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Base Flow and Water Supply 

N. J. Dahl 

DK-2400 Copenhagen, Denmark 

The interaction between the base flow created by seepage through the unsatu- 
rated zone in a region between two parallel rivers and the flow caused by the 
gaining of water from wells positioned at arbitrary points over the region is 
analysed. Normally both flows are non-steady but, for the sake of simplicity, 
the base flow is here assumed to be steady whereas the yield of water from the 
single well is assumed to be a free function of time defined by the actual 
consumption which assumption leads to a non-steady flow towards the wells. A 
special result of the analysis is that it becomes possible to define the catchment 
area of the single well. 

Introduction 

The problem of non-steady flow towards a well yielding a steady or non-steady 
amount of water has been treated by several authors. Here it is essential to mention 
the fundamental solution given by Theis (1935). On the basis of this solution a 
number of problems especially related to the interaction between the flow in a 
nearby river and the flow towards a well have been discussed by Theis (1941), 
Hantush (1964 and 1965) - in other cases the aim has been to discuss the applica- 
tion of the solutions to more practical problems such as the testing of wells etc. 
(Jenkins 1968 and 1970). 

The aim of this paper is fourfold: 1) to combine the (steady) base flow between 
two parallel rivers with the non-steady flow towards one (or more) wells 2) to 



N .  J .  Dahl 

demonstrate the transition from the original flow to a new steady flow if the yield of 
the well is kept constant or a quasi-steady flow, if the yield of the well is a rhytmic 
function of time 3) to calculate the amount of water withheld from each of the two 
rivers, and 4) to define the catchment area of each well. The last-mentioned result 
will be valuable when discussing pollution problems related to groundwater re- 
sources. 

All solutions will be given in form of mathematical functions suited for computa- 
tional work. 

Base Flow 

The base flow is here defined as the plane, horizontal flow in an aquifer resting on 
an impermeable layer between two rivers, Fig. 1. The flow is created by a steady 
seepage P through the unsaturated zone and is upwards bounded by the phreatic 
surface which as a vault connects the water surfaces of the two rivers; the levels hl 
and hZ of these water surfaces are assumed to be constant. Moreover it is assumed 
that the banks of the rivers are vertical and penetrating the aquifer so that no 
special resistance in the vicinity of the rivers has to be taken into account. Finally 
we assume that the transmissivity T of the aquifer is constant. 

Fig. 2 shows the definition of the (s,l)  coordinate system, and using the distance 
L between the rivers as a unit of length we define the dimensionless system (x,y) by 

s = Lx 2 = Ly ( 1 )  

in which system the level hb of the phreatic surface is given by 

p L 2  ( 7 - x ) x  hb = h l - ( h 1 r h 2 ) x t -  2 T (2) 

and where the discharge (per unit of length) qb in the direction of the x-axis is given 

by 

which gives the discharges to the two rivers 

Finally, we note that the dimensionless distance from river I to the watershed is 
given by 
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Fig. 2. Definitions of coordinate systems 
Fig. 1. Cross section between river I and 11. and ( x , ~ ) .  

The well-known solution quoted here satisfies the boundary conditions hb hl and 
hb h2 at the two rivers. The solution holds true only if the seepage P is indepen- 
dent of time; as will be known P is normally an almost periodical function over the 
year and sometimes P is varying over the region. This case of non-steady base flow 
is analyzed in Dahl (1980 and 1981). 

Gaining of water from wells located at arbitrary points in the region will cause a 
depression q of the phreatic surface, Fig. 1, and the local depression will become a 
function of the local coordinates and of the time. This function must satisfy the 
boundary condition 7 = 0 for x = 0 and x = 1 and the initial condition q = 0 over 
the whole region; moreover, the complete solution of the problem must fulfil the 
condition that the yield of the single well is a free function of time governed by the 
actual consumption of water. 

A Well in Extended Area 

We assume that a single well, interpreted as a line source, is located in an extended 
area where the phreatic surface is horizontal and that the well is yielding the 
constant discharge Qo from moment t = 0; before this moment we have Qo = 0. 
The flow created in this way is radial in vertical plans through the axis of the well 
according to the well-know differential equations 

where Q is the discharge at the time t through a cylinder with radius R ; q is the 
corresponding depression of the phreatic surface. S is the specific yield (or storage 
coefficient) and T the transmissivity of the aquifer; both are assumed to be con- 
stant. 
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The dimensionless function @(r,t) and the quantities r and t defined by 

are now introduced; A and a are constants to which we shall revert a bit later. 
Insertion of Eq. (9) and elimination of Q now gives 

which equation we recognize to be a dimensionless form of the equation of conduc- 
tion of heat in solids. 

