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The formulation of multivariate autoregressive moving average (ARMA) time 
series models and their transfer function noise (TFN) form is described. De- 
velopment of a multivariate TFN model is difficult if the multiple inputs are 
correlated. Various methods for developing a multivariate TFN models with 
correlated multiple inputs are critically reviewed. A simple approach to de- 
veloping multiple input TFN models with correlated inputs is described. This 
approach is successfully applied to developing a forecasting model for average 
daily flow of the Mattagami River at Little Long Generation Station in Nor- 
thern Ontario, Canada. System inputs are upstream and tributary flows. Only 
three years of daily data for the period April 1st to October 31st were required 
to calibrate the model. Two further years were used to verify the model. 
Forecasts at lead times of one and two days were good for both calibration and 
verification periods. The average standard errors were 8% of average inflows 
(1-day lead) and 18% (2-day lead). The system produces significantly better 
forecasts than a univariate time series model. 

Introduction 

Hydropower is a major source of electricity in many countries and increasing 
emphasis is being directed to efficient utilization of this power source. Effective 
scheduling of hydropower production requires good long and short term forecasts 
of flows. Long term forecasts can be made off-line but short term flow forecasts can 
be made only with some type of real-time flow forecasting system. The type and 
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Fig. 1. Schematic illustration of the Mattagami River 

hydroelectric generating system. 

utility of a forecasting system vary because of differences in hydrosystems, hydro- 
electric generating elements and the constraints imposed on the operation. Despite 
the differences some general features often occur, e.g., hydropower plants are 
usually in series (hydraulically coupled) along the main river and its tributaries, the 
discharge of any upstream plant and possible tributaries making up most of the 
inflows to the succeeding downstream plant. As an example, Fig. 1 shows a 
schematic illustration of the Mattagami River hydroelectric generating system in 
Northern Ontario, Canada. For cases like this, a real-time forecasting system in 
which upstream and tributary discharges are routed and combined may provide 
accurate inflow forecasts with sufficient lead times to be of use in short term 
hydropower scheduling. Traditionally, routing on rivers with tributaries has been 
done using estimated travel times or multiple correlation methods (WMO 1975). 
Difficulties in applying the traditional methods arise because discharge time series 
are generally highly autocorrelated. Furthermore, the tributary discharges are 6f- 
ten cross correlated, due to similarities in the runoff generating mechanism. This 
correlation makes the identification of the systems dynamics very difficult. 

Multivariate time series model in their transfer function-noise form are very 
applicable to multiple routing problems and lend themselves readily to real-time 
forecasting (Watt and Nozdryn-Plotnicki 1981; Chow et al. 1984). The main 
reasons are that the models involve a small number of variables, a short calibration 
period is needed, minimal computing power is required, and updating is computa- 
tionally simple. The development of multivariate TFN models is somewhat compli- 
cated and the purpose of this paper is to present a simple method to develop a 
multivariate TFN model with correlated inputs. The method is used to develop a 
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Fig. 2. The Mattagami River watershed. 

forecasting system for the Little Long Generating Station on the Mattagami River 
(Figs. 1 and 2 ).Accurate short term forecasts are particularly important in the 
scheduling of run-of-river hydropower plants, such as the Little Long GS (Fjeld 
and Aam 1980; Thompstone et al. 1982; Ontario Hydro 1983). The small amount of 
live storage available can lead to spilling in the case of an unexpected increase in 
inflows, or loss of head in the case of a decrease in inflows. Significant spill losses 
occur frequently at Little Long. During a month of high inflows in 1982, spill losses 
were about $ 750,000 (Ontario Hydro 1983). 

