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This paper presents a non-homogeneous Markov chain approach for analyzing 
drought characteristics using the Palmer Drought Severity Index (PDSI). The 
probability mass functions of occurrence of different drought severity classes, 
their durations, and times of return to a particular drought class are obtained and 
are in turn utilized to generate the needed statistics and forecasts. Two methods 
of forecasting drought severity classes for one, two, and three months lead times 
are put forward. The methodology is applied to ninety six years of PDSI data 
corresponding to two climatic divisions in Virginia, USA. Comparison between 
the analytical results and the empirical estimates supports the utility of the meth- 
od. The method can be used in a planning mode for developing buffer storage in 
drought prone regions and in an operational mode for optimal rationing of water 
among competing needs as drought progresses. 

Introduction 

Analysis of patterns of dry spells is necessary for planning long-term policies of wa- 
ter resources development in a region. It identifies drought prone regions and deter- 
mines the appropriate buffer source development as a mitigation measure. In the op- 
erational mode during an ongoing drought, appropriate regulations for a meaningful 
allocation of water among uses can be devised. In this paper long-term records of 
Palmer Drought Severity Index (PDSI) are analyzed to assess dry spell patterns in 
Virginia, USA (see Fig. 1). Van Bavel and Lillard (1957) analyzed the historical pat- 
tern of droughts in Virginia and observed that from June through September (part of 
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the growing season) the probability of moisture deficiency had been at least 3 years 
in 10. Vellidis et al. (1985) further ascertained the observations of Van Bavel and 
Lillard (1957). In a recent study conducted by the State Water Control Board 
(SWCB 1990), 9 drought years have been identified in Virginia during the period of 
1957-87 which is again about 30% probability. Short-term forecasting is considered 
to mean prediction over a three month period during a crop growing season. The 
Palmer index takes into consideration meteorologic and hydrologic variables in a 
comprehensive manner to assign a quantitative measure to dryness and wetness 
(Palmer 1965). A well detailed analysis of the formulation of the PDSI is given in 
Karl (1983; 1986) and Alley (1984). Detailed reviews are also given in Guttman 
(1991) and Johnson and Kohne (1993). In the following a brief description of Palm- 
er index computational scheme is given. 

To begin with a long-term monthly water balance for the chosen region is carried 
out. In his original formulation Palmer used the Thornthwaite equation (Thornth- 
waite 1948) for estimating the potential evapotranspiration. The soil moisture is de- 
pleted at the potential rate minus the precipitation as long as moisture storage per- 
mits it; otherwise, entire available moisture is used up. The soil moisture storage is 
divided into two layers namely, the surface layer and the underlying layer. The evap- 
otranspiration requirement is first met by the surface layer. When its storage is used 
up, transfer from the underlying layer is initiated. For soil moisture recovery, the 
surface layer storage must be full, before transfer to the underlying layer could take 
place. Surface runoff is computed by subtracting evapotranspiration and soil mois- 
ture storage deficiency amounts. The aforementioned balancing scheme is per- 
formed for a long period to obtain the average evapotranspiration, soil moisture re- 
charge (refilling of moisture during large rain events), runoff, and soil moisture loss. 
When rainfall is set to zero, the evapotranspiration losses are the maximum called 
the potential loss; potential recharge is the maximum recharge possible for any giv- 
en period and is taken as the total soil moisture storage minus the available soil 
moisture storage; potential runoff is taken as total soil moisture storage minus the 
potential recharge; and the potential evapotranspiration is obtained from the 
Thornthwaite equation. 

The ratios of long-term averages of evapotranspiration, recharge, runoff, and loss- 
es to the long-term averages of their respective potential values are computed. These 
ratios are used as multipliers for the potential values and the resulting evapotranspi- 
ration, recharge, and runoff are added and soil moisture losses are subtracted to ob- 
tain that month's climatically appropriate for existing conditions (CAFEC) precipi- 
tation. The difference between the CAFEC precipitation and the actual precipitation 
is the precipitation deficit for that month. This deficit is rescaled by multiplying by a 
constant specific for a region and for a month to obtain an index that is spatially and 
temporally comparable among different locations. This attribute has been discussed 
in the literature (Alley 1984; Guttman et al. 1992). The resulting moisture anomaly 
index, called the 2-index, becomes part of the Palmer index. The 2-index indicates 



