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Assessing the Effect of Longitudinal Density 
Gradient on Estuarine Hydrodynamics 

Kolawole 0. Aiyesimoju 
East Bay Municipal Utility District, 

Oakland, CA-94607, USA 

If the im$act of longitudinal density gradient on the hydrodynamics of estuaries 
is negligible, then in water quality simulations, the hydrodynamics can be 
decoupled from the mass transport which would lead to substantial savings in 
computational time and storage requirements. It is thus important to be able to 
assess this impact beforehand. 

The impact of longitudinal density gradients is evaluated analytically in the 
context of a one-dimensional wide rectangular channel taking into account the 
influence of bed slope, bottom friction, type of boundary condition and trans- 
ient effects. The analysis predicts actual errors that would arise in numerical 
computations from near exactly in the best cases to within a factor of 6 in the 
worst cases. It should thus be useful for at least an order of magnitude predic- 
tion of the errors that would arise from the neglect of the effect of longitudinal 
density gradient on estuarine hydrodynamics. 

Introduction 

Previous work on estuarine hydrodynamics and water quality modeling is numer- 
ous and cannot be summarized here. Reviews are given in TRACOR (1971) and 
Liu and Leendertsee (1978). Most of these previous studies either coupled the 
hydrodynamics equations and the mass transport equations or decoupled them 
without examining what should be the determining factor, the impact of longitudi- 
nal density gradients. If this impact is negligible, the hydrodynamics can be de- 
coupled from the mass transport which would lead to substantial savings in compu- 
tational time and storage requirements. 
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To the knowledge of the writer, the only previous assessments of this impact 
(Fisher, Nava and Cross 1971, and Dailey and Harleman 1972) were limited to 
comparing the relative magnitudes of the pressure gradient terms in the momen- 
tum conservation equation with and without longitudinal density gradient. The 
influence that the unsteady nature of estuarine flow, the types of boundary condi- 
tions specified, bottom friction and bed slope may have was thus summarily neg- 
lected. 

An analytical approach which includes these variables will be taken. This will 
necessitate the adoption of reasonable assumptions to facilitate the analysis with- 
out detracting from its essence, which is to provide a decision-making tool as to the 
desirability of including longitudinal density gradient effects in a given estuarine 
water quality simulation. A numerical approach will avoid most of these assump- 
tions but the resulting numerical predictive tool cannot be readily made available 
to others. 

Although the analysis done here will be in the context of one-dimensional wide 
rectangular channels, there is no reason why the conclusions should not remain 
relevant for channels that are vertically well-mixed in general. 

Governing Equations and Assumptions 

The field equations describing long wave propagation in a one-dimensional wide 
rectangular channel in the presence of density gradients are (Aiyesimoju 1986) 
respectively the mass conservation and momentum conservation equations 

where 

- the longitudinal distance, 
- time, 
- the discharge per unit width, 
- the water depth, 
- the bed elevation with respect to a given datum, 
- the water density, 
- the friction slope, 
- the bed slope - azblox 
- the gravitational acceleration. 

The following assumptions will facilitate the analytical evaluation without de- 
tracting from the essence of the analysis; the impact of longitudinal density gra- 
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dient on estuarine hydrodynamics: 1) Convective acceleration term a /  ; l x ( ~ ~ ~ / h )  is 
negligible, 2) Variations to still water level (h-H) are relatively small compared to 
mean water depth H i.e. hlH is close to unity, 3) Longitudinal density variations 
are sufficiently small that l l ~ ( Q / ~ x ) = = l l ~ ~  8~/:jx, where ~f is the freshwater densi- 
ty, 4) Friction is linear such that ghSf = pq  (the estimation of p the linear friction 
coefficient will be discussed later) and 5) Constant bed slope. 

Assumptions I) ,  2), 4) and 5) have been successfully used in analytical studies 
(See Dronkers 1964, p 225; Bode and Sobey 1984). Assumption 3) is reasonable 
since in real estuaries Q deviates from ~f by no more than 4 % in the worst cases 
(e.g. 2.4 % in San Francisco bay and 1.6 % in Guayas estuary in Ecuador). A 
salinity of 40 parts per thousand corresponds to a deviation of about 3.2 % at 4' C. 