Multivariate Time Series Modelling 

The univariate ARMA model is a linear stochastic model advocated by Box and 
Jenkins (1970) which is well suited for modelling discrete time series. A generaliza- 
tion of the univariate ARMA model into a multivariate time series model can be 
made without difficulties (Granger and Newbold 1976; Tiao and Box 1979, 1981). 
For k series (Z1,, ... , Zkt), denote zit = vdizi, where the order of differencing di is 
appropriately selected to induce stationarity, then the ARMA model is generally 
referred to as the ARIMA model and takes the form 

where @,(B) = I - a l B  - @ 2 ~ 2  - . . . - QpBP and Oq(B) = OIB - 0 2 ~ 2  - . . . - 
OqBq are matrix polynomials in B, the a's  and O's are k x k matrices. at = b t l ,  at2, 
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. . . , atk } is Gaussian white noise with zero mean and covariance matrix I:. To ensure 
stationarity and invertibility, the zeros of the determinantal polynomials (@,(B) I = 
0 and ( O,(B) I = 0 must lie on, or outside, the unit circle. The ARMA model given 
by Eq. (1) is a general model that allows for dynamic relations between all the 
series as well as feedback. However, in practical applications Eq. (1) can usually be 
simplifed and written in an alternative form. For example, causality and feedback 
(or lack therof) between hydrological processes can generally be argued on physi- 
cal bases. If a unidirectional causal relation is assumed between 1 input variables 
XI,, ..., XI, and rn output variables Y1,, ..., Y,,, and denoting xj, and yi, as differ- 
enced series, Eq. (1) can be written as 

where the 'noise' Nit can be represented as a multivariate ARMA model. 

where @(B) and O(B) are m x m matrix polynomials in B, n, = Vdi Nt and a, is a 
multivariate white noise sequence with covariance Z. The form of ARMA model 
given by Eq. (2) is also referred to as multiple-input, multiple-output (MIMO) 
transfer function-noise model. The following discussion is limited to multiple-in- 
put, single-output (MISO) cases and so Eq. (2) can written as 

Eq. (4) is often written in an alternative form to show the transfer function and 
noise components explicitly. 

in which bj is the lag time of the j-th input series and Vj(B) r VOj + VljB + . . . + is 
called the impulse response function of the system. The input series Xj, can often 
supply additional information (leading indicators) not already supplied by past 
values of the outputs thus resulting in better forecasts. 

The TFN model Eq. (5) can be reduced to more simple multivariate models. If 
there is only one output and the noise N, is assumed white Gaussian, Eq. (5) 
reduces to 
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where y, is related to current and past values of the xj, series. This model is often 
referred to as 'distributed lag' regression model. The effect of violation of the 
assumption of white noise error terms: can be drastic, as demonstrated by Granger 
and Newbold (1974). Three major consequences of autocorrelated error terms are 
that 

1) estimates of the regression coefficients are inefficient, 
2) forecasts based on the regression analysis are suboptimal, and 
3) the usual significance tests on the coefficients are invalid. 

The basic difference between ARMA models and regression models is that 
ordinary regression systems are static; a disturbance a, entering the system at time t 
affects only y, but not y,,~. The system has no 'memory' or dynamics. However, the 
ARMA model has memory, i.e., a disturbance affecting the system is 'remem- 
bered' and continues to affect the system at subsequent times. It is this memory 
that gives rise to dependence in the series and is represented by the ARMA model. 
Therefore, linear regression is often referred to as static regression, and ARMA 
models as dynamic regression (Pandit and Wu 1983). 

Identification of Systems Dynamics 

A major impediment to the identification of systems dynamics is the occurrence of 
unaccounted for fluctuations, commonly designated as noise. Any adequate model 
of a dynamic system must include a proper characterization of the noise along with 
the transfer function. The appropriate model structure should be revealed not 
assumed a priori. Box and Jenkins (1970) suggested a general modelling methodol- 
ogy which consists of three iterative steps: 

1) identification of a tentative model form, 
2) estimation of parameters in the proposed model, and 
3) diagnostic checking of the fitted model. 

All of the above steps are repeated until a satisfactory formulation of the relations 
has been identified and the parameters estimated. 