Palmer Drought Severity Index 

the wetness or dryness of an individual month. The current cumulative deficit index 
is taken as the weighted sum of the previous cumulative deficit index and the current 
Z-index. The current cumulative deficit index is then subjected to a backtracking 
scheme to assess moisture depletion or recovery phase with an associated change in 
the PDSI value itself. The National Climatic Data Center (NCDC) in Ashville, 
North Carolina computes the PDSI for the contiguous United States. For this pur- 
pose the country has been divided into 344 climatic divisions. The boundaries of 
these divisions were fixed in the late fifties to conform with climate influencing 
physical features (Johnson and Kohne 1993). Karl (1 986) has grouped the PDSI val- 
ues into seven classes with class 1 (PDSI greater than or equal to 4.00) being the 
wettest and class 7 (PDSI less than or equal to -4.00) being the driest class. The nor- 
mal class (class 4) is considered when PDSI is in the range of -1.49 to 1.49. In his 
original formulation Palmer(1965) used climatic and other data from Kansas and 
Iowa for development of the PDSI. Since then the index has been used in several 
other states in the U.S. and various other countries for different purposes (Wheaton 
1990; Johnson and Kohne 1993; Jones et al. 1996). Heddinghaus and Sabol(1991) 
reported that the principal uses of the PDSI are in monitoring hydrologic trends, 
crop forecasts, and assessing potential fire severity. 

In this paper the focus is on a typical crop growing season. The feasibility of irri- 
gation schemes depends on availability of water from primary sources like wells, 
impoundments, and streams. Because PDSI incorporates the deviations from the cli- 
matically appropriate runoff and the moisture deficit within the soil for a region, it is 
used as a measure of irrigation water deficit. Since Palmer's original formulation has 
a Markovian form, there have been several attempts to apply the Markov model to 
predict its behavior. For drought related analyses the Markov model has been ap- 
plied in two forms. The first form is an autoregressive order one time series model in 
which the focus is more on expected values than the probabilities themselves. The 
second form is a Markov chain in which the variable takes values from discrete 
classes and the probabilities for various events can be readily computed. Rao and 
Padmanabhan (1984) adopted time series models to forecast the Palmer drought in- 
dex. Eltahir (1992) applied an autoregressive order 1 model to generate rainfall val- 
ues and performed a run analysis to select the drought events. The Palmer's original 
PDSI equation itself is an autoregressive model of order 1. However, because of the 
backtracking scheme used in the PDSI computation to place it in the dry or wet spell 
in a posteriori manner, neither PDSI nor a transformed form of it follows a normal 
distribution, in general. Therefore, the non-parametric form of the Markov chain 
provides a good alternative to analyze the PDSI data. There have been numerous ap- 
plications of Markov chain to model wetldry state transitions in the context of pre- 
cipitation occurrence process. Good reviews are given in Bowles and O'Connell 
(1991). However, the authors are not aware of any non-homogeneous Markov chain 
approach for predicting drought behavior. 

While the focus here is on Markov chain applications, Lohani(1995) presents an 
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CLIMATIC DIVISIONS, VIRGINIA 

1 TIDEWATER 
2 EASTERN PIEDMONT 
3 WESTERN PIEDMONT 
4 NORTHERN 
5 CENTRAL MOUNTAIN 
6 SOUTHWESTERN MOUNTAIN 

Fig. 1. Virginia Climatic Divisions. 

exhaustive review of the drought literature. In this paper a novel non-homogeneous 
Markov chain approach is described for characterizing droughts in two climatic di- 
visions, CD1 - the Tidewater Region and CD6 - the Southwest Mountains Region 
of Virginia. The state of Virginia has overall six climatic divisions (Fig. 1). This ap- 
proach accounts for the non-stationary behavior of climatic variables characterizing 
droughts. The methodology is applied to assess: i) the probabilities of occurrence of 
the various drought classes for an area, ii) the duration of stay of a particular drought 
class, iii) the expected passage time to migrate from one drought class to another, iv) 
the expected recurrence time of a particular drought class, and v) the expected 
drought class for future periods. 

