), and job Jij is processed
at j-th position in group Gi. The completion time of group
G1 and group G2 are

C1 =

(
s1 − b

c

) n1∏
j=1

(1− cp1jj
a1) +

b

c

C2 =

(
C1 + s2 − b

c

) n2∏
j=1

(1− cp2jj
a2) +

b

c
=

2∑

k=1

(
sk

2∏

i=k

ni∏
j=1

(1− cpijj
ai)

)
−

b

c

2∏
i=1

ni∏
j=1

(1− cpijj
ai) +

b

c

Assume (6) is true for the l-th group. Then,

Cl =

l∑

k=1

(
sk

l∏

i=k

ni∏
j=1

(1− cpijj
ai)

)
−

b

c

l∏
i=1

ni∏
j=1

(1− cpijj
ai) +

b

c

Considering group Gl+1, we have

Cl+1 =

(
Cl + sl+1 − b

c

) nl+1∏
j=1

(1− cpl+1,jj
al+1) +

b

c
=

[ l∑

k=1

(
sk

l∏

i=k

ni∏
j=1

(1− cpijj
ai)

)
−

b

c

l∏
i=1

ni∏
j=1

(1− cpijj
ai) +

b

c
+ sl+1 − b

c

]
×

nl+1∏
j=1

(1− cpl+1,jj
al+1)− b

c
=

l+1∑

k=1

(
sk

l+1∏

i=k

ni∏
j=1

(1− cpijj
ai)

)
−

b

c

l+1∏
i=1

ni∏
j=1

(1− cpijj
ai) +

b

c

That is, (6) is true for group Gl+1.
Based on the induction of assumption, (6) is true for the

m-th group. Then,

Cmax =

m∑

k=1

(
sk

m∏

i=k

ni∏
j=1

(1− cpijj
ai)

)
−

b

c

m∏
i=1

ni∏
j=1

(1− cpijj
ai) +

b

c

¤
Property 1. The jobs in each group are scheduled in

the nonincreasing order of their normal processing time.
Proof. For any sequence of the groups π =

[G1, G2, · · · , Gm] , we could prove that Cmax could be min-
imized by scheduling the jobs in each group in the non-
increasing order of their normal processing time by the
method of adjacent pairwise interchange. ¤

Property 2. In order to minimize the objective Cmax ,
the groups scheduled in the later position are given the pri-
ority of resource allocation for any schedule of the groups.

Proof. Without loss of generality, we assume π =
[G1, G2, · · · , Gm] is a random schedule of all the groups.
Based on (6), we first allocate the resource to the setup time
si with the bigger

∏m
i=l

∏ni
j=1(1 − cpijj

ai). The makespan
can be minimized by the same amount of resource. Since
c > 0, pij > 0, i = 1, 2, · · · , m, j = 1, 2, · · · , ni, we have∏ni

j=1(1− cpijj
ai) < 1 for any i. Thus,

m∏

i=l

ni∏
j=1

(1− cpijj
ai) <

m∏
i=2

ni∏
j=1

(1− cpijj
ai) < · · · <

m∏
i=m

ni∏
j=1

(1− cpijj
ai)

Then, the groups scheduled in the later position should be
given the priority of resource allocation to minimize the
objective Cmax . ¤

Property 3. Based on Properties 1 and 2, we can sched-
ule the jobs in each group in the nonincreasing order of their
normal processing time and allocate the resource to the
setup time of the groups in each position. If the resource
amount of the groups in each position is fixed and the jobs
are scheduled in the nonincreasing order of their normal
processing time in each group, the optimal schedule can
be obtained by scheduling the groups in the nondecreasing
order of ρGi =

