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Hourly and six-minute interval models were developed to stochastically gener- 
ate sequences of rainfall depths. The models were applied to data recorded at 
twelve rainfall stations in Australia, including several from the arid zone. At 
each station, several replicates of rainfall sequences of length equal to  the 
historical record were generated. Based on a range of parameters covering 
short rainfall bursts up to annual totals, the models were shown to be perfor- 
ming satisfactorily. 

Introduction 

Rainfall sequences are necessary in many hydrological applications, such as reser- 
voir operation studies, streamflow generation, and planning and design of urban 
drainage systems. Short time-interval streamflow data, such as peakflow rates and 
hourly average flows cannot -be easily treated with current stochastic streamflow 
models. As a result, in the design of urban drainage systems, empirical procedures 
have been used to estimate peak discharges, and generally the statistical prop- 
erties of runoff are assumed to be identical to those of the input rainfall. In recent 
times, rainfall-runoff models have been used with design 'storms that have been 
obtained from intensity-duration-frequency curves. Normally, the rainfall depth is 
disaggregated by a synthetic pattern. There are difficulties in choosing a suitable 
pattern, as is confirmed by the large number of synthetic patterns that have been 
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Fig. 1. Location of twelve stations. 

proposed (Keifer and Chu 1957; Pilgrim et al. 1969; Chien and Sarikelle 1976; 
Hall 1977), and by the various approaches that have been advanced. 

Because a generally acceptable procedure for the derivation of a synthetic 
temporal pattern has not been achieved, we provide in this paper a means of 
generating rainfall sequentially at short time intervals. Two time intervals were 
chosen for simulation. One was an hourly interval, which was adopted so that the 
generating model could be used to provide data as input into many rainfall-runoff 
models. The second interval - one tenth of an hour or six minutes - is the time unit 
adopted for digitization of Australian rainfall data and is also the basic time 
interval of operation of the Australian Representative Basins rainfall-runoff 
model (Chapman 1968). 

The models were applied to twelve rainfall stations throughout Australia, as 
shown in Fig. 1. Details about the data are given in Table 1. 

Literature Review 

Hourly Models 
Chow and Ramaseshan (1965) represented the annual storms for the French 
Broad River Basin at Brent Creek, North Carolina, by a first order non-stationary 
Markov chain model with log-normally distributed random components. The 
annual storms are those which produced the maximum peak discharge in a water 
year. Since the time distribution patterns of the annual storms were different, 
Chow and Ramaseshan carried out a "storm shifting" procedure to obtain the best 
storm orientation, so that the mean, standard deviation, trend and random com- 
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Table 1 - Rainfall data used in this study. 

Station Reference Location Data Number of 

name number Latitude Latitude period years of data 

O S '  O E '  

Melbourne 86 071 37 49 144 58 1951-80 30 
Sydney 66 062 33 52 151 12 1935-80 46 
Monto 39 104 24 51 151 01 1963-80 17 
Cowra 63 023 33 49 148 42 1941-80 32 
Mackay 33 119 21 07 149 13 1959-81 22 
Brisbane 40 214 27 28 153 02 1930-80 5 1 
Darwin 14 016 12 24 130 48 1953-81 28 
Broome 03 003 17 57 122 15 1948-79 3 1 
Perth 09 034 31 57 115 51 1946-80 34 
Adelaide 23 000 34 56 138 35 1930-79 49 
Alice Springs 15 590 23 24 133 32 1951-81 30 
Kalgoorlie 12 038 30 47 121 27 1939-79 40 

ponents of the hourly rainfall became regular and consistent. The storms were 
assumed to have the same duration which was taken approximately equal to the 
longest duration of the storms under consideration. They successfully applied a 
first order autoregressive model to generate sequentially the hourly rainfall depths 
within the annual storms having constant duration. 

Pattison (1965) represented the hourly rainfall process by a sixth-order Markov 
chain model (Model I). The model sometimes assumed the characteristics of first- 
order dependence and sometimes those of sixth-order dependence between 
observations of hourly rainfall. If the state of the hourly rainfall process during 
hour t was wet, the model used first-order dependence to determine the state of 
the process during hour ( t+l) .  If the state of the rainfall process during hour t was 
dry, the model adopted sixth-order dependence characteristics to determine the 
state of the process during hour (t+l).  Pattison divided the rainfall amounts into 
20 states and generated hourly rainfall using transition probabilities. The transi- 
tion probabilities were assumed to vary from month to month, but remain con- 
stant during a day. Results from the model application at one station showed that 
it adequately described the hourly rainfall process during storm periods. However, 
dry periods between storms were generally longer than those observed in nature. 

Pattison also proposed a second model (Model 11), which distributed the 
observed daily rainfall over the 24 hours preceding the hour of observation. A 
number of different procedures were investigated and, of these, only a linear 
regression type model was found to produce acceptable results. 

Franz (1971) divided a year into four seasons, namely, dry, wet, and the transis- 
tions form one to the other. A multivariate normal distribution was the basic 
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component of his model. The hourly data were normalized by using a generalized 
power transformation and then a first order Markov model was used to generate 
the rainfall depth. A variety of distributions were fitted to the lengths of the dry 
periods, but no analytical expressions were found to be suitable. As a consequ- 
ence, empirically defined distributions were used to generate the length of the dry 
period between storms as a function of time of year. 

Croley et al. (1978) used six divisions of the year to account for seasonal non- 
stationarity. Intervals of rainfall corresponding to storm events were scheduled by 
an exponentially distributed interarrival time model. Intrastorm structure was 
described in terms of storm segments which were in turn modelled by independent 
random variables. The intensity and distribution of precipitation within the storm 
segments were modelled by fitting log-normal intensity probability distributions 
and by cataloguing sample storm segment shapes. 