The design of a TFN model involves identifying the number of parameters 
required in the Vi(B) operator and the N, terms of Eq. (7). This development can 
be done either in the frequency or in the time domain. The former approach dates 
back to the pioneering work of Wiener (1949) and has been successfully applied in 
hydrology. An example of application to runoff forecasting is given by Huthmann 
(1981). As for the time domain approach, several different identification methods 
have been developed and applied. Two widely used identification methods are 
those suggested by Box and Jenkins (1970) and Haugh and Box (1977). Both 
methods rely upon cross correlation studies of related series and are designed for 
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single-input, single-output (SISO) cases but can be extended to MIS0 cases if the 
input series are uncorrelated. A comprehensive study on the distribution of cross 
correlation (ccf) estimates and associated covariances was done by Bartlett (1955). 
The study revealed that if two autocorrelated time series are cross correlated, the 
autocorrelation inherent in each series can inflate the variance in the cross correla- 
tion estimates above what could be expected when correlating two white noise 
series. Also, the ccf estimates at different lags can be highly correlated (Haugh and 
Box 1977). This makes identification difficult and, as shown by Box and Newbold 
(1971), the danger is that some significance can be assigned to apparent patterns in 
the ccf which are in fact sampling properties of the estimates used. Thus, the 
identification procedure would be considerably simplified if the input series are 
white noise series. Time series are usually autocorrelated making the identification 
of the appropriate structure of distributed lag regression models difficult. Usually 
several different model forms are fitted and compared on the basis of the coeffi- 
cient of multiple determination and parameter values. The repeated three steps of 
identification, estimation and diagnostic checking are often ignored. 

Both the Box and Jenkins and Haugh and Box methods are based on the 
assumption that the series can be adequately modelled by an ARMA model. Thus 
the series can be pre-whitened by fitting appropriate ARMA models, yielding 
white-noise residual series. The Box and Jenkins approach is to determine an 
appropriate ARMA model to fit the input series, following the three stages of 
model construction. The ARMA filter from the univariate modelling of the input 
series is then used to transform the output series. Box and Jenkins (1970) showed 
that the estimate of the ccf between the pre-whitened input and transformed output 
is directly proportional to the impulse response function. The noise model can then 
be identified from the residual series of the TFN model, using standard Box and 
Jenkins procedures. 

In the Haugh and Box approach both the input X, and the output Y, series are 
prewhitened by fitting an appropriate ARMA model to each series. The linear 
nature of the ARMA filters ensures that if a meaningful relation exists between the 
original series Y, and X,, the innovation series, a,, and and a,, driving each filter can 
be expected to show the same relation independently of the ARMA filters fitted. 
The first step is to develop a TFN relating the two innovation series; the form and 
initial estimates of the impulse response function can be identified from the esti- 
mated ccf between the innovation series. The final TFN model relating Y, to X, is 
constructed by recombining the two univariate models for the Y, and X, series with 
the TFN model connecting a,, and a,,. Standard Box and Jenkins procedures can be 
used to fit the model and to estimate the noise term. 

The identification and fitting procedures given above can be extended to MIS0 
systems as long as the inputs are mutually uncorrelated. The procedure is to de- 
velop a transfer function between each input series and the output series using 
standard procedures. A combined model consisting of the transfer functions plus a 
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single noise term is constructed by combining the models. This has been referred to 
as the 'superposition' approach by Wright and Bacon (1974), who showed that, in 
the case of correlated inputs, the superposition approach can lead to an acceptable 
form of the combined model. They indicated that parameter estimates can be 
obtained by simultaneously reestimating all the parameters, but that for models 
with many parameters, this procedure may result in serious convergence problems. 