The theoretical results are supported by the empirical analysis of ninety six years 
of monthly data for the period 1895-1990 for the two climatic divisions. As a perfor- 
mance measure the Kolmogorov-Smirnov test is applied to check the goodness of fit 
between the empirical and analytical probability distributions. The paper is orga- 
nized as follows. In the ensuing section on the formulation detailed theoretical re- 
sults are presented. The results are also given for the so called mean monthly homo- 
geneous Markov Chain that does not differentiate between months. Within each sec- 
tion, the theoretical conclusions are illustrated with the real data application and the 
resulting numerical values are tabulated. The section entitled the Monthly Drought 
Forecast presents two schemes for forecasting the progression of a drought. Be- 
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cause, the method uses the conditional probability, the forecast accuracy can be im- 
proved based upon the current state of drought. However, for irrigation related fore- 
cast a three-month lead time may be required for planting the crops at the current 
month. The section on conclusions describes the pivotal contributions. 

Non-Homogeneous Markov Chain Formulation 

The class delineation of PDSI provides a natural means for considering it as a Mar- 
kov Chain. Let X ,  be the random variable for month, n, representing the drought 
(wet) class; class 7 being the driest and class 1 being the wettest. For example, Xy 
XJ, = 1 represents the occurrence of class 1 in January. A Markov chain completely 
describes the underlying stochastic process if the transition probabilities denoted by 

n,n+ l 
P i j  for moving from class i in month n to class j in month n+l and the initial 
probability vector, fO), describing the probabilities of the seven classes for the be- 
ginning month are prescribed. In the present study twelve monthly (non-homogene- 
ous) transition probability matrices describing the class transfers from months Janu- 
ary to February; February to March; ..., and December to January are formulated. It 
is hypothesized that these matrices are cyclic in the sense that there is no yearly vari- 
ation. The transition probabilities depend only on the month and not on the year. The 
transition probability 

oz,n+1) 
Pi, j 

= P [ x ~ + ~  = j I x  n = ; ] , f o r  i , j=l ,2 ,r . r ,7andn=1,2  ,..., 12 

( 1 )  

is computed as 

(n,n+l)= 1. (n,"l)/N;") 
P i ,  j  2 ,  j  

where N. .(n'n+') = number of transitions from class i in month n to class j in 'J 
month n+l; N ~ ( ~ )  = number of occurrences of class i in month n. If N i b )  is zero for 
some, i, we define p i j  (n'n+') = 117 for all j = 1,2, ..., 7. The monthly PDSI values for 
CDl and CD6 of Virginia from 1895-1990 are analyzed. 

Monthly Drought Class Probabilities 

It is of interest to know the probabilities of occurrence of different drought classes 
for any given month. The drought proneness of a region is reflected in a large prob- 
ability for the drought classes. As far as monitoring the drought progression is con- 
cerned, unless spring snowmelt is involved, the winter months of December through 
March may not be of interest as opposed to April through November. In Virginia 
there is no significant snowmelt. The probability mass functions for the various 
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drought classes for these months help to assess the progression of a dry spell during 
a crop growing season. The probability mass functions related to the duration and 
times of return to a particular drought class can also be developed. Let f k )  be the 
class probability vector after k transitions. Using the initial class probability row 
vector f(O)  and the monthly transition matrices we can write 

in which fi0) is initial class probability row vector and PI = (7 x 7) monthly transi- 
tion matrix associated with the starting month, say January to February, i.e., PI = 
p(l.2) = p(Jan., Feb.) . Of course, the starting month can be any one of the 12 months. 
Also, due to the cyclic nature of these matrices, the transition matrix for months 14 
to 15 denoted by P " ~ , ' ~ )  is the same as P ( ~ ~ ~ )  = P ( ~ ~ ~ ' ~  Mar.) , the February-March tran- 
sition matrix. 

For the long-term, that is as k -+= we would like to know whether f'") has steady 
class probabilities independent off0). This will be true if the product of the transi- 
tion matrices [P,] through [Pk] denoted by $("x~) called the composite matrix 

is a constant stochastic matrix with identical rows (Isaacson and Madsen 1976) for 
large k for some starting m. For such a constant stochastic matrix it follows from Eq. 
(3) that fm(k) will be independent off"); furthermore, each class has a steady class 
probability value corresponding to that class' (column) constant probability of $(m'k). 