All the models described above did not consider the variation in the probability 
of rain occurring throughout a day. 

Nguyen and Rouselle (1981) proposed a stochastic model to determine the 
probability distributions of rainfall accumulated at the end of each hour within a 
total storm duration. The hourly rainfall depth was assumed to be an exponen- 
tially distributed random variable. A second-order Markov model was found to 
describe more adequately the sequence of wet hours than a first-order model. 
However, the distribution functions of accumulated amounts of consecutive 
hourly rainfalls obtained by using the second-order model were not found to be 
significantly different from those given by using the first-order model. Hence, 
Nguyen and Rouselle concluded that the use of the first-order Markov model in 
their study was equally acceptable to using the second-order model. Even though 
this model considered the variation in probability of occurrence of rain through- 
out a day, hourly rainfall depth was assumed to be an exponentially distributed 
random variable. Consequently, the persistence between hourly rainfall depths 
was ignored. 

Six-Minute Models 
No publications dealing with the generation of six-minute rainfall data were found 
in the literature. However, the following three papers consider events of ten- 
minute durations. 

Grace and Eagleson (1966) separated the series of rainfall depths into storms by 
establishing a length of time TL minutes, such that on average a rainfall event in 
any ten-minute period was not influenced by any event which occurred at least TL 
minutes before it. Correlation relating the time between storms to the storm 
durations was found to be very small; a Weibull distribution was used to generate 
these two variables. On the other hand: storm duration and storm depth were 
found to be highly correlated. Historical storms were divided into three types, 
namely, trace storms, moderate storms, and peaked storms. For each type, a 
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regression line was fitted to the storm depth and storm duration. During data 
generation, no random component was added to the trace storm amounts, but for 
the other two types, random components were added, using a Beta distribution. A 
modified Bose-Einstein urn model (Grace and Eagleson 1966) was used to distri- 
bute the total storm depth among the time intervals. The procedure was one of 
trial and error and " ... it is essentially impossible to obtain perfect agreement 
between the characteristics of the simulated and actual storm interiors" (Grace 
and Eagleson 1966, p. 87). The authors claim that the method adequately gener- 
ates synthetic rainfall from a moderate sample of historical data, but no results 
dealing with the parameters of the generated ten-minute rainfall are given in their 
report. 

Raudkivi and Lawgun (1972, 1974) generated the length of rainfall durations 
that were serially correlated and non-normally distributed, using an autoregres- 
sive scheme with a Pearson type I11 distribution. Each year of the data was 
separated into months to remove seasonal effects. Data for the same calendar 
months of different years were assumed homogeneous. Rainfall depths within a 
given duration were generated by using transition probability matrices. The time 
intervals between rainfalls were assumed to be independent and sampled from an 
empirical cumulative distribution function because almost all of the theoretical 
distributions fitted to the data failed to describe the lower tail (short intervals). 
Here again, the authors did not give any results of the ten-minute rainfall, other 
than the cumulative distribution of rainfall yield. 

Hourly Rainfall 

Generating Model 
Hourly rainfall data are generated in two stages. In the first stage, a daily transi- 
tion probability matrix (TPM) is used to determine the state of a day (wet or dry). 
The number of states varies with station and month, up to a maximum of seven. 
The state limits and the number of states for the rainfall stations used to test the 
models are given in Tables 2 and 3 respectively. State 1 is dry, and the other states 

Table 2 - State limits used in daily TPM. State Upper state limit 
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Table 3 - Number of states used for various stations in daily TPM. 

Station Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Melbourne 
Sydney 
Monto 
Cowra 
Mackay 
Brisbane 
Darwin 
Broome 
Perth 
Adelaide 
Alice Springs 
Kalgoorlie 

are wet. The daily TPM procedure has been used to successfully generate daily 
rainfalls (Srikanthan and McMahon 1983a). If the day is wet, rainfall depths are 
generated at hourly intervals in the second stage, 

Several models, including many variations, were successively tested for their 
ability to generate hourly rainfall depths on wet days. These models included: 

(i) Hourly TPM method - Hourly rainfall depths on wet days are generated 
using an hourly TPM. 

(ii) Two-state second-order Markov chain with hourly TPM - Wet hours on a 
wet day are first determined using a two-state second-order Markov chain 
and rainfall depths during the wet hours are generated from an hourly TPM. 

(iii) Spell-distributions and hourly TPM - Wet and dry spells are obtained from 
fitted distributions and an hourly TPM is used to generate rainfall depths 
during wet spells. 

The results from these models were found to be unsatisfactory; monthly and 
annual rainfalls were generally too large. (Details can be found in Srikanthan and 
McMahon 1983b). 

To overcome this inadequacy, wet days were divided into two types - those of 
low and of high rainfall - as follows: 

Type 1 - rainfall depth < RF 
Type 2 - rainfall depth Z RF 

where R F  is the dividing rainfall depth. 
The following models were tried with this modification: 

(iv) Two sets of hourly TPM based on the type of wet day are used to generate 
hourly rainfall. 
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(v) Two-state second-order Markov chain with an hourly TPM corresponding to 
each type of wet day. 

Results from models (iv) and (v) indicated that dividing a wet day into two types 
produces satisfactory annual rainfall parameters. The main drawback with model 
(iv) was that it did not take into account the variations in probability of rainfall 
throughout a day. One way of doing this was to use a time dependent Markov 
chain, and this is possible with model (v). Consequently, model (v) was adopted to 
generate hourly rainfall; it is described below. 