Under the above assumptions, the mass conservation Eq. (1) remains the same 
and the momentum conservation Eq. (2) can be written as 

It is more convenient to work in dimensionless terms. Let x' = xlL, t' = tlT, 

and 
Ls 0 5' = - 
H 

where L is channel length and T is period of wave component being considered. 
Substituting in Eqs. (1) and (3) gives respectively for mass conservation and 
momentum conservation 

a = ( T / L ) ~ H  is a dimensionless measure of the wave speed WH. It is also the 
ratio of the wave length to channel length, 8 = '/z(Llef)  lax lax) is a dimensionless 
measure of the longitudinal density gradient; = p T  represents the influence of 
friction and S1, = (LIH) So is a measure of the bed slope. 

Analytical Evaluation 

For this study, a constant longitudinal density gradient is assumed. In real estuaries 
density varies with time but primarily with location. The constant value here can be 
approximated as the time-averaged value of the average longitudinal density gra- 
dient. 
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Fig. 1.  Prototype Problem. 

Fig. 2. Definition of bed slope. 

The Prototype Problem 
The prototype problem to be considered is as in Fig. 1. This consists of a wide 
rectangular channel with constant bottom slope So subject to at tide at x = 0 

2 n t  
h (x=O, t )  = H + a s i n  ( - ) 

T 

where a is the wave amplitude and T the period. The definition of bed slope is 
illustrated in Fig. 2. Two types of specifications of boundary conditions will be 
considered at x = L;  

1) Type 1 - specification of discharge q(x=L, t) = q, = constant 
2) Type 2 - specification of water depth h(x=L, t )  = H 

Because Eqs. (4) and (5) are linear, superposition of the solutions is valid. The 
complete solution to a problem will be separated into a steady (time-independent) 
component and a transient or forced (time-dependent) component. Each compo- 
nent can be considered separately. Furthermore, by change of variables x to L-x, 
solutions for the case where the tide is located at x=L can be directly obtained 
from the solutions to this prototype problem. By superposition, any complicated 
set of boundary conditions at both ends which can be harmonically decomposed 
can be handled. 
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Let subscript s denote the steady response solution and subscript f denote the 
forced response solution and 

k r ( x , t )  = h r ( x )  + h r ( x , t )  . q r ( x , t )  = q ; ( x )  + q r ( x , t )  
s f f 

Substitution in mass conservation Eq. (4) and momentum conservation Eq. ( 5 )  
yields respectively for steady response 

a 
a 2  - ( p  t q  ' )  E 0 i. e .  p  'q;  = c o n s t a n t  

a x  s ( 6 )  

subject to h,(O) = H i.e. hs(0) = 1. In addition, for discharge boundary condition 
upstream (type I), q,(L) = q, which implies qk(1) = g,LlgTH2, q, will here be 
chosen to correspond to constant density uniform flow. For height boundary condi- 
tion upstream (type 2), h,(L) = H i.e. hs(l) = 1. 

For forced response 

subject to 

t a 
h ( 0 , t )  = a  s i n ( Z n ? ; )  i e  k ' ( O , t r )  = a '  s i n ( 2 n t )  where a '  = - 
f f H 

In addition for discharge boundary condition upstream (type 1) 

q  ( L , t )  = O = q ' ( l , t r )  
f f 

and for height boundary condition upstream (type 2), hf(L, t) = 0 = hj(1, t'). As 
discussed earlier, a linear density distribution ~ ( x )  = ~f - 20pf (L-x)IL such that 
Q(L) = ~f and 0 = !h(Llpf) (aplax) (as already defined in the previous section) is 
assumed. This implies 

Steady Response Effects 
Dropping primes from all variables except the dependent variables h and q (be- 
cause there is still need to refer to the dimensional values of h and g), the steady 
state solutions (from Eqs. (6) and (7)) are as follows: 

Discharge Boundary Condition Upstream (Type 1) 
For the case where 0 = 0 (i.e. no density gradient), 
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For 8 =k 0, let C = 1 - 28 + (2S,/8) (I-@), then 