Taking into account the initial condition c$ = 0 for t 0 and the boundary 
condition c$ 1 0 for r 9 m together with the condition attached to Qo we find 
using the theory of Laplace transformation - the following solution 

1 f o r  T < 0 

where the argument u is defined by 

r u = -  
4 T 

and where El (u) is the exponential integral discussed in Abramowitz and Stegun 
(1968); for later use we quote the series 

where y = 0.57721 . . . is Euler's constant. 
By differentiation of Eq. (11) and insertion in Eq. (9a) we now get 

which inserted in Eq. (7) gives 

& = 2 s A T  e - P 2 / 4 T  ( 1 5 )  

The condition Q =-+ Q, for r 4 0 is evidently fulfilled if we insert 
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for the free constant A in Eq. (9a) and the complete solution is now written in the 
form 

where we have introduced the functions 

- t e 1 r dt = -El(-) f o r  T > 0 
2  

4 n 4 T 

l$l1(L) = r 2 / 4 ~  
4 T - 

( 1 9 )  

I o f o r  T  < 0 

- r 2 / 4 - r  f o r  T > 0 
r 

q 1 ( ~ )  = 
f o r  T i 0 

A comparison now shows that this solution is identical with the original Theis - 
solution except for one important thing, namely that ( ) and 9, ( ) are equal to 
zero if t < 0. We shall make use of this property later on. 

We close this section by emphasizing that a definition of the constant a entering 
in Eq. (9) has not been necessary here which fact we conclude from, compare Eqs. 
(9) and (121, 

This degree of freedom will become useful in the next section. 

A Well between Two Rivers 

The actual region is bounded by the lines x = 0 and x= 1 and the well A is located 
at a distance al from river I which gives the coordinates (x,y) = (x,,O) for the axis of 
the well, compare Fig. 2. It is assumed that no seepage is taking place over the 
region. A reflection of the well A in the line x = 0 now leads to the function. 

r 
1 r,' 

@2,1( 1 = F) - 4  ( -  1 
1 4r ( 2 2 )  

where 
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Fig. 3. Reflections at river I and 11. 
-2 -1 

-Qo Qo -Go Qo -Qo a 0  

and we note that if we identify Eq. (22) with $( ) in Eq. (9a) we get the solution 
given by Theis (1941). 

The wells A and B, Fig. 3, are now reflected in the line x = 1 giving the images C 
and D; these images are reflected in the line x = 0 giving the images E and E A 
continuation of this process leads to the series 

where the definitions Eqs. (23) and (24) still hold true and where the radii r,, rb, . . . 
are defined by 

It is possible to prove that the series Eq. (25) is convergent having a positive limit 
everywhere in the interior of the region and that $2 ( ) = 0 along the boundaries x 
= O a n d x =  1. Moreover, we have^$^( ) - O f ~ r t + O s i n c e $ ~ (  )-Ofort-t O. 
The special condition ( ) = 0 for z < 0 is, of course, transferred to +2 ( ). 

We are now entitled to identify +( ) in Eq. (9a) with Q2 ( ) which gives 

Qo 
~ l (  1 = T + ~ (  1 ( 3 0 )  

and we conclude that this solution fulfils the initial condition q 0 for t ;-, 0 and 
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the boundary conditions 11 = 0 along both rivers. For the special case z + m we get, 
using Eq. (13) 

which shows that Eq. (30) is describing the transition of the phreatic surface from 
the original horizontal state to a new steady state if the yield Qo is kept constant. 

The fact that a steady flow will be established in the region where no seepage 
exists implies that an inflow from both rivers will begin. The velocity vectors of 
these inflows are perpendicular to the rivers and therefore the inflow ql ( ) (per 
unit of length) is found from 

By differentiation of Eq. (25) we get after reduction 

and the total inflow Q1 from river I is now found from 

where we have introduced the function 

which integral has to be found by numerical methods. 
For the special case z + it is, however, possible to find the limit value of q2 

( ); integration over the finite interval (-yly) gives 
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and for Iyl + c~ we get 

2 
m 

I),( ) I Y l m  = {I - -  1 arctan 1 = I - x l  
71 

( 3 7 )  
n= i 4 n 2 - x f + y 2  

which inserted in Eq. (34) gives the very simple result 

Q, = QO( 1 - x l )  f o r  T + w ( 3 8 )  

It should be added that the inflows q, and Ql from river I, respectively q2 and Q2 
from river 11, involves a kind of symmetry since it is only by chance that the 1-axis is 
placed along river I and not along river 11; for this reason the inflows q2 and Q2 are 
found from Eq. (32) and Eq. (34) by exchanging xl for 1-xl in Eqs. (33) and (35). 