In order to preserve the monthly variations, each month was considered separ- 
ately. Because of this and the need to use two types of wet days, it was necessary, 
due to data limitations, to group the hours in a day into six units, each of 4 hours 
duration. Markov chain probabilities were assumed to vary from one unit to 
another, but to remain constant within a 4-hour unit. The occurrence of rainfall in 
any hour was determined from this time dependent second-order Markov chain 
and then the hourly TPM was used to generate rainfall depths. 

The number of states used for the hourly TPM is given in Table 4. State 1 is dry 
and the other states are wet. The upper state limits in mm for the states are 

If the number of states is k, it should be noted that in Table 4 the upper state limit 
for the kth state will be infinity. A linear distribution was used for intermediate 
states (see Appendix I for details) and the Box-Cox transformation for the largest 
state; thus 

in which A is the lower state limit of the largest state, h is a parameter to be 
estimated, and y is the normalized variate corresponding to a value x in the largest 
state. 

The major steps involved in the hourly generation process are given below. 

Step 1: Generate a uniformly distribution random number Ud(O,l). Using the 
daily TPM corresponding to the month, determine whether the day is dry 
or wet. If it is dry, repeat this procedure; otherwise go to Step 2. 

Step 2: Based on Ud and using daily TPM, determine the type of wet day (1 or 2). 
Generate another uniformly distributed random number U,(0,1). Using 
hourly Markov chain probabilities corresponding to the time unit of the 
day, type of wet day and month, determine whether the hour is dry or wet. 
If it is dry, repeat this procedure. If it is wet, generate the hourly rainfall 
depth using the corresponding hourly TPM. When 24 values of hourly 
rainfall are generated, go to Step 1. 

Steps 1 and 2 are repeated until the required length of data is generated. 
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Table 4  - Number of states for various stations in hourly TPM. 

Station R F  Type Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
mm 

- 

Melbourne 15 1 5 5 5 5 5 5 5 5 5 5 5 5  
2  6 6 5 6 6 4 5 5 5 6 6 6  

- - 

Sydney 31 1 7 7 7 6 6 6 6 6 6 7 7 7  
2 7 7 7 7 7 6 6 6 6 6 6 6  

Monto 15 1 5 5 5 4 4 4 4 4 4 5 5 5  
2  6 6 4 4 4 5 4 2 3 3 6 6  

-- - 

Cowra 15 1 5 5 5 5 5 5 5 5 5 5 5 5  
2 6 6 6 5 6 5 5 5 5 6 6 6  

Mackay 15 1 5 5 5 5 5 4 4 4 3 4 5 5  
2  7 7 7 7 6 6 3 3 2 3 3 7  

Brisbane 31 1 7 7 7 6 6 6 6 6 6 7 7 7  
2  7 7 7 6 6 6 6 6 5 7 7 7  

Darwin 31 1 7 7 7 6 6 2 2 2 3 6 6 6  
2  7 7 7 6 - * - - - -  3  5  7  

Broome 15 1 5 5 5 5 5 4 3 2 2 2 3 4  
2  7 7 6  - - - - - - - -  4  

Perth 

Adelaide 15 1 5 5 5 6 6 6 6 6 6 5 5 5  
2  6 6 5 6 6 6 6 5 5 6 6 6  

Alice 7  1 4 4 3 3 4 3 4 3 4 4 4 4  
Springs 2  5 5 5 5 5 5 5 5 5 5 5 5  

Kalgoorlie 7  1 , 3 4 4 4 4 4 4 4 4 4 4 4  
2  4 5 4 4 5 5 5 4 4 5 -  

- 

* Because of the small number of wet days, months marked by a dash are not divided into 
two types. 

Application of Hourly Model 
The hourly model was applied to the twelve rainfall stations listed in Table 1. 
Daily TPMs were first calculated using the state limits and number of states given 
in ~ a b l e s  2 and 3 respectively. If the number of states is k, it should be noted that in 
Table 2 the upper state boundary for the kth class will be infinity. Thus the whole of 
Table 2 applies only to a month with seven states. The wet days were divided into 
two types using the dividing rainfall depth given in Table 4. For each type of wet 
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day, Markov chain probabilities and hourly TPMs were calculated. The number of 
states used for each month is also given in Table 4. The parameter h in the Box- 
Cox transformation for the largest state was calculated by trial and error, such that 
the skewness of the transformed values was close to zero. Eight replicates, each of 
length equal to the historical record, were generated for each of the twelve sta- 
tions. 

Model Testing 
The following hourly parameters were used to compare the generated parameters 
based on the averages of the eight replicates with the historical parameters for 
each calendar month: 

(i) maximum hourly rainfall: 
(ii) mean, standard deviation and coefficient of skewness of hourly rainfall; 
(iii) mean, standard deviation and coefficient of skewness of hours of wet spell; 
(iv) longest wet spell; 
(v) correlation between rainfall depth and duration; and 
(vi) correlation between successive hourly rainfall depths. 

The hourly rainfall depths were aggregated into daily, monthly and annual rain- 
falls, and the following daily, monthly, and annual parameters were compared 
with historical values: 

(i) average number of wet days for each month; 
(ii) maximum daily rainfall for each month; 
(iii) mean, standard deviation and coefficient of skewness of daily rainfall 

depths; 
(iv) mean and standard deviation of monthly and annual rainfall depths; and 
(v) maximum and minimum of monthly and annual rainfall depths. 

Finally, frequency distributions of hourly, 6-hour, daily and 3-day annual max- 
imum rainfalls, calculated from the generated data, were compared with historical 
ones. 