Several procedures that require transformation of the inputs series have been 
developed and applied to correlated inputs. All input series except one are decom- 
posed into an explained part and orthogonal residual part. The transformation of 
the original inputs into a set of uncorrelated inputs and the building of the transfer 
function is done in a stepwise manner. In any single step the additional .contribu- 
tion of each input series to explaining the output series is added to the model. The 
transformation becomes complicated in the case of several correlated inputs; it 
involves many parameters and is difficult to apply. For example, in the case of 
three correlated inputs say XI, X, and X3, a model relating the output variable Y to 
one of the inputs say, XI,  is first developed 

where e, is the portion of Y unaccounted for by XI. Another TFN model relating 
the second input X2 to the first is then developed 

X, = V ,  ( X l  + e, ( 8 )  

where e2 is the portion af X2 unaccounted for by X,, that is the portion of X, that is 
uncorrelated with XI. A third TFN model relating the third input to the first and 
the portion of the second that is uncorrelated with X1 (e,) is developed 

where e3 is the portion of X3 unaccounted for by XI and X2.A fourth model relating 
el to e, and e3 is developed 

or by substituting for e2 and e3 

The final model is obtained by combining Eqs. (7) and (11) 

A procedure based on this principle has been successfully applied to runoff model- 
ling (two correlated inputs) by Snorrason et al. (1984). Another approach to mod- 
elling correlated inputs was developed by Akaike (1976) using a canonical correla- 
tion analysis. The approach is based on a Markovian representation of stationary 
time series and the identification is based on minimizing Akaike's information 
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criterion for different models that have been fitted using maximum likelihood 
method. Few applications of this approach to modelling stochastic processes have 
been reported in the literature. It may be very difficult to apply due to the complex- 
ities of the calculations required. 

Overview 

The Mattagami River, located in northern Ontario (see Fig. 2.), flows from south 
to north into James Bay; the total drainage area above Little Long GS is 36,470 
km2.. Two major tributaries are the Groundhog and the Kapuskasing Rivers. 

Streamflow records were available for the three years from 1980 to 1982 for the 
period April 1st to October 31st each year. These records consist of average daily 
discharge for the Mattagami River measured at Little Long GS and. at Lower 
Sturgeon GS (8,300 km2); the Groundhog River at Fauquier (11,900 km2) and the 
Kapuskasing River at Spruce Falls GS (6,760 km2). The existing real-time forecast- 
ing system is a simple graphical extrapolation; that is, the forecaster plots the 
inflows to LLGS for the previous few days and projects graphically. 

Model Development 

Correlation analyses of the time series for each of the three realizations available 
revealed that the series are non-stationary and differencing of order one was iden- 
tified as sufficient to induce stationarity. Furthermore, the inputs (Lower Stur- 
geon, Kapuskasing and Fauquier) are highly correlated. In order to identify the 
relations between the output' and the inputs it is necessary to pre-whiten the series. 
Univariate time series models were developed using the three stages of model 
building. The selected models are listed in Table 1 and parameter estimates in 
Tables 2 to 5. 

The series were pre-whitened using the models selected and parameter estimates 
obtained for each year. The ccf estimates between the pre-whitened inputs and the 
pre-whitened output are shown in Fig. 3. The cross correlation structure is very 
similar; there is significant correlation at lags 0-2. The ccf estimates between each 
of the pre-whitened input flows series shown in Fig. 4 confirm the relations be- 
tween the input series, not that there is any causal relations among the tributary 
flows, but that the innovation series 'driving' each system are related. 

Because the routing dynamics from each of the of the gaging sites appear to be 
similar and the flow series are correlated, the separate identification of the indi- 
vidual effects of each input series on the output series is difficult and the superposi- 
tion approach is not applicable. The development of a MIS0 TFN model by 
transforming the three correlated inputs into a set of orthogonal inputs is compli- 
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Table 1 - Selected time series model for each of the four sites. 

Little Long GS (Y,) ARIMA (1,1,0) 
Lower Sturgeon (XI,) ARIMA (0,1,2) 
Kapuskasing (X2,) ARIMA (2,1,0) 
Fauquier (X3,) ARIMA (1,1,1) 

Table 2 - Parameter estimates and standard diviations for LLGS ARIMA (1,1,0) model 

parameter 
estim. st.dev. estim. st.dev. estim. st.dev. 