Eqs. (11) and (12) give an estimate of the impact of a constant longitudinal density 
gradient on the steady response. Let A(A) be the maximum absolute error over x 
(space) in any variable A due to the exclusion of longitudinal density gradient in 
calculations, then 

A ( h s )  
A ( h $ )  =-- H - f u n c t i o n  ( 0 ,  S O )  

The density of very saline ocean water (40 parts per thousand) at 4°C is about 1,032 
kg/m3. Thus the magnitude of 8 could be as high as 

8 will be allowed to range from -0.02 to 0.02. Usually in estuaries bed slopes 
would not exceed L of 20 km is quite long and H of 2 m is relatively shallow 
implying a maximum magnitude of SA = 10. Thus SA will be allowed to range from 
-10 to 10. 

The dependence of A(h,') and A(.J~,') on SA and 8 for discharge boundary condi- 
tion upstream are respectively as in Tables l a  and b. These show approximate 
symmetry of the contours with respect to 8 = 0 and Sh = 0. The errors generally 
increase with increasing magnitudes of 0 and S;. The non-dimensionalization done 
earlier implies 

where p the linear friction coefficient can be estimated from 

lvj is an effective mean of the absolute values of the velocities, C is Chezy's friction 
coefficient, R the hydraulic radius and n is Manning's friction coefficient. For a 
purely sinusoidal flow, Ivl has been estimated using Lorentz's energy dissipation 
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Table l a  - Dimensionless steady errors in head A(hJ  for discharge boundary 
condition upstream. 

Table l b  - Dimensionless steady errors in discharge A(vq;) for discharge bound- 

argument (Dronkers 1964) as lv( = 8Um/3n, where Urn is the velocity amplitude. 
Errors in velocity rather than in q are more appropriate and the dimensional 

error in velocity from steady response A(us)  = O(qs)lH,  i.e, from Eq. (15) 

Substituting Eq. (16) in (17), with R H 
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Table l c  - Dimensionless steady errors in head A(hJ for head boundary condi- 
tion upstream. 

Table Id - Dimensionless steady errors in discharge A(vqJ for head boundary 

For a moderate value of A(hJ of 0.02, from Table la ,  A(h,) would vary from 0.04 
m in a depth of 2 m to 0.4 m in a depth of 20 m. For moderate values of depth H = 

5 m, L = 5 km, n = 0.04, lvl = 0 . 5 d s a n d  A(oqH) = 0.05 (fromTable lb); A(u,) 
= 0.53 d s .  These estimates for A(h,) and A(u,) suggest that longitudinal density 
gradients may have a significant impact for discharge boundary condition up- 
stream. This is further discussed after the numerical evaluation. 

Height Boundary Condition Upstream (Type 2) 
The governing equation and boundary conditions are as earlier defined. For 8 =# 0 
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where C = (20 + 2So)/(exp(0)-1) and y = 1 - 29 + So/O (1-20 + 2S,/0 - C. For 0 = 

0, 
0 

h  x  = 1 , q r  (x)=-- 
S s V 

The dependence of A(hi) and A(vqi) on So and 0 for height boundary condition 
upstream are respectively as in Tables lc and d. The values of A(h,') are generally 
almost an order of magnitude less than corresponding values for discharge bound- 
ary condition upstream while the values of A(\;q,') are generally about a factor of 2 
smaller than corresponding values for discharge boundary condition upstream. 
However for SA very close to zero, A (vqi) values are generally larger than corres- 
ponding values for discharge boundary condition upstream. The same trends would 
apply to the dimensional errors too. 