Hourly Results 
Data synthesis using stochastic models is considered satisfactory if the values of 
the historical parameters fall within an appropriate confidence band of the para- 
meters based on the generated sequences, and if the averages of the generated 
parameters are generally close to the historical values. In this study, because the 
number of replicates was small (eight for the hourly generation), these criteria 
need to be relaxed. 

Because of the restriction of space, only four months of monthly data are 
presented for each station. Also, only detailed results for Melbourne are given, as 
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these are typical of the results for the other stations. A complete set of results can 
be found in Srikanthan and McMahon (1983b). Furthermore, no statistical tests 
are employed to assess the level of modelling. Rather, the parameters of the 
historical and generated sequences are tabulated for visual inspection, which is 
common practice in this field of study (Phien and Vithana 1983). 

In Table 5, maximum rainfalls are shown to be satisfactorily preserved, except 
for two months at Brisbane and Darwin; maximum rainfall was large in December 
for both stations. Even though the average longest wet spell lengths are smaller 
than the corresponding historical values, the latter lie in the range of values 
obtained from various replicates for most cases (Table 6). The correlation 
between rainfall depth and duration is satisfactorily preserved, as shown in Table 
7, while that between hourly rainfall depths is somewhat smaller than the corres- 
ponding historical values (Table 8). 

The means, standard deviations and coefficients of skewness of hourly rainfall 
are satisfactorily preserved for all the stations and all months. Results for only one 
station, namely Melbourne, are given as Table 9. Except for a few cases, the mean 
wet spell lengths and the coefficients of skewness of wet spell lengths are also 
satisfactorily reproduced (Table 10). The standard deviation of wet spell lengths is 
found to be smaller than the corresponding historical values. The frequency 
distributions of the generated and historical sequences of hourly and 6-hour max- 
imum rainfall are similar for all stations (see, as an example, Fig. 2 for Mel- 
bourne). 

Except for the dry months of Darwin (May to September) and Broome (June to 
November), means, standard deviations and coefficients of skewness of daily 
rainfall are satisfactorily preserved (see Table 11 for Melbourne and Darwin). 
Table 12 indicates that the number of wet days is well reproduced, and Table 13 
indicates satisfactory generation of maximum daily rainfalls for most months. The 
generated and historical frequency distributions of daily annual maximum rainfall 
are similar for all stations except Mackay and Kalgoorlie, while those of 3-day 
annual maximum rainfall are similar for all stations except Mackay, Brisbane, 
Broome, Alice Springs and Kalgoorlie. Figs. 2 and 3 show the frequency distribu- 
tions for Melbourne (satisfactory fit) and Mackay (poor fit) respectively. 

Except for the dry months of Darwin and Broome (mentioned above), monthly 
and annual means are satisfactorily preserved for all months. However, the stan- 
dard deviation generally is found to be smaller than the corresponding historical 
value for most months, although this is not so for the data tabulated for Mel- 
bourne (Table 14). Monthly and annual maximum and minimum rainfalls are 
satisfactorily reproduced. 

* The values in brackets give the range of the estimates in Tables 5 to  14 and 16 to 18. 
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Table 5 - Comparison of historical and generated maximum hourly rainfall (mm). 
-- - 

Station January April July October Annual 

Hist 23 16 10 18 65 
Melbourne Gen 20 19 11 19 45 

(27-15)* (32-14) (14-9) (25-14) (61-34) 

Hist 62 47 50 30 68 
Sydney Gen 50 55 37 30 80 

(70-29) (80-35) (58-20) (39-24) (101-54) 
- -- 

Hist 3 1 23 13 26 59 
Monto Gen 42 28 19 44 64 

(58-20) (45-22) (26-15) (55-26) (143-44) 

Hist 24 13 10 11 24 
Cowra Gen 44 19 11 12 49 

(105-19) (31-14) (14-8) (15-10) (105-26) 

Hist 60 38 20 54 69 
Mackay Gen 64 33 28 48 93 

(87-51) (51-26) (45-18) (75-29) (123-78) 

Hist 77 33 16 43 77 
Brisbane Gen 70 49 22 42 110 

(129-44) (65-34) (28-16) (59-33) (168-70) 
- 

Hist 67 47 8 88 88 
Darwin Gen 72 66 11 71 123 

(91-48) (75-54) (15-4) (90-45) (134-91) 

Hist 112 47 12 10 112 
Broome Gen 107 43 11 16 118 

(153-69) (81-21) (17-9) (21-12) (169-89) 

Hist 10 21 26 20 26 
Perth Gen 8 31 24 22 33 

(18-4) (67-15) (34-20) (28-16) (44-23) 

Hist 18 19 13 19 36 
Adelaide Gen 16 23 18 16 41 

(24-12) (46-16) (30-1 1) (26-1 1) (64-29) 

Hist 53 11 13 17 73 
Alice Gen 46 20 13 17 64 
Springs (69-23) (38-11) (19-10) (29-10) (100-46) 

Hist 19 12 8 10 31 
Kalgoorlie Gen 34 20 11 14 41 

(45-27) (30-14) (17-3) (21-11) (47-33) 
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Table 6 - Comparison of historical and generated longest wet spell lengths (hours). 