The formulas Eqs. (30), (32) and (34) now constitute together with functions 
), 6~$~/6~11,=~, and q2 ( ) the necessary solution for the following analysis of 

the four problems mentioned in the introduction. A complete mathematical discus- 
sion of the three functions is superfluous here but some properties important for 
the following have to be rendered. The functions are all asymptotic with the limit 
zero for Iyl+ and with finite (positive) limits for t 4 a). The limit for lyl+ is, 
in fact, reached with a good approximation if lyl > 1.5 which limit defines a 
practical demarcation of the zone of influence of the well. The limit for t =+ w is 
reached with a good approximation if t > 1 which defines a practical duration, 
compare Eq. (9c) 

of the transition from the original steady flow to the new one, if Q, is kept constant. 

Non-Steady Gain of Water 

We now have to improve the solution deduced in above section so that it holds true 
when the gain of water is an arbitrary function of time defined by the actual 
consumption according to the full-drawn curve shown in Fig. 4. This function is 
approximated by a staircase function with arbitrary intervals, the only demand 
being that the constant values Qo,k have to be chosen so that the total volume of 
water gained qt the end of each interval must equal the real consumption. 

For the arbitrary interval (tk.lltk) we get, using the law of translation of Laplace- 
transforms and of superposition 
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Fig. 4. Consumption of water as a 
function of time. 

0.1 5 

0.10 

a05 

7 Fig. 5. The function 4 ~ (  ). 
a1 02 T , - ~ )  0.4 as 0.6 0.7 a8 0.9 - 

t 

where we have introduced the function 

in which the law of translation implies that all terms for which the denominator of 
the argument is negative have to be put equal to zero. Fig. 5 shows, as an example, 
the course of +3,k ( ) for the arbitrary point ( x , y )  = (0.5,O) and for the parameter 
values ~ ~ - ~ = 0 . 2 5 ,  tk=0.5, and x1=0.25; it should be noted that +3.k( ) is almost 
negligible for z-tk > 1, compare previous section in fine, which means that the 
influence of the gaining of water during this interval has faded out. 

The solution for the approximative staircase function shown in Fig. 4 is now 
found by a simple superposition. For the 7-solution we get, compare Eq. (30). 

while for the inflow 9, we get, compare Eq. (32) 

from which the total inflow Ql has to be found by numerical integration. 
Thus far it has been assumed that only one well has been activated. If two or 

more wells are exploited, it is reasonable to examine whether they will interfere 
with one another; if this is the case, a simple superposition will solve the problem. 
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The steady base flow described in the first section and the non-steady flow de- 
scribed in the two previous sections hold true for the same region bounded by two 
parallel rivers. We are, therefore, entitled to combine them, using the law of 
superposition. 

If we take the solution deduced in the section on non-steady gain of water we get 
for the level of the phreatic surface 

while for the runoff to river I we get 

It should be noted that the last term in Eq. (45) represents the decrease of base- 
flow runoff; the total decrease of runoff to river I is found by numerical integration 
of this term. 

A Numerical Example 

It seems appropriate to illustrate the theoretical solution by a numerical example 
for which we choose the following values of the parameters: L = 2,500 m, hl = 2 m, 
h2 = 0 m, T = 0.002 m2/sec, S = 0.2, P = 300 mmlyear, al = 1,000 m, and Qo = 
120,000 m31year. 

If this yield is distributed evenly over the year, the duration of the transition is, 
compare Eq. (39) 

S L  
td . 5 0 * 2 , " , " 2 0 ) ~ ~ 0 2  i 6 . 2 5 ~ 1 0 '  sec - 2 4 0  months 

which indicate that 1 month (= 1/12 of a year) is an appropriate unit of time; the 
consequence hereof is that T, P and, Qo have to be converted correspondingly. 
This gives the conversional factor in Eq. (9c) 

where one month is used as the unit of time. 
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Fig. 6. The transition of the depression q of the phreatic surface. 

Fig. 7. The transition of the decrease of the runoff Ql and Q2 to the rivers. 
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The results of the computations are all rendered in form of graphs. The computa- 
tions are carried through for two cases: 1) Q is constant and equal to 10,000 m3/ 
month and 2) Qo is a periodical function with Qo = 20,000 m3/month over 6 months 
followed by Qo = 0 over the next 6 months; thus the yearly yield of the well is 
120,000 m3 in both cases. 

