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The numerical solution of the behaviour of discrete time steps in digital com- 
puter analysis of square aquifers containing pumped wells is examined by 
using the finite element method with a 4 node linear quadrilateral isoparamet- 
ric surface element. A wide range of time steps are used in the computation. 
The calculations show that discrete time steps can cause errors and oscillations 
in the calculations particularly when wells start and stop pumping. Compari- 
son with known results obtained by theoretical and finite difference proce- 
dures has been considered. The main objective of this paper is to demonstrate 
comparison of the finite element and finite difference simulation results over a 
regular linear 4 node quadrilateral mesh suitable to represent the two numeri- 
cal schemes with a marked similarity. The dimensionless time drawdown 
results of the finite element method agreed well with the finite difference and 
analytical results for small time increment. However, for large time incre- 
ments, there are from slight to  significant oscillations in the results and not- 
able discrepancies are observed in the solutions of the two numerical methods. 

Introduction 

Recent  and ongoing research o n  t h e  finite e lement  m e t h o d  indicates a profuse 
l i terature describing t h e  versatility a n d  rich mathematical  abstraction of  t h e  sub- 
ject. T h e  l i terature o n  t h e  comparison of  t h e  finite e lement  a n d  finite difference 
procedures in  subsurface hydrology is limited. T h e  well known w o r k  of  With-  
e r spoon  e t  al.  (1968), P inder  a n d  Fr ind  (1972), Pinder  a n d  G r a y  (1976), G r a y  a n d  
Pinder  (1976) a n d  P inder  a n d  G r a y  (1977) demons t ra te  a n  excellent account  of  
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the potential of the two numerical schemes for some classes of hydrologic prob- 
lems. In order to make the comparison of the two numerical schemes in simula- 
tion of groundwater flow systems on a rational basis, it is essential to set up similar 
geometric representations of the field problem as well as identical aquifer input 
parameters. 

Rushton (1973) used 3 implicit finite difference methods (the Crank-Nicholson, 