Station January April July October Annual 

Hist 29 40 43 24 43 
Melbourne Gen 21 27 31 20 35 

(29-14) (33-19) (43-22) (27-15) (49-28) 

Hist 62 40 39 55 69 
Sydney Gen 40 38 35 33 53 

(60-28) (48-26) (55-23) (45-25) (65-46) 

Hist 37 31 18 11 37 
Monto Gen 21 18 30 15 33 

(29-16) (22-13) (42-19) (25-10) (42-23) 
- 

Hist 41 26 29 20 18 
Cowra Gen 21 21 27 25 36 

(26-17) (26-17) (37-18) (35-19) (49-26) 

Hist 32 24 17 18 41 
Mackay Gen 26 16 18 15 37 

(41-20) (19-13) (25-11) (20-12) (50-29) 

Hist 47 3 1 45 52 56 
Brisbane Gen 29 26 37 26 47 

(33-24) (39-21) (52-26) (40-19) (59-37) 
- 

Hist 26 30 3 9 35 
Darwin Gen 25 17 3 8 27 

(29-22) (33-12) (4-2) (11-6) (33-21) 

Hist 25 35 18 4 3 1 
Broome Gen 20 12 16 5 25 

(28-13) (15-10) (20-12) (6-5) (31-19) 

Hist 13 15 24 40 42 
Perth Gen 12 20 33 22 37 

(16-11) (27-16) (49-27) (29-16) (49-32) 
- 

Hist 26 21 25 20 33 
Adelaide Gen 21 24 21 22 - 29 

(25-16) (30-19) (27-18) (26-19) (34-27) 

Hist 41 3 1 29 16 55 
Alice Gen 20 30 24 16 34 
Springs (33-19) (24-12) (35-17) (18-11) (43-24) 

-- 

Hist 27 18 23 9 36 
Kalgoorlie Gen 24 15 21 11 26 

(36-18) (16-13) (27-18) ,(13-9) (36-20) 
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Table 7 - Comparison of historical and generated correlation between rainfall depth and 
duration. 

Station January April July October 

Hist 0.75 0.75 0.79 0.78 
Melbourne Gen 0.72 0.74 0.76 0.71 

(0.75-0.63) (0.76-0.71) (0.79-0.71) (0.74-0.68) 

Hist 0.81 0.78 0.78 0.82 
Sydney Gen 0.75 0.77 0.68 0.71 

(0.77-0.72) (0.82-0.68) (0.72-0.64) (0.76-0.68) 

Hist 0.71 0.70 0.71 0.56 
Monto Gen 0.70 0.69 0.89 0.57 

(0.78-0.63) (0.76-0.61) (0.92-0.87) (0.71-0.44) 

Hist 0.81 0.77 0.82 0.78 
Cowra Gen 0.67 0.77 0.77 0.81 

(0.79-0.57) (0.80-0.73) (0.79-0.74) (0.84-0.79) 

Hist 0.83 0.72 0.64 0.75 
Mackay Gen 0.77 0.62 0.57 0.51 

(0.80-0.72) (0.64-0.61) (0.69-0.50) (0.66-0.40) 

Hist 0.77 0.74 0.80 0.75 
Brisbane Gen 0.73 0.64 0.78 0.62 

(0.74-0.65) (0.67-0.62) (0.84-0.71) (0.73-0.55) 

Hist 0.68 0.73 - 0.55 
Darwin Gen 0.59 0.71 - 0.55 

(0.66-0.55) (0.80-0.56) - (0.67-0.41) 

Hist 0.75 0.84 0.76 0.68 
Broome Gen 0.69 0.48 0.79 0.45 

Hist 0.51 0.64 0.73 0.77 
Perth Gen 0.57 0.72 0.76 0.72 

(0.59-0.53) (0.75-0.69) (0.77-0.74) (0.74-0.70) 

Hist 0.77 0.71 0.71 0.71 
Adelaide Gen 0.76 0.70 0.70 0.70 

(0.81-0.70) (0.72-0.68) (0.73-0.67) (0.72-0.69) 

Hist 0.71 0.80 0.81 0.71 
Alice Gen 0.70 0.77 0.81 0.69 
Springs (0.76-0.63) (0.83-0.70) (0.85-0.78) (0.75-0.63) 

Hist 0.68 0.52 0.85 0.68 
Kalgoorlie Gen 0.77 0.6g 0.76 0.53 

(0.79-0.75) (0.65-0.56) (0.80-0.70) (0.57-0.49) 
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Table 8 - Comparison of historical and generated correlation between hourly rainfall 
depths. 

Station January April July October 

Hist 0.61 0.63 0.60 0.55 
Melbourne Gen 0.49 0.49 0.42 0.43 

(0.52-0.47) (0.54-0.46) (0.48-0.36) (0.47-0.39) 

Hist 0.71 0.74 0.69 0.56 
Sydney Gen 0.54 0.46 0.44 0.39 

(0.62-0.52) (0.55-0.40) (0.50-0.38) (0.50-0.30) 

Hist 0.41 0.41 0.77 0.17 
Monto Gen 0.19 0.13 0.29 0.20 

(0.25-0.15) (0.20-0.10) (0.40-0.20) (0.28-0.09) 
- 

Hist 0.22 0.48 0.62 0.44 
Cowra Gen 0.19 0.28 0.39 0.30 

(0.27-0.15) (0.30-0.26) (0.50-0.31) (0.38-0.22) 

Hist 0.57 0.38 0.67 0.30 
Mackay Gen 0.37 0.25 0.34 0.19 

(0.40-0.35) (0.29-0.21) (0.40-0.26) (0.24-0.13) 

Hist 0.48 0.62 0.83 0.44 
Brisbane Gen 0.39 0.40 0.59 0.37 

(0.41-0.37) (0.47-0.35) (0.64-0.55) (0.40-0.31) 

Hist 0.33 0.30 - 0.09 
Darwin Gen 0.26 0.27 - 0.04 

(0.30-0.20) (0.30-0.24) - (0.08-0.01) 