However, because the beginning month, m, influences the value of $(m.k) the steady 
class probabilities ~ f , f , (~ )  will depend on m. It says that the current month's drought 
behavior does affect the next month's drought pattern. To interpret fm(k) as k +=, 
consider Eq. (4) as follows. The constant (identical rows) stochastic matrix for Jan- 
uary is defined as the product of the sets of the consecutive 12 monthly matrices 
with the beginning matrix being that of January which is 

Because [Jan] is a constant stochastic matrix it follows 

Now consider 

and we obtain 
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from which upon manipulation it follows 

and therefore 

row [E'eb] = f = row [Jan] [ P I ]  

similarly we can show 

row b a r ]  = f: a )  = row [E'ebl [P~] 

row (.pr] = f i a )  = row [ ~ a r ]  
. . . 

row [ ~ e c ]  5 f::) . row [~ov] [ p l l ]  

row r~a.1- f:a' = row [ ~ e c ]  [P,,] 

Eq. (10) provides a means to evaluate the monthly droughtlwet steady class prob- 
abilities. It is a system of linear equations in terms of the monthly steady class prob- 
abilities that are used to compute these probabilities for each month and class both 
for CD1 and CD6. Table 1 lists the sample results of steady class probabilities for 
January, July, and October months obtained using PDSI data for both of the divi- 
sions. The table also provides the empirical estimates of these probabilities using 
1152 months of data of PDSI. For each month, two values of steady class probabil- 
ity are given for each class. The upper row represents the analytical result and the 
lower one is the empirical result. For example, the steady class probability of occur- 
rence of class 3 in January month in CDl is 0.2200 which compares well with the 
empirical estimate of 0.2187. Likewise, the steady class probability of occurrence of 
class 3 in January month in CD6 is 0.2037 which also agrees reasonably well with 
the empirical estimate of 0.1979 (see Table 1). These results imply that if weather 
conditions are categorized into seven different states using PDSI values, then there 
is about a 20% probability over long-term that the weather state will be class 3 in 
January in CD1 and CD6 climatic divisions of Virginia. It is also observed that dur- 
ing July through October steady class probabilities of drought classes (i.e. classes 5, 
6, and 7) are higher in CDl division as compared to CD6 division implying that 
CD1 region is relatively prone to drought conditions as compared to the CD6 divi- 
sion. The steady class probabilities obtained using a mean monthly transition matrix 
are also given in Table 1. This matrix is computed by considering weather class tran- 
sitions over the entire data period (1895-1990) without considering the months of 
such transitions. Because of its inability to differentiate between months, this proce- 
dure is not applied for making forecasts. The analysis is elaborated in the section on 
mean monthly homogeneous Markov chain analysis. Table 1 also contains Karl's 
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Table 1 - Monthly Steady Class Probabilities, Analytical and Empirical. 

Classes 
Month 1 2 3 4 5 6 7 

CDl 
Jan. (A) 

(E) 
July (A) 

(E) 
Oct. (A) 

(El 

CD6 
Jan. (A) 

(E) 
July (A) 

(E) 
Oct. (A) 

(El 

12 Months' 
Average 

CD1 0.0113 0.0591 0.1956 0.4886 0.1771 0.0451 0.0234 
CD6 0.0174 0.0341 0.1868 0.5130 0.1890 0.0477 0.0121 

Mean 
Monthly 
Matrix 
CD1 0.0113 0.0590 0.1952 0.4878 0.1771 0.0451 0.0234 
CD6 0.0175 0.0342 0.1869 0.5127 0.1889 0.0477 0.0121 

Empirical 
12 Months' 

Average 
CDI 0.01 13 0.0590 0.1953 0.4887 0.1771 0.0451 0.0234 
CD6 0.0156 0.0338 0.1858 0.5139 0.1892 0.0478 0.0121 

(A)= analytical; (E)= empirical 

(1986) empirical estimates of the steady class probabilities computed for the entire 
USA across all months. 

Wallis (1993) reported that the probability of PDSI being in class 7 for the month 
of July for CDl was between 0.00 and 0.05 and the present analysis yields 0.0208. 
Further, Guttman et al .  (1992) observed probabilities of PDSI value being in class 7 
in January month as ranging between 0.01-0.05 for CD6. Our analysis gives this val- 
ue as 0.0312 for CD6. In order to further verify the analytical results the Kolmogo- 
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rov-Smirnov test was applied with the null hypothesis that the analytical cumulative 
distribution function and the empirical distribution function are the same. The re- 
sults indicate that the null hypothesis is true at the 10% significance level. These re- 
sults validate the use of the non-homogeneous Markov chain technique in evaluating 
the long-term probabilities of drought classes using the Palmer index. In the follow- 
ing sections the further use of the proposed non-homogeneous Markov chain model 
in characterizing the durations and the periods of occurrences of the various drought 
classes is illustrated. 