∏ni
j=1(1− cpijj

ai).
Proof. Without loss of generality, we assume that the

resource amount of the group scheduled at the i-th po-
sition is denoted as u∗[i] (i = 1, 2, · · · , m), and that Gl

and Gl+1 are two adjacent groups in the optimal sched-
ule π = [G1, G2, · · · , Gm]. Gl is scheduled in front of Gl+1

and
∏nl

j=1(1− cpljj
al) >

∏nl+1
j=1 (1− cpl+1,jj

al+1). If chang-
ing the sequences of Gl and Gl+1, we can obtain a new
schedule π′. In π′, Gl is scheduled in the (l+1)-th position
and its resource allocation amount is u∗[l+1]; Gl+1 is sched-
uled at the l-th position and its resource allocation amount
is u∗[l]. Then, the objective values of π and π′ are

Cmax = Cm = f(u∗[1])
m∏

i=1

ni∏
j=1

(1− cpijj
ai) + · · ·+

f(u∗[l−1])

m∏

i=l−1

ni∏
j=1

(1− cpijj
ai)+

f(u∗[l])
m∏

i=l

ni∏
j=1

(1− cpijj
ai)+

f(u∗[l+1])

m∏

i=l+1

ni∏
j=1

(1− cpijj
ai) + f(u∗[l+2])×

m∏

i=l+2

ni∏
j=1

(1− cpijj
ai) + · · ·+ f(u∗[m])

nm∏
j=1

(1− cpmjj
ai)−



No. 10 YAN Yang et al.: Single Machine Group Scheduling Problems with the Effects of Deterioration · · · 1293

b

c

m∏
i=1

ni∏
j=1

(1− cpijj
ai) +

b

c
=

m∑

k=1

f(u∗[k])

m∏

i=k

ni∏
j=1

(1− cpijj
ai) + K

C′max = C′m =

f(u∗[1])
m∏

i=1

ni∏
j=1

(1− cpijj
ai) + · · ·+ f(u∗[l−1])×

m∏

i=l−1

ni∏
j=1

(1− cpijj
ai) + f(u∗[l])

nl+1∏
j=1

(1− cpl+1,jj
al+1)×

nl∏
j=1

(1− cpljj
al)

m∏

i=l+2

ni∏
j=1

(1− cpijj
ai) + f(u∗[l+1])×

nl∏
j=1

(1− cpljj
al)

m∏

i=l+2

ni∏
j=1

(1− cpijj
ai) + f(u∗[l+2])×

m∏

i=l+2

ni∏
j=1

(1− cpijj
ai) + · · ·+ f(u∗[m])

nm∏
j=1

(1− cpmjj
ai)−

b

c

m∏
i=1

ni∏
j=1

(1− cpijj
ai) +

b

c
=

l−1∑

k=1

f(u∗[k])

m∏

i=k

ni∏
j=1

(1− cpijj
ai)+

f(u∗[l])
m∏

i=l

ni∏
j=1

(1− cpijj
ai)+

f(u∗[l+1])

nl∏
j=1

(1− cpljj
al)

m∏

i=l+2

ni∏
j=1

(1− cpijj
ai) +

m∑

k=l+2

f(u∗[k])

m∏

i=k

ni∏
j=1

(1− cpijj
ai) + K

where K = − b
c

∏m
i=1

∏ni
j=1(1− cpijj

ai) + b
c
. Then, we can

obtain

Cmax − C′max = f(u∗[l+1])

m∏

i=l+2

ni∏
j=1

(1− cpijj
ai)×

(nl+1∏
j=1

(1− cpl+1,jj
al+1)−

nl∏
j=1

(1− cpljj
al)

)
> 0

Thus π′ excels π, which is contradictory to the optimality
of π. If the resource amount of the groups in each position
is fixed, the optimal schedule can be obtained by scheduling
the groups in the nondecreasing order of ρGi =

∏ni
j=1(1 −

cpijj
ai). ¤

Based on Properties 1 ∼ 3, the optimal schedule can be
obtained by scheduling the jobs in each group in the nonin-
creasing order of their normal processing time, scheduling
the groups in the nondecreasing order of ρGi =

∏ni
j=1(1 −

cpijj
ai) and allocating the resource to the groups scheduled

in later position.
Property 4. Since the premise is to minimize makespan

with the resource constraints, the makespan can be mini-
mized under the condition that

∑
Ui = U .