Forced Response Effects 
Here it is convenient to neglect friction. This should not affect the results adverse- 
ly. As friction has a dissipative effect, its neglect would tend to be conservative in 
estimating the errors. Dropping primes from x, t and Q terms, the forced response 
solutions are as follows: 

In all cases, the solutions are of the form 

q l ( x , t )  = f g ( x ) c o s ( 2 n t )  1-20 ( 1-X) 

The values off (x) and g(x) are defined as follows: 

a 0 Case 1 ;i;; < I 

1 e e e 
g ( x )  = e x p ( ~ x )  ( (i3d2-?) cos ( B x )  + ( - - d 2 - 6 )  2  s i n  (ex) ) 

where 
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for discharge boundary condition upstream (type 1) and 

d  = -  c o t ( B )  

for height boundary condition upstream (type 2). 

e e f ( X I  - exp ( -  x )  + d 2 x  exp (-  x ) ,  
2 2  

1 0  e 0 0  
g ( x )  = - ( - -  exp ( - x )  +d2 ( I - - x )  ( e x p ( - x )  ) 

2lT 2 2  2  2 

where 

e d = -- 
2 - 2 - 0  

for discharge boundary condition upstream and 

d  = - 1  
2 

for height boundary condition upstream 

a 0 
Case 3 ?;r > 1 

Let 

then 

where 

for discharge boundary condition upstream (type 1) and 

for height boundary condition upstream. d,  = 1 - dl in both cases. 



Effect of Density Gradient in Estuaries 

The errors due to forced response for a given 0 are obtained by taking the 
difference between the hjand qjvalues obtained using 0 in the above equations and 
the corresponding values obtained when 0 = 0. The errors are also periodic with 
maximum error magnitudes for hjoccurring at t = ?4 and t % and for q j  at t = 0 and t 
= '/Z at any x. Here let A(A) be the maximum magnitude over x and t of the errors 
in any variable A, values of A(hjla') and A(qjla') are as in Tables 2a and b respect- 
ively for discharge boundary condition upstream. Both tables show almost exact 
symmetry with respect to 0 = 0. A(hjla') also shows strong dependence on 0 but 
relatively little dependence on a. A(qj1a') is however strongly dependent on both a 
and 0 with the errors generally increasing with the magnitude of 0 and decreasing 
with a. Now 

Using A(qf) = A(uf)H, where uf is the velocity due to forced response, then 

For A(hjla') = 0.008 from Table 2a and a typical value of a = 1 m, A(hf) = 0.008 
m. For A(qj/a') = (Table 2b), T = 12.5 hours, a = 1 m and a moderate L = 5 
km, A(uf) = 0.009 mls. These estimates tend to suggest that the errors due to 
forced response are negligible. 

For height boundary condition upstream, values of A (hjla') and A(q]la') are as 
in Tables 2c and d respectively. Both tables again show near perfect symmetry 
relative to 8 = 0 and relative independence of a. The values of A(hj.1~') are 
generally about a factor of 2 less than corresponding values for discharge boundary 
condition upstream while the values of A(qjla') are quite often several orders of 
magnitude larger than corresponding values for discharge boundary condition up- 
stream especially for large values of a.  

Numerical Evaluation of Longitudinal Density Gradient Effects on Hydrody- 
namics 

To validate the ability of the analysis presented earlier to predict the errors arising 
from the exclusion of longitudinal density gradient effects in actual numerical 
computations, two sets of numerical experiments were designed. The first set of 
numerical experiments was designed to violate the assumptions made in setting up 
the steady response and transient response problems as much as possible while the 
second set was designed to be closely consistent with the assumptions. The specific 
parameters for the experiments are in Table 3a. The first involves a relatively large 
forcing amplitude 1 m in shallow water of depth 2 m thus significantly violating 
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Table 3a - Parameters used in the numerical evaluation of the effect of longitudinal density 
gradient on estuarine hydrodynamics 

Test No. H(m) a(m) L(km) n so a s; 

Table 3b - Numerically computed errors in head due to the exclusion of longitudinal density 
gradient 

Test B.C. Errors in head A(h)  (m)  

No. tYPe Analytical Numerical 

Steady Forced Total 

Table 3c - Numerically computed errors in velocity due to the exclusion of longitudinal 
density gradient 

Test B.C. Errors in velocity A (u) (mls) 