Expected Uninterrupted Residence Time 

The expected uninterrupted residence time of the process in a class indicates the du- 
ration of that drought class for that region. The process stays in class i without mi- 
grating to another class for 'm' time periods when the following event occurs 

The probabilities of events specifying uninterrupted stay for different time periods 
in a particular class, i, can be computed as follows. For example, the probability of 
one month duration of stay denoted by m=l starting with the month of January is 
given by 

p[xM#ilxJan=i]=~[rn=1Ix  an = i ] = l - p .  z, i 192 

where: pi,i1'2 = probability of moving from class i in January to the same class i, in 
February. Eq. (12) says that the drought class 'i' is occupied for the thirty one days 
in January, i.e. 1 month and then on the first of February the drought class is no long- 
er 'i' but some other j # i. This interpretation also says that transition occurs on the 
last day of the given month. For m=2 starting from the month of January the prob- 
ability can be computed by 

1 ~ 2  (1- 2 ,3 )  =Pi, i pi, i (15) 

Likewise, the probabilities of events defining consecutive stay for higher number of 
time steps can be computed. For example, for staying 12 time steps (i.e. 12 months) 
consecutively in class i, starting in January, the probability will be 

p[nrl2 lxJ,=i] = p .  1'2 293 ... l 0 , l l  z , i  p i ,<  ...p<,g p;, ill> 12 (1 = p Z, . f 1-29 1 1 
(16)  
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Table 2 .- Expected Uninterrupted Residence Times (months), Analytical and Empirical 

Class + 1 2 3 4 5 6 7 
Starting 
Month d, 

CD1 
Jan. (A) 

(E) 

July (A) 
(El 

Oct. (A) 
(El 

CD6 
Jan. (A) 

(E) 

July (A) 
(E) 

Oct. (A) 
(E) 

Note : .--denotes unavailability of data to compute empirical value; (A)= analytical; (E)= empirical 

It is readily observed that the computation of probabilities for various events defin- 
ing an uninterrupted stay in class i involves the multiplication of ith row and th col- 
umn entries (diagonal elements) of the consecutive transition matrices. If any one of 
these entries is zero, the computation stops at that point because all the remaining 
probabilities for higher duration of stay go to zero. Once the probabilities for unin- 
terrupted stay for various time periods are computed, the expected uninterrupted res- 
idence time for class j, E[Ruj], is given by 

E[R .(starting month] = 1 k ~ [ m = k l  starting month] (17) 
UJ k 

where Ruj 6 random variable describing uninterrupted stay in class j. 

Eq. (17) is used to compute expected uninterrupted residence times for each start- 
ing class and month in both CDl and CD6. It is obvious that computations of aver- 
age uninterrupted residence times in respect of dry classes 5, 6, and 7 will indicate 
duration of drought in the region of interest. Table 2 gives sample results for starting 
months of January, July, and October in respect of both CD1 and CD6. There are 
two values reported for each month and class. The upper value gives the analytical 
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estimate and the lower one gives the empirical value. It is seen that the analytical re- 
sults agree with the empirical observations. It is noted that the empirical estimates 
are generated from only a fewer occurrences for certain drought classes. It can be 
observed in Table 2 that if weather state 7 (extreme drought condition) occurs in Oc- 
tober month in CD1 it is expected to last on an average for 5.3 months while in CD6 
it is expected to last on an average of 3.8 months. It is also observed that the rows in 
Table 2 are not significantly different for various months which may be interpreted 
as that the average unintempted residence time does not depend on the months but 
depends only on the class of the weather. Further, the longest residence time is for 
class 4 for both CD1 and CD6 which implies that the weather tends to stay normal 
for relatively longer period for both the Tidewater and Southwest Mountain regions. 
The average continuous residence times for drier classes (5, 6, and 7) are greater 
than that of the wet classes (1, 2, and 3) which indicates that a drought spell, once 
occurred, would stay for a relatively longer period than a wet spell. In order to exam- 
ine the closeness between the analytical and empirical distributions the Kolmogorov 
- Smirnov test was applied. The results indicate that the analytical distribution is the 
same as the empirical distribution at 10% significance level. The results of the resi- 
dence time analysis are useful in interpreting the persistence of various weather 
classes in different climatic regions. 