@I 0.65 0.07 0.51 0.06 0.64 0.07 
residual 
st. error (m3/s) 66.1 69.2 83.8 

Table 3 - Parameter estimates and standard deviations for Fauquier ARIMA (1,1,1) model. 

parameter 1980 1981 1982 
estim. st.dev. estim. st.dev. estim. st.dev. 

$1 0.53 0.07 0.25 0.08 0.62 0.06 
91 -0.46 0.07 -0.71 0.06 -0.49 0.07 
residual 
st. error (m3/s) 20.2 18.2 19.7 

Table 4 - Parameter estimates and standard deviations for Lower Sturgeon ARIMA (0,1,2) 
model. 

parameter 1980 1981 1982 
estim. st.dev. estim. st.dev. estim. st.dev. 

$1 0.50 0.07 -0.15 0.06 -0.15 0.07 
92 0.08 0.08 -0.09 0.07 -0.36 0.06 
residual 
st. error (m3/s) 13.0 17.9 26.9 

Table 5 - Parameter estimates and standard deviations for Kapuskasing ARIMA (2,1,0) 
model. 

parameter 1980 1981 1982 
estim. st.dev. estim. st.dev. estim, st.dev. 

$1 0.50 0.06 0.56 0.08 0.46 0.07 
$2 0.26 0.06 -0.13 0.06 0.26 0.07 
residual 
st. error (m3/s) 12.2 14.9 12.9 
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Fig. 3. Ccf estimates between pre-whitened inputs and pre-whitened output, with 95% C.L. 
a) Lower Sturgeon, LLGS b) Kapuskasing, LLGS c) Fauquier, LLGS 

L A G  (DAYS) 

Fig. 4. Ccf estimates between each of the pre-whitened inputs, with 95% C.L. 
a) Lower Sturgeon, Kapuskasing b) ~ower%urgeon, Fauquier c) Kapuskasing, Fauquier 
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cated and involves a large number of parameters as Eqs. (7) to (12) demonstrate 
clearly. Furthermore, for three correlated inputs a preordering of inputs is 
necessary. The ordering would be determined in such a way that each successive 
input variable would be correlated with its predecessors only at positive lags. 
However, such preordering of the input series is difficult in this particular case. 
There is no direct causal relationship between the tributary flows, but the correla- 
tion is caused by similarities in the runoff generating mechanism, i.e. spring 
breakup occurs at about the same time and rain on one subbasin is likely to occur 
at the same time as on the other two. There are however differences between 
events or years as Fig. 4 demonstrates. The response of the tributaries depends on 
spatial and temporal variability in rainfall and/or snowmelt inputs. There is no 
consistency in the correlation between the tributary flows making it difficult to 
express one input as a function of another plus orthogonal residuals in the form of 
Eqs. (7) to (12). Therefore the transformed input approach was not pursued. 

The primary difficulty in the development of MIS0 TFN models with correlated 
inputs is the identification of a parsimonious model capturing the dynamic relation- 
ship between the output and the inputs. By carrying the analysis out in a stepwise 
manner, identifying, fitting and checking a SISO TFN model between the output 
and each of the inputs pairwise, a tentative identification of the MIS0 model can 
be made. However, the parameter estimates obtained from the SISO models are 
biased since they reflect the effects of the correlated inputs excluded from each 
analysis. The parameters do however provide good initial estimates to be used in 
simultaneous reestimation of the parameters in the combined MIS0 model. With a 
parsimonious form of the MIS0 model and good initial estimates of the parame- 
ters, convergence problems in the simultaneous reestimation of parameters can 
generally be avoided. 

The structure of the estimated ccfs between the pre-whitened Fauquier X3, and 
LLGS Y, and between Kapuskasing X2, and LLGS led to the identification, fitting 
and checking of a model of the form 

VYt = ( u o i  ? u l i  B) VXit + ( 1 - 0 1 B - 0 2 ~ 2 ) a t  ( 1 3 )  

Parameter estimates and standard deviations are listed in Tables 6 and 7. The 
model relating Lower Sturgeon flows XI, to LLGS flows was identified as 

VYt = ( u o l  - u l l  B  - w2, B 2 )  V X l t  + ( 1 - 0 1 B - 0 2 ~ 2 ) a t  ( 1 4 )  

Fitting and diagnostic checking confirmed the identification; parameter estimates 
along with standard deviations are listed in Table 8. 