Hist 0.44 0.42 0.29 - 
Broome Gen 0.25 0.16 0.20 - 

(0.30-0.16) (0.20-0.10) (0.33-0.07) - 

Hist 0.26 0.39 0.45 0.37 
Perth Gen 0.15 0.32 0.33 0.34 

(0.26-0.09) (0.42-0.26) (0.35-0.31) (0.41-0.27) 
- - 

Hist 0.60 0.41 0.52 0.50 
Adelaide Gen 0.50 0.34 0.34 0.40 

(0.60-0.45) (0.40-0.28) (0.40-0.30) (0.48-0.30) 

Hist 0.23 0.38 0.78 0.35 
Alice Gen 0.14 0.40 0.50 0.23 
Springs (0.20-0.10) (0.49-0.35) (0.58-0.41) (0.30-0.10) 

Hist 0.66 0.44 0.51 0.44 
Kalgoorlie Gen 0.32 0.26 0.34 0.19 

(0.36-0.31) (0.35-0.18) (0.48-0.24) (0.28-0.09) 
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Sequential Generation of Rainfall Data 

Table 12 - Comparison of historical generated number of wet days. 

Station January April July October Annual 

Hist 7.8 11.4 15.7 14.6 149 
Melbourne Gen 7.7 11.5 15.8 14.5 150 

(8.9-6.9) (12.3-10.7) (16.8-15.4) (14.9-13.6) (152-148) 

Hist 12.1 12.7 10.0 11.8 143 
Sydney Gen 12.1 13.4 10.6 11.9 146 

(12.7-11.3) (14.3-12.2) (11.2-9.9) (12.2-11.5) (148-142) 

Hist 9.8 5.8 4.8 6.3 80 
Monto Gen 9.8 6.2 5.5 6.5 82 

(10.7-8.7) (7.6-5.5) (6.0-4.8) (7.1-5.9) (83-80) 

Hist 5.9 6.0 10.3 9.5 95 
Cowra Gen 5.6 6.2 10.6 9.6 95 

(6.5-5.1) (6.9-5.6) (11.4-9.3) (10.2-9.0) (97-90) 

Hist 16.9 15.6 10.2 7.3 143 
Mackay Gen 17.2 16.2 11.3 7.6 146 

(19.2-15.8) (18.1-15.0) (12.9-10.2) (8.1-6.9) (149-143) 

Hist 12.8 10.3 6.8 9.8 118 
Brisbane Gen 12.9 10.6 6.7 9.8 119 

(13.4-11.7) (11.4-9.8) (7.3-5.9) (10.3-9.4) (120-117) 

Hist 19.4 6.1 0.3 5.2 94 
Darwin Gen 18.7 7.4 0.3 5.5 96 

(19.5-17.6) (8.0-7.0) (0.4-0.2) (5.6-5.3) (97-93) 

Hist 11.3 3.0 2.2 1.2 53 
Broome Gen 11.6 3.6 2.3 1.3 52 

(12.6-10.3) (9.3-2.4) (2.6-2.0) (1.5-0.9) (54-50) 

Hist 3.0 8.7 19.7 10.4 120 
Perth Gen 3.0 8.8 19.9 10.2 119 

(3.4-2.2) (9.6-8.1) (21.2-18.8) (10.9-9.8) (121-117) 

Hist 4.9 10.4 16.4 11.6 124 
Adelaide Gen 4.8 10.8 16.9 11.7 126 

(5.1-4.2) (12.0-9.1) (17.3-15.9) (12.8-11.1) (130-122) 
-- 

Hist 4.9 2.2 3.3 4.9 44 
Alice Gen 4.3 2.1 3.6 5.0 42 
Springs (5.1-3.8) (3.0-1.4) (4.3-2.7) (5.2-4.2) (45-39) 

Hist 3.3 5.7 11.0 4.3 72 
Kalgoorlie Gen 3.5 5.8 11.5 4.3 74 

(3.8-2.5) (6.4-5.1) (12.4-10.7) (4.9-3.6) (76-71) 



R. Srikanthan and T A .  McMahon 

Table 13 - Comparison of historical and generated maximum daily rainfall (mm). 

Station January April July October Annual 

Hist 108 80 48 61 108 
Melbourne Gen 78 67 59 66 98 

(108-45) (75-57) (76-49) (78-52) (125-72) 

Hist 169 114 127 141 281 
Sydney Gen 162 155 130 112 219 

(187-134) (283-122 (163-99) (143-91) (283-174) 

Hist 141 59 62 80 152 
Monto Gen 89 59 87 86 126 

(119-76) (63-50) (105-56) (123-68) (196-101) 

Hist 113 55 32 65 113 
Cowra Gen 86 48 45 54 103 

(154-54) (64-34.) (59-32) (82-41) (154-80) 

Hist 247 106 72 103 389 
Mackay Gen 189 84 75 99 210 

(250-147) (99-70) (93-59) (140-61) (250-178) 

Hist 314 178 193 136 314 
Brisbane Gen 185 129 128 147 233 

(313-174) (168-79) (152-101) (174-103) (313-193) 

Hist 174 168 5 91 182 
Darwin Gen 202 184 17 163 227 

(264-174) (221-100) (24-2) (174-86) (242-209) 

Hist 35 1 107 27 15 35 1 
Broome Gen 175 66 25 27 202 

(268-133) (96-43) (31-19) (37-17) (268-159) 
- - 

Hist 22 54 68 55 87 
Perth Gen 15 62 77 58 89 

(25-11) (79-45) (93-61) (75-46) (121-78) 

Hist 50 50 39 43 8 1 
Adelaide Gen 64 61 49 53 101 

(83-43) (80-41) (60-35) (74-46) (132-80) 

Hist 85 44 54 36 136 
Alice Gen 85 46 59 40 106 
Springs (113-49) (57-25) (83-37) (52-33) (134-88) 