Expected First Passage Times 

The expected first passage time is defined as the average time period taken for the 
process to go to a class, j, for the first time starting from some class, i, and is denot- 
ed by mi$ For a non-homogenous chain the starting month, n, is crucial in deciding 
the expected first passage time and therefore we let mi,?' as the first passage time 
for a process to reach class, j, starting from class, i, in month, n. Mathematically it 
attains the form 

m .  ( n )  - (n,n+l) (n ,  n+l )  (n+l)+ 
%,j  - ( I ) P ~ , ~  + k$ p i ,  L (mk, j  

in which the first term says that class j can be reached in one step in month (n+l) or 
the process can go to some class k z j in one step as is indicated by 1 in summation 

( l t + l )  term and it takes mkj steps to reach j. This equation is simplified by combining 
the first term probability p i j  (n,n+ I )  with the remaining sum of probabilities in the 
summation term to yield 

For example, for n=l we obtain 
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in which pi,,('"). January-February transition probability for reaching class, k, from 
class, i. The solution of system of linear equations in Eq. (19) yields the expected 
first passage times. The average time to return to the same class, called the mean re- 
currence time, mii, can also be computed from Eq. (18) as 

which simplifies to 

Eqs. (19) and (22) are applied to compute the average first passage and the recur- 
rence times both for CD1 and CD6. The first passage and the recurrence times are 

Table 3 = Expected First Passage Time and Recurrence Time to Class 4 (months), Analytical 
and Empirical 

Class + 
Starting 
Month 1 ' *  2 3 4 5 6 7 

CD1 
Jan. (A) 

(El 

July (A) 
(E) 

Oct. (A) 
(E) 

CD6 
Jan. (A) 

(E) 

July (A) 
(E) 

Oct. (A) 
(E) 

Note: r denotes unavailability of data to compute empirical result; (A)= analytical; (E)= empirical 
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useful in exploring things like time to relief from dry or wet weather conditions. 
Sample results of the first passage time to class 4 from various classes starting in 
January, July, and October months for CD1 and CD6 are given in Table 3. There are 
two values reported for each month and class. The upper one represents the analyti- 
cal value while the lower one is the empirical value. For example, it is seen that the 
process will take on an average 6.8 months to go directly to class 4, once class 6 has 
occurred in January in CDl which compares well with the empirical result of 8.0 
months. For the CD6 region the first passage time from class 6 to class 4 was com- 
puted as 6.3 months which again compares reasonably well with the empirical result 
of 4.6 months. Further, the recurrence time for class 4 in row 1 is 1.8 months in CD6 
in January. Intuitively, let us visualize only three classes namely wet, normal, and 
dry. From Table 1 these classes have approximate occurrence probabilities of 0.25, 
0.47, and 0.28, respectively for CD6 in January. From Table 3 to have a recurrence 
time of 1.8 months for class 4, the process should migrate to wet or dry class for a 
duration of 1.8 months. It is observed in Table 2 that for CD6 average uninterrupted 
stay in dry classes (5, 6, and 7) is 2.2 months and wet classes (1, 2, and 3 ) is 1.9 
months for January month which are close to recurrence time for class 4 in January. 

It may be noted that there have been limited empirical events in classes 7 and 1 
and therefore, the empirical estimates for such cases tend to differ from the analyti- 
cal values. The Kolmogorov-Smirnov test was applied to test the equality of the an- 
alytical and empirical distributions describing the first passage times from class 5 to 
4 with the starting month of January. The results indicate that the analytical and em- 
pirical distributions are the same at 10% significance level. It is also seen that in 
general the expected first passage times to class 4 from drier classes is greater than 
wet classes in both the divisions. This indicates that in these climatic divisions it 
takes relatively longer time to return to normal class from drought classes as com- 
pared to the wet classes. 

Monthly Drought Forecast 

In this section two schemes for making forecast of weather class are given. 

Scheme A : Suppose k* denotes the most likely weather class for month (n+l), given 
that during the month n the observed weather class is, i. Then we can write 

wherein k* is the weather class that relates to ~ a x @ , , f ,  "+'I) for all k for given i. 
Likewise, 
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wherein I* relates to Max(pkql (n+ I ,  n+2) ) for all 1 for given k*. Similarly, 

FMODE [x%+~ Ixm2=l*] =m* (25) 

wherein m* relates to Max(p,,,, (n+2, n+3) ) for all m for given I*. It is seen that m* is 
the forecast of the weather class in (n+3) month, given that during n~ month the 
weather class is i. 