The final step is to combine the models and reestimate the parameters. The ozl 
parameter is not significant in the combined model. The final model, of the form 
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Table 6 - Parameter estimates and associated standard deviations for the TFN model relat- 
ing LLGS inflows to Fauquier flows. 

parameter 1980 1981 1982 
estim. st.dev. estim. st.dev. estim. st.dev. 

0 0 3  1.64 0.16 2.50 0.13 1.89 0.21 
0 1 3  -0.83 0.16 -0.50 0.16 -0.85 0.21 
'31 -0.13 0.07 0.04 0.07 -0.14 0.07 
02 -0.01 0.07 -0.18 0.07 0.01 0.07 
residual 
st. error (m3/s) 48.4 33.5 63.5 

Table 7 - Parameter estimates and associated standard deviations for the TFN model relat- 
ing LLGS inflows to Kapuskasing flows. 

parameter 1980 1981 1982 
estim, st.dev. estim, st.dev. estim. st.dev. 

0 0 2  2.72 0.23 1.26 0.17 2.71 0.31 
0 1 2  -2.22 0.23 -3.33 0.16 -2.95 0.31 
01 0.10 0.07 0.20 0.07 0.06 0.07 
02 -0.03 0.07 0.07 0.07 0.23 0.07 
residual 
st. error (m3/s) 41.3 36.1 61.5 

Table 8 - Parameter estimates and associated standard deviations for the TFN model relat- 
ing LLGS inflows to Lower Sturgeon flows. 

parameter 1980 1981 1982 
estim. st.dev, estim. st.dev. estim. st.dev. 

0 0 1  1.55 0.31 1.57 0.25 0.91 0.19 
011 -1.63 0.31 -1.41 0.25 -1.66 0.20 
0 2 1  -1.46 0.38 -0.47 0.24 -0.70 0.19 
0 1 -0.36 0.07 -0.38 0.07 -0.47 0.07 
'32 -0.21 0.07 -0.15 0.07 -0.24 0.07 
residual 
st. error (m3/s) 58.6 61.1 73.6 

provides a good fit. Furthermore, the residual standard error (Table 9) is signifi- 
cantly smaller than that of the time series model (Table 2) or the SISO TFN models 
(Tables 6, 7 and 8). The residuals are white noise, uncorrelated with any of the 
input series, and no evidence of model deficiency is apparent. As indicated in 
Table 9, there is some variation in parameter estimates from year to year. This 
variability is also evident in the SISO models (Tables 6, 7 and 8) and is not caused 
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Table 9 - Parameter estimates and associated standard deviations for the model relating 
LLGS inflows to tributary flows. 

parameter 1980 1981 1982 
estim. st.dev. estim. st.dev. estim. st.dev. 

("01 

("1 1 

0 0 2  

0 1 2  

0 0 3  

0 1 3  

'31 

'32 

residual 
st. error 

by the fitting technique for the MIS0 model. A likely cause for this variation in 
parameter estimates is an actual difference in systems dynamics from year to year 
(i.e., the system is not time invariant). Recognition of this variation in parameter 
estimates leads to two points. First, can the variation be attributed to some physi- 
cally measurable quantity that could be used to improve parameter estimates? 
Secondly, is the variation significant for forecasting purposes or will constant para- 
meter values lead to acceptable forecasts? Consider first physical causes for the 
variation. In this regard, a useful function of the model parameters is the gain, g 
which is defined as the ratio of the steady state output to a steady state input and 
can be shown to be 