No. type Analytical 
- 

Numerical 

Steady Forced Total 

1 
1 0. 5.60E-3 5.6OE-3 3.52E-2 
2 4.92E-2 1.59E-1 2.08E-1 3.44E-2 

2 
1 1.97E-1 5.24E-4 1.98E-1 2.13E-1 
2 2.92E-1 1.57E-1 4.48E-1 1.88E-1 

assumption 2 (p. 67 1. Because of the shallow depth, the wave speed and hence the 
wave length would be small implying a rapid variation in the variables h and q with 
respect to distance. The convective acceleration term might thus be important, 
violating assumption 1. The bed slope was set to zero implying there is insignificant 
throughflow and hence the flow would tend to reverse strongly, violating assump- 
tion 4 (linear friction). The second set was based on opposite considerations to 
above with the forcing amplitude remaining at 1 m in a water depth of 20 m. Bed 
slope was set to a relatively large value of 0.001. 

For the numerical experiments, Program ESTFLO developed by Sobey et al. 
(1980) for solving the one-dimensional, constant density, hydrodynamics equations 
in channel networks was adapted (Aiyesimoju 1986) to optionally include longitu- 
dinal density gradient effects. ESTFLO uses an implicit, space but not time sta- 
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gered grid of head and discharge. For Courant Numbers (c(At1Ax) where c is 
wave speed) less than about 4 and LlAx (where L is wave length) greater than 
about 20 which are typical in estuarine hydrodynamics, the results are highly satis- 
factory. 

The results obtained from the numerical experiments and the corresponding 
analytical results are as in Tables 3b and c for errors in head and errors in velocity 
respectively. The test parameters are summarized in Table 3a. As expected, the set 
2 experiments errors are better predicted, all being within a factor of 2.5. The set 1 
errors were all predicted within a factor of 6. Other experiments were performed 
which confirmed this range of accuracy in the prediction of errors due to exclusion 
of longitudinal density gradient effects from hydrodynamics computations. 

Error Analysis and Discussion 

To give further perspective to the range of errors that could occur, analytically 
predicted errors were computed for combinations of flow depths ranging from 2 m 
to 20 m, channel lengths from 2 km to 20 km, Manning's roughnes coefficients from 
0.02 to 0.04 and bed slopes from 0 to 0.001. 0 was set to 0.015, the tidal amplitude a 
to 1 m and the tidal period T to 12.5 hours. 

These calculations show that in general, errors in velocity stem predominantly 
from the steady response. Also, in general, the largest errors in velocity occur for 
large longitudinal density gradient, short channel, deep water, low friction and 
height boundary condition upstream (type 2). For discharge boundary condition 
upstream, the larger the bed slope, the larger the errors in velocity while for height 
boundary condition upstream, the errors in velocity are not so dependent on the 
bed slope. 

Longitudinal density gradient in estuaries is normally the result of fresh water 
inflow at estuary head. This freshwater inflow also usually serves as boundary 
condition for hydrodynamic simulations. The other boundary condition is usually 
water level at the mouth of the estuary. Thus substantial longitudinal density 
gradient would usually go with discharge boundary condition upstream. As it is 
rare to have a short estuary which is very deep, the large errors that might arise in 
short estuaries would tend to be moderated by their shallowness and conversely the 
large errors that might arise in deep estuaries would tend to be moderated by their 
length. Additional numerical computations confirm this for a short channel of 
length 2 km and water depth of 2 m and a long channel of length 20 km and water 
depth 20 m. The errors in the velocity in these cases were no more than order 
10-~m/s for 0 = 0.015. On the other hand, for the rare situation of channel length 2 
km and depth 20 m, errors up to 2 m/s were obtained even for a Manning's n of up 
to 0.04. 

The errors in head when significant (greater than 0.1 m) occurred for discharge 
boundary condition (Type 1) and stemmed mainly from the steady response. 
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Conclusions 

The impact of longitudinal density gradients when significant is primarily due to the 
steady response and varies widely depending on channel length, bed slope, bottom 
friction, water depth, boundary condition type and of course longitudinal density 
gradient. The analysis presented predicted these errors from near exactly in the 
best cases to  within a factor of 6 in the worst cases. The equations developed should 
thus be useful for at least an order of magnitude estimation of the impact of 
longitudinal density gradients that takes all the relevant parameters into account. 
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