Table 4 - Predicted Weather Classes- One, Two, and Three Months Ahead 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

CD6 
Obs. 1930 
Pr. (A)* 
Pr. (A)* * 
Pr. (A)*** 
Pr. (B)* 
Pr. (B)** 
Pr. (B)*** 
Obs. 1990 
Pr. (A)* 
Pr. (A)** 
Pr. (A)*** 
Pr. (B)* 
Pr. (B)** 
Pr. (B)*** 
CD1 
Obs. 1930 
Pr. (A)* 
Pr. (A)  * * 
Pr. (A)*** 
Pr. (B)* 
Pr. (B)** 
Pr. (B)*** 
Obs. 1990 
Pr. (A)* 
Pr. (A)** 
Pr. (A)  * * * 
Pr. (B)* 
Pr. (B)** 
Pr. (B)*** 

Obs. - observed; Pr. (A)- scheme A prediction; Pr. (B)= scheme B prediction; *- 1 month ahead; **= 2 months ahead; 

***= 3 months ahead 
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Scheme B : In this scheme the p  months ahead forecast is defined as 

wherein r* is the weather class that relates to Max PIXn+,IXn=i] where 

for i = j  = k  = 1 =1,2, ..., 7  ( 2 7 )  

Using the above schemes, the conditional forecast of weather classes 1, 2, and 3 
months ahead of time for years 1930 (relatively dry year) and 1990 (relatively wet 
year) in both CD1 and CD6 are given in Table 4. It is observed from Eqs. (23) and 
(26) that both schemes yield similar forecasts for one month ahead of time. It is also 
seen that Eqs. (23) - (25) treat only the modal values as given values for the predic- 
tion whereas Eq. (27) considers all possible intermediate classes given by k and I. 
From Table 4 it is seen that the forecasts are acceptable. Lohani and Loganathan 
(1997) also point out that in the context of monitoring an ongoing drought, with the 
aid of Eq. (27), all paths of drought progression can be enumerated. 

Mean Monthly Homogeneous Markov Chain Analysis 

In order to characterize the mean monthly transition behavior of weather, transition 
probabilities are computed giving emphasis on transitions among classes, irrespec- 
tive of the months in which these take place during the year. If Nu is the number of 
times the process transits from class i to class j, regardless of the month, and Ni is the 
total number of times the process is in class i, then 

denotes the mean monthly probability of transition from class i to class j. In this 
manner the mean monthly transition matrix can be defined as P = [ p i j ]  for i J = 1,2, 
..., 7. The mean monthly matrices represent a closed communicating class of all 
weather classes (1, 2, ..., 7). This is logical since in reality any class of weather is 
possible in a mean monthly transition. Further, the absence of any transient or ab- 
sorbing classes indicates that neither there exists a weather class from which the 
system disappears forever nor there exists a permanent weather class in which the 
system is trapped. 
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Drought Class Probabilities 

The mean monthly matrix represents an irreducible aperiodic Markov chain which 
has limiting probabilities which are independent of starting class. These steady class 
probabilities, denoted by the vector h, are computed as the non-negative solution of 
(Ross 1989) 

The steady class probabilities computed using mean monthly matrices are computed 
for both CD1 and CD6. The results for CD1 and CD6 are given in Table 1. It is seen 
that these probabilities are quite close to the average values computed using the 12 
different monthly matrices and the empirical probabilities. The long-term probabil- 
ity for class 7 (extreme drought class) is found 0.0234 in CD1 which is only 0.0121 
in CD6 (see Table 1). Similarly, for normal weather class (class 4) the long-term 
probability in case of CD1 is 0.4878 and for CD6 it is 0.5127. These results further 
indicate that CD1 is slightly more prone to drought conditions as compared with the 
CD6. 

Mean Recurrence Time 

The mean recurrence time, m.., for a class j is defined as the expected number of 
!J 

transitions until a Markov cham, starting in class j, returns to that class. Because for 
once in m,, a visit to joccurs, the smaller the mJ, more visits occur for j; and the larg- 
er the mjj fewer visits occur for j. It can be shown that (Hoe1 et al. 1972) 

Table 5 gives the mean recurrence times of class 4 computed using average of 12 
monthly matrices computations, mean monthly matrix, and observed data. These re- 
sults in general agree well except for some discrepancies in the extreme classes. It is 
seen that class 4 has a recurrence period of about 2 months for both CD1 and CD6. 