Hist 154 50 28 26 178 
Kalgoorlie Gen 79 47 36 25 79 

(115-61) (61-35) (43-28) (32-20) (115-61) 
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Probability o f  exceedance ( % I  

Fig. 2. Depth probability of exceedance curves based on historical and generated data for 
Melbourne. 
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Fig. 3. Depth probability of exceedance curves based on historical and generated data for 
Mackay. 
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Sequential Generation of Rainfall Data 

Six-Minute Rainfall 

Generating Model 
The general approach to generating six-minute interval rainfall data was to use a 
daily transition probability matrix to decide on the state of a day - wet or dry. On 
wet days, a second order non-stationary Markov chain dependent on the type of 
wet day was used to determine wet hours. Finally, rainfall depths were generated 
at six-minute intervals by an appropriate model. 

However, before a six-minute model was adopted, a number of models were 
examined, as follows: 

(i) a six-minute TPM dependent on the state of the previous two hours; 

(ii) a six-minute TPM dependent on the state of the previous three hours; 
(iii) a two-state second order Markov chain and six-minute TPM,based on the 

state of the previous three hours; 
(iv) a six-minute TPM dependent on the magnitude of the hourly rainfall; 
(v) a six-minute TPM and a two-state Markov chain dependent on the magni- 

tude of the hourly rainfall; and 
(vi) a two-state second order Markov chain and a Gamma distribution of rainfall 

depth. 

Based on the application of these models and several variations to several data 
sets, the following model was adopted to generate six-minute rainfall data (Sri- 
kanthan and McMahon 1983~). It consists essentially of three submodels, namely, 
a daily, an hourly, and a six-minute model. 

The daily model is a set of transition probability matrices, one for each month. 
A two-state second order Markov chain (probabilities of which vary with the time 
of a day) and set of transition probability matrices make up the hourly model. 
Markov chain probabilities and the transition probability matrices-are estimated 
for each month and each type of day separately. The six-minute model consists of 
four sets of transition probability matrices, one set for each type of wet hour, as 
defined below: 

Type 1, wet hour - hourly rainfall depth S RH1 
Type 2, wet hour - RH1 < hourly rainfall depth S RH2 
Type 3, wet hour - RH2 < hourly rainfall depth S RH3 
Type 4, wet hour - hourly rainfall depth > RH3 

where RH1, RH2, RH3 are the dividing rainfall depths. 
For the first three types of wet hour, all the states have closed boundaries, while 

for type 4 wet hour, the largest state is unbounded and the Box-Cox transforma- 
tion is used. The dividing hourly rainfall depths and the number of states used for 
various stations are given in Table 15. These were found by trial and error. 

Six-minute rainfall data are generated by following the steps given below: 
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Table 15 - Types of wet hours and the number of states for six-minute TPM. 

Station 
Hourly rainfall 

depth (mm) Type J F M A M J  J A S O N D  

Melbourne 

Sydney 

Monto 

Cowra' 

Mackay 

Brisbane 

Darwin 

Broome 

Perth 

cont . 
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Table 15 cont. 

Adelaide 

Alice 
Springs 

Kalgoorlie 

Step 1: Determine the state of the present day. If dry, proceed to the following 
day. If the state is wet, determine the type of day (1 or 2). 

Step 2: Determine the state of the present hour on a wet day. If dry, proceed to 
the following hour. If wet, generate the hourly rainfall. Go to step 1 when 
24 hours are completed. 

Step 3: Determine the type of wet hour and generate the depth of rainfall at six- 
minute intervals during the wet hour, using the appropriate six-minute 
transition probability matrix. If the hourly rainfall depth exceeds 5 mm, 
rainfall is assumed to be continuous over the hour. The generated six- 
minute interval rainfalls are then linearly adjusted to equal the hourly 
rainfall depth obtained in step 2. After ten six-minute rainfalls have been 
generated, return to step 2. 

Steps 1 to 3 are repeated until the required length of data is generated. 

Model Testing 
Three replicates of six-minute rainfall data, each of length equal to the historical 
record, were generated for all twelve stations. The following six-minute para- 
meters were used to compare the generated parameters, based on the average of 
three replicates, with historical parameters for each calendar month: 

(i) maximum six-minute rainfall depth; 
(ii) mean, standard deviation and coefficient of skewness of six-minute interval 

rainfall; 
(iii) longest wet spell; and 
(iv) mean, standard deviation and coefficient of skewness of wet spells. 

As the six-minute rainfall depths were linearly adjusted to equal the appropriate 
hourly rainfall depths generated by the hourly model, hourly, daily, monthly and 
annual parameters need not be examined. 
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Table 16 = Comparison of historical and generated maximum six-minute interval rainfall 
(mm) 

Station January April July October 

Hist 5.8 6.2 3.6 6.4 
Melbourne 

Gen (8.5-6.2)* (13-4.6) (5.3-3.8) (5.8-4.8) 

Hist 8.3 10.7 9.7 10.2 
Sydney 

Gen (23-15) (13-12) (19-14) (7.9-5.3) 

Monto 
Hist 13.0 5.6 7.8 7.8 
Gen (13-10) (8.5-5.8) (6.8-4.6) (11-7.5) 

Hist 12.1 5.2 3.2 6.3 
Cowra 

Gen (8.9-7.5) (6.8-4.2) (6.9-3.1) (6.5-3.5) 

Mackay 
Hist 17.8 9.0 5.4 12.2 
Cen (31-19) (14-8.5) (14-8.3) (18-7.0) 