According to the above analysis, 1|si =
f(ui), G, pij(b − ct)rai ,

∑
ui ≤ U |Cmax can be solved by

the following algorithm.

Algorithm 1.
Step 1. Order the jobs in each group in the nonincreas-

ing order of their normal processing time.
Step 2. Order the groups by the nondecreasing order of

ρGi =
∏ni

j=1(1 − cpijj
ai). For the obtained schedule π =

[G[1], G[2], · · · , G[m]], set u∗[i] = 0, i = 1, 2, · · · , m, l = m.

Step 3. Set u∗[l] = min{u, U}, U = U−u[l], and l = l−1.
Step 4. If U = 0 or l = 0, exit; else go to Step 3.
Obviously, the total time for Algorithm 1 is O(n log n).

3 Total resource consumption mini-
mization

For the problem 1|si = f(ui), G, pij(b − ct)rai , Cmax ≤
C|∑ ui, we can draw the following conclusions based on
the above analysis of problem (1). Firstly, the optimal
schedule can be obtained by scheduling the jobs in each
group in the nonincreasing order of their normal processing
time and scheduling the groups in the nondecreasing order
of ρGi =

∏ni
j=1(1−cpijj

ai) in order to minimize the resource
consumption. Secondly, the total resource consumption can
be minimized under the condition that Cmax = C since the
premise is to minimize the total resource consumption with
the makespan constraints. Finally, the resource should be
allocated to the groups scheduled in the later position.

If we only allocate the resource to the setup time of group
Gπ[m] and the resource allocation amount is 0 for the groups
scheduled before it, we have

s[m]

m∏
i=m

n[i]∏
j=1

(1− cp[i]jj
a[i]) + s

m−1∑

k=1

m∏

i=k

n[i]∏
j=1

(1− cp[i]jj
a[i]) =

C −K

according to (6). Thus, the setup time of G[m] is

s[m] =

C −K − s

m−1∑

k=1

m∏

i=k

ni∏
j=1

(1− cp[i]jj
a[i])

m∏
i=m

ni∏
j=1

(1− cp[i]jj
a[i])

where s = f(0) and K = − b
c

∏m
i=1

∏ni
j=1(1 − cpijj

ai) + b
c
.

But as we known, the resource consumption u∗[m] of G[m] is

restricted within [0, ū]. Thus, we have:
If s[m] ≥ f(0), then the restriction that Cmax ≤ C can

be satisfied even if the resource allocation amount u∗[m] of
G[m] is 0. We do not have to allocate the resource to the
groups scheduled before it, and we stop.

If f(ū) ≤ s[m] < f(0), then first calculate f−1(s[m]),
the optimal resource allocation amount of G[m] is u∗[m] =

f−1(s[m]). We do not have to allocate the resource to the
former groups, and we stop.

If s[m] < f(ū), then the resource allocation amount of
G[m] should be ū, that is, u∗[m] = ū. We have to go
on allocating the resource to the groups scheduled before
G[m]. The resource consumption of G[m] is equal to its
upper bound ū. Then, the optimal resource consumption
u∗[m−1], u

∗
[m−2], · · · , u∗[1] of other groups can be calculated

by the same method.
According to the above analysis, 1|si = f(ui), G,

pij(b − ct)rai , Cmax ≤ C|∑ ui can be solved by the
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following algorithm.

Algorithm 2.
Step 1. Order the jobs in each group in the nonincreas-

ing order of their normal processing time.
Step 2. Order the groups by the nondecreasing order of

ρGi =
∏ni

j=1(1 − cpijj
ai). Let π = [G[1], G[2], · · · , G[m]] be

the obtained schedule.
Step 3. Set u∗[i] = 0, i = 1, 2, · · · , m, U = 0, s =

f(0), s′ = f(u), l = m; calculate K = − b
c

∏m
i=1

∏ni
j=1(1 −

cpijj
ai) + b

c
; and set C′ = C −K.