Figs. 6 and 7 show the transition of q and Q,, respectively Q,, over the first 5 
years and the 10th year, respectively the 15th year; the values of 7 have been 
calculated for the two points (s,l) = (800 m, 0) and (990 m, 0), i.e. at a distance of 
200 m, respectively 10 m, from the well. If Qo is kept constant, we get smooth 
curves for q as well as for Ql and Q2 which curves asymptotically approach finite 
limits; these limits can be calculated directly from Eq. (31) and Eq. (38). If Qo is a 
periodical function, q as well as Ql and Q2 tend to become periodical functions 
oscillating around the said limits; it is noteworthy that the q-oscillations are strictly 
in phase with the Qo- oscillations whereas the Ql- as well as the Q2-oscillations are 
displaced in phase; it is also evident that these displacements depend on the distan- 
ces from the well to the two rivers. Furthermore we note that Q1 and Q2 are hardly 
perceptible before the lapse of 3, respectively 6 months after the start of the well. 
Finally, we note that Q1 and Q2 have to be interpreted as the reduction of the 
baseflow runoff to the rivers. 

Figs. 8 and 9 show how these reductions are distributed along the two rivers; the 
time t has been used as a parameter. 

The new steady state of the phreatic surface obtained for Qo being constant and t 
4 is illustrated in Figs. 10 and 11. Fig. 10 shows a section through the well from 
river I to river 11; the upper curve shows the levels of the phreatic surface before 
the activation of the well which gives a natural watershed at s, = 1,081 m whereas 
the lower curve shows the levels of this surface when the yield of Qo of the well has 
been constantly equal to 10,000 m3/month for a long time, and this curve shows 
two vertices at s = 778 m and 1,242 m. The explanation of these vertices is found in 
Fig. 11 which shows some contour lines of the phreatic surface (for t -+ w )  for a 
part of the region. The two points are stagnation points from which it is possible to 
sketch orthogonal trajectories to the contour lines and these trajectories are joining 
the natural watershed at I - 800 m. Taking into account the symmetry around the 
s-axis the trajectories form a closed curve bounding the catchment area of the well. 
A planimetric measurement shows that this area is 40 ha and is divided by the 
natural watershed in a left part of 24 ha and a right part of 16 ha. Remembering 
that the seepage is 300 mmlyear, we get a total seepage per year of 120,000 m3 over 
the catchment area divided into 72,000 m3 to the left and 48,000 m3 to the right, 
which figures are in complete accordance with the yearly consumption and yearly 
volumes withheld from the two rivers, compare Fig. 7. 
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Fig. 8. Distribution and transition of ql at river I. 

Fig. 9. Distribution and transition of q2 at river 11. 

Fig. 10. Cross section of the phreatic surface before and after the transition. 
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Fig. 11. Contour lines and watersheds of the phreatic surface after the transition. 

Conclusions 

The four problems mentioned in the introduction have been solved. The actual 
technical quantities are found as products of dimensionless mathematical functions 
and combinations of the local geo-hydraulic parameters. 

It is reasonable to point out that the definition of the catchment area of the well 
renders it possible to discuss in a meaningful way the transport of pollutants caused 
by the groundwater flow towards the well. 

It should also be emphasized that the mathematical functions, because of their 
asymptotical nature, define partly the practical zone of influence of the well, partly 
the practical duration of the transition. These practical limits are found directly 
from the actual geo-hydraulic parameters. 

Main Symbols 
The units of the symbols is noted in a parenthesis; any consistent system of units 
can be used. 

P - Seepage through the unsaturated zone [LT- '1 
hl and h, Levels of the water surfaces in the two rivers [Ll 
L - Distance between the rivers 
h 

[Ll 
- Level of the phreatic surface [Ll 
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T - Transmissivity of the aquifer 
S - Specific yield of the aquifer 
s and 1 Coordinates perpendicular to  and along river I 
t - Time coordinate 

Qo - Discharge of the well 
Q1 and Q2 Discharges withheld from the two rivers 

ql and q2 Intensity of discharge towards the two rivers 

rl - Depression of the phreatic surface 
R - Distance from the well 

a1 - Distance from the well to  river I 
td - Duration of the transition 

The  following symbols are all dimensionless 

(X,Y,Z) - Coordinates related to  (s, 1, t )  
r - Distance related to  R 

and Q3 - Functions related to  q 
6 + / 6 ~ ( , = ~  etc. - Functions related to  ql 
Vl, V2, and V3 - Functions related to  Ql 
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