Hist 21.8 12.9 6.5 
Brisbane 

13.8 
Gen (24-19) (14-11) (10-5.0) (15-11) 

Hist 26.3 12.4 3.1 14.5 
Darwin 

Gen (45-29) (24-20) (17-0.7) (53-30) 

Broome 
Hist 
Gen 

Hist 4.0 7.2 27.7 5.9 
Perth 

Gen (3.2-1.8) (11-5.6) (7.9-6.0) (7.6-5.6) 
-- - 

Hist 6.3 10.0 3.7 5.4 
Adelaide Gen 

(5.3-4.0) (11.5-6.5) (4.9-4.1) (4.7-3.4) 

Alice Hist 12.9 4.7 2.7 5.1 
Springs Gen (13-10) (4.5-3.6) (7.1-3.5) (8.0-4.5) 

Hist 6.6 5.6 3.2 2.8 
Kalgoorlie 

Gen (11-6.5) (10-4.5) (4.3-3.1) (4.1-3.1) 

* The range is based on three replicates in Tables 16 to 18. 

Six-Minute Results 
Here again, because of space limitations, results for only four months are pre- 
sented and Melbourne is used as a typical station. The complete set of results can 
be found in Srikanthan and McMahon (1983~). Because of limitations of compu- 
ter availability, only three replicates were generated. The range of parameter 
estimates obtained from the generated sequences are given in Tables 16 to 18. 

In Table 16, maximum six-minute rainfalls are shown to be satisfactorily pre- 
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Table 18 - Comparison of historical and generated longest wet spell (six-minute model) (in 
units of six minutes). 

Station January April July October 

Hist ~e lbdurne 104 135 141 115 
Gen (73-41) (81-62) (78-34) (79-53) 

Sydney 
Hist 183 143 147 163 
Gen (149-111)' (115-80) (110-70) (78-61) 

Monto 
Hist 59 56 82 46 
Gen (77-44) (39-46) (55-42) (46-38) 

,Hist 
Cowra 

168 66 166 96 
Gen (58-45) (62-56) (82-63) (67-53) 

Hist 
Mackay 

117 85 71 36 
Gen (137-80) (63-50) (43-30) (40-30) 

Hist Brisbane 
220 157 130 119 

Gen (1 11-79) (83-60) (108-91) (103-67) 

Hist 
Darwin 

81 49 10 33 
Gen (100-73) (87-44) (13-4) (50-29) 

Hist 
Broome 

Gen 

Hist 
Perth 

32 38 63 57 
Gen (24-17)' (47-35) (56-46) (46-36) 

Hist Adelaide 68 116 99 76 
Gen (75-41) (91-60) (48-37) (54-33) 

Alice Hist 89 67 102 5 1 
Springs Gen (71-61) (106-53) (134-47) (43-39) 

Hist 
Kalgoorlie 

,120 43 96 50 
Gen (76-53 (71-35) (50-41) (29-27) 

served. The means, standard deviations and coefficients of skewness of six-minute 
rainfall are also satisfactorily preserved for all the stations and months. Results for 
Melbourne are given in Table 17, and the complete set of results can be found in 
Srikanthan and McMahon (1983~). 

In Table 18, it can be see; that the longest wet spells are for most cases smaller 
than the corresponding historical values. However, on examining the historical 
data, it was observed that most of the long wet spells contained one or more small 
rainfall values of the order of 0.01 mm per six-minute period. These very small 
amounts (equivalent to 0.1 mmlh) may not be real and may have resulted from 
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recording chart misalignment, or may have been created in the process of digitiz- 
ing the pluviograph charts. Because of this, historical long spells were considered 
to be unreliable. 

Conclusions 

The hourly rainfall model, which consists of a daily transition probability matrix 
incorporating an hourly time-dependent second-order Markov chain with hourly 
transition probabilities, satisfactorily generated hourly rainfall for all the twelve 
stations used in this report. The daily, monthly and annual parameters obtained by 
aggregating the hourly rainfall are also satisfactorily reproduced. However, the 
preservation of monthly and annual parameters is not as good as that from a 
monthly model. This is probably due to the increased complexity of generating 
rainfalls at small intervals compared with generation on a monthly basis. 
Moreover, only eight replicates, each of length equal to the historical record, were 
produced. 

Six-minute rainfall generation is an extension of hourly generation. It was found 
that the six-minute model reproduced most of the characteristics of the six-minute 
rainfall. Because the six-minute rainfall depths are adjusted to hourly rainfall 
depths synthesized from the hourly model, hourly, daily, monthly and annual 
parameters are also preserved. 
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Appendix 1 

Distribution for Intermediate States 
Since the distribution of rainfall depth is often J-shaped, a linear distribution is 
used for intermediate states. 

Let f(x) be the probability density function, then 

Let the mean of the distribution lie at a distance nu from the origin. Taking 
moments about the origin, 

1  a  1 a  n a -  ( y l + y o ) a  = a y l  7 + 7 ( y o - y l )  a 3  2 

where 

2-3n m = -  
3n-1 

From Eqs. ( 2 )  and (4), 

2 
Y1 E ( l + m ) a  

The probability distribution function, F ( x ) ,  is given by 

x  

= I f ( x )  cix 

0 
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where 

( m - I  ) A = -  
2a Y1 

B = my, 

Hence, 

When F(x) = 0 

Since F(x) = 0 at x = 0, 

It can be shown from Eq. (8) that x = a when F(x) = 1. Hence for given n, rn and 
y can be obtained from Eqs. (4) and (5) respectively, and then A and B from Eqs. 
(6) and (7). When n = 0.45 (which is the average value from data), A = 0.3 and B 
= 1.3. These values were used in the generation procedure. 