Step 4. Calculate

s[l] =

C′ − s

l−1∑

k=1

m∏

i=k

ni∏
j=1

(1− cp[i]jj
a[i])

m∏

i=l

ni∏
j=1

(1− cp[i]jj
a[i])

If U = 0 or l = 0, exit; else go to Step 5.
Step 5. If s[l] ≥ f(0), then exit; if f(u) ≤ s[l] < f(0),

then set u∗[l] = f−1(s[l]), U = U + u∗[l], and exit, and

the optimal resource allocation is u∗ = [u∗1, u
∗
2, · · · , u∗m];

if s[l] < f(u), then go to Step 6.
Step 6. Set u∗[l] = ū, U = U + u∗[l], C′ = C′ −

s′
∏m

i=l

∏ni
j=1(1 − cpijj

ai), and l = l − 1. If l < 0, then
exit, there is no feasible solution; else go to Step 4.

The total time for Steps 1 and 2 is O(n log n) and the
total time for Steps 3 ∼ 6 is O(ng(n)) if the total time for
f−1 is g(n). Obviously, the total time for Algorithm 2 is
max{O(n log n, O(ng(n)))}.

4 Computational example

Example. Consider a single-machine group-scheduling
problem with seven jobs divided into three groups. The
setup time si of group Gi is dependent on the resource it
consumes: si = 20−0.12u2

i −0.08ui, 0 ≤ ui ≤ ū, i = 1, 2, 3.
If Jij is scheduled in the r-th position in group Gi, the

actual processing time of Jij is p
[r]
ij = pij(b − ct)rai , i =

1, 2, 3, j = 1, 2, · · · , ni. It is assumed that b = 1, c = 0.004,
U = 9, and ū = 5. The basic processing time for each
job and the learning index of each group are illustrated
in Table 1. The optimization objective is to minimize the
makespan with the resource constraints.

Table 1 An illustrative example

G̃roup G1 G2 G3

Job code J11 J12 J13 J21 J22 J31 J32

Normal processing time pij of Jij 42 16 37 21 49 37 43

Group learning index −0.05 −0.10 −0.08

Solution. The procedure to obtain the optimal schedule
is as follows:

Step 1. Sorting the jobs within the same group accord-
ing to the nonincreasing order of their normal processing
time, we have the optimal job sequences in G1, G2, and G3

are [J11, J13, J12], [J22, J21], and [J32, J31], respectively.
Step 2. Calculate ρGi for each group: ρG1 =

∏n1
j=1(1−

cp1jj
a1) = (1−0.004×42×1−0.05)(1−0.004×37×2−0.05)(1−

0.004× 16× 3−0.05) ≈ 0.662.
In a similar way, we can get ρG2 = 0.741 and ρG3 =

0.712. Sort the group in the non-decreasing order of the

ρGi . Thus, the optimal group sequence is [G1, G3, G2]. Set
u∗[i] = 0, i = 1, 2, 3 and l = 3.

Step 3. Set u∗[3] = min{u, U} = min{5, 9} = 5, U =

U −u[3] = 4, l = 3−1 = 2; u∗[2] = min{u, U} = min{5, 4} =

4, U = U − u[2] = 0; exit. That is, u∗1 = 0, u∗2 = 5 and
u∗3 = 4.

Therefore, the optimal resource allocation is u∗=[0, 5, 4]
and the optimal schedule is [J11, J13, J12, J32, J31, J22,
J21] Then, according to (6), the makespan for this optimal
resource allocation and sequence is 191.83.

5 Conclusion

In this paper, a new single-machine scheduling model,
which considers the effects of deterioration and learning un-
der the group consumption, was investigated. In the inves-
tigated model, each processing job is dependent on both its
starting time and its scheduled position in the correspond-
ing group, and the setup time of each group is dependent
on the resource it consumes. The makespan minimization
problem with total resource consumption constraints and
the total resource consumption minimization problem with
the makespan constraints were discussed, respectively. For
both discussed problems, the properties and polynomial al-
gorithms were also presented, respectively. This paper fi-
nally report the results of applying the proposed algorithms
to an illustrative instance.

Future work will focus on investigating other objectives
in the single-machine scheduling problem, and then other
group problems in the multi-machine and job-shop schedul-
ing fields.
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