Mean First Passage Time 

The mean monthly transition matrix can be analyzed to the find the mean first pas- 
sage time which gives an estimate of the number of transitions the process takes, on 
the average, to go from one particular class to another for the first time. The mean 
first passage time is computed as 
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where mii = mean first passage time to go from class i to j; pik = one step transition 
probability to go from class i to k; mkj = mean first passage time to go from class k to 
j. Table 5 gives the mean first passage times from various classes to class 4 in both 
CDl and CD6. It is seen that on an average it takes longer to return to normal class 
from drought classes in CDI as compared to CD6. This further indicates that CDI 
region has higher persistence of drought, once occurred, as compared to CD6 region. 
This inference is in agreement with SWCB(1990) which found that during 1957- 
1987 the CDI region experienced 8 drought years while CD6 region had only 5 
drought years. 

Table 5 - Mean Recurrence Times and Mean First Passage Times to Class 4 

Location .1 Class -+ 1 2 3 4 5 6 7 

CD6 
12 Monthly Matrices' 
Average 6.2 4.7 3.5 1.9 6.3 6.9 5.7 
Mean Monthly Matrix 6.1 4.8 3.6 2.0 6.3 7.0 5.5 
Empirical 24.8 9.7 5.1 1.9 6.5 5.9 5.9 

CDl 
12 Monthly Matrices' 
Average 6.6 5.8 4.6 2.1 5.6 7.9 8.5 
Mean Monthly Matrix 6.0 5.9 4.6 2.1 5.8 7.6 8.2 
Empirical 

Table 6 - Average Uninterrupted Residence Times (months) and Empirical Average Resi- 
dence Times 

Location .1 Class -+ 1 2 3 4 5 6 7 

CD6 
12 Monthly 
Matrices' Average 2.5 1.6 2.5 4.8 3.4 2.0 2.7 
Empirical Average 2.5 1.8 2.5 4.9 3.5 2.1 2.8 
Mean Mon. Matrix 2.5 1.8 2.5 4.9 3.5 2.1 2.8 

CDl 
1 2 Monthly 
Matrices' Average 1.3 1.8 2.7 4.8 3.3 2.3 3.2 
Empirical Average 1.4 1.9 2.7 4.9 3.3 2.2 3.9 
Mean Mon. Matrix 1.4 1.8 2.8 4.9 3.3 2.3 3.5 
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Mean Uninterrupted Residence Times 

Table 6 gives average uninterrupted residence times computed using the 12 monthly 
matrices, the mean monthly matrix, and the empirical data. The results using the 
three methods agree very well. It is observed that on an average the drought classes 
tend to stay uninterrupted slightly longer in CD1 as compared to CD6 which again 
indicates higher persistence of drought classes in CD1 as compared to CD6. 

Conclusions 

The analysis of the Palmer drought severity index using the non-homogeneous Mar- 
kov chain provides useful drought characteristics such as long-term drought prob- 
abilities, duration of drought termed as uninterrupted residence times, and expected 
periods of recovery computed as the first passage and recurrence times. The method 
provides probability mass functions of these parameters which define durations and 
periods of recurrence of various drought classes. Analysis of historical PDSI data of 
two climatic divisions (CD1 and CD6) in Virginia indicates that CDl region has 
higher persistence of drought, once occurred, as compared to CD6 region. Applica- 
tion of the Kolmogorov-Smirnov test indicates that the analytical distributions of 
drought characterizing parameters computed using the non-homogeneous Markov 
chain procedure are the same as the empirical distributions at the 10% significance 
level. The proposed two schemes for predicting future drought classes with 1,2,  and 
3 months of lead time yield good forecasts. 

The three month ahead forecasts are quite useful in the context of irrigation. The 
methodology provides a comprehensive characterization of drought. In a planning 
mode the methodology identifies drought prone regions. This information can be 
used in planning and development of proper additional storage facilities. In an oper- 
ational mode with the aid of the probability mass functions, the future course of a 
drought can be determined. In fact, in March 1995 the method signaled that 1995 
would be a drought year in Virginia which was again confirmed in May 1995 as the 
dry spell progressed. Eventually, the State Governor declared a drought emergency 
in Virginia in September 1995. The method confirmed well ahead of time that 1996 
would be a wet year in Virginia. In this paper many novel ideas related to drought 
forecasting have been put forward. The real time testing has so far validated the 
method. 
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