Differences in the gain reflect differences in the additional contribution to stream- 
flow from areas lying between the upstream flow gaging sites and Little Long GS. 
The gain for each of the three calibration years is listed in Table 10. The gain for 
the year 1981 is significantly different from 1980 and 1982. A comparison of the 
time series for the three years revealed that the only significant flood in 1981 was a 
snowmelt/rainfall induced spring flood. Hence, the spring flood had dominating 
effects on the parameter estimates for 1981. The time series from 1980 and 1982 
showed similar behavior with floods in the spring, summer and fall. Ontario Hydro 
operates six snow courses in the basin and 1981 was characterized by a below 
average accumulation of snow, particularly in the northern part of the basin. The 
average April 1st water equivalents of snowpack from the six snow cou-rses are 
listed in Table 11. The below average snow accumulation in 1981 in the areas 
downstream of the tributary flow gaging sites explains why the gain for 1981 differs 
from those for 1980 and 1982. 
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Table 10 - Steady state gain for each of the calibration years. 

year 

gain 5.07 4.35 5.17 

Table 11 -Average April 1st water equivalent of snowpack in the Mattagami River 
watershed. 

year 1980 1981 1982 

water eq. 
(mm) 

Forecasting Results 

Before the MIS0 model described above can be used for forecasting, two steps are 
required. First, the dynamics of this system are such that a forecast one time step 
ahead requires a one time step ahead forecast of the tributary flows and therefore, 
for forecasting, the univariate time series models developed for each of the 
tributaries were used in combination with the MIS0 TFN model given by Eq. (15). 
Secondly, values for the parameters must be selected. A logical approach might be 
to simply average the values from the three years. However, this might not give the 
best forecasts. To evaluate this approach and to assess the robustness of the model, 
the following analyses were carried out. One and two day ahead forecasts were 
generated using four sets of parameter estimates: one set for each of the three 
calibration years (Tables 3,4,5 and 9) and a set defined by the average of the three 
years. The average standard errors of the forecasts are compared in Table 12. 
Within the range of the parameters used, the accuracy of the forecast results is not 
very sensitive to parameter values. This is an indication of the robustness of the 
model and indicates that even if data for only one year were available, an accept- 
able forecast model could be developed. Because the parameter set for 1982 
yielded the smallest error, it was selected. A schematic illustration of the forecast 
system is shown in Fig. 5. For purposes of verifying the model, data for the years 

Table 12 - Average standard error of LLGS inflow forecasts. 

Standard error (m3/3) 
parameter set 1980 1981 1982 Avg . 
lead time 1 
(days) 2 
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UPSTREAM TIME SERIES STOCHASTIC ROUTING 
MODELS MODEL 

Fig. 5. Schematic illustration of the forecast system. 

1983 and 1984 were used. The results given in Table 13 indicate that the forecasting 
accuracy did not seriously deteriorate using data outside the calibration data set. 
The one and two day ahead forecasts plotted in Figs. 6 to 9 show close agreement 
of forecast and observed flows. 

Table 13 - Standard error of LLGS inflow forecasts. 

model lead Standard error (m3/s) 
time 1980 1981 1982 1983 1984 

(days) calibration period verif. period 

Time series 

MIS0 TFN 
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TFN Flow Forecasting Model for Hydro 

Conclusions 

The development of a MIS0 TFN model with correlated inputs using the superpo- 
sition of SISO models and simultaneous reestimation of parameters resulted in an 
acceptable model. This method is simple and is a viable alternative to complex 
methods based on transformation of the correlated inputs.The MIS0 TFN model 
explains more of the variability in inflows into LLGS and gives better forecasting 
accuracy than a univariate time series model of inflows. 

The MIS0 TFN model produced good forecasts of daily flows at leads one and 
two days. The average standard errors were 8% of average inflows (1-day lead) and 
18% (Zday lead). 

Increased accuracy of the forecasts as well as increased lead time can be achieved 
by the development of more detailed models for the tributaries and possibly by the 
use of an on-line recursive parameter estimation algorithm. The period under 
consideration is April to October and a model relating geophysical inputs to runoff 
would have to account for snowmelt and losses due to evapotranspiration and 
would have to incorporate a seasonally variable transfer function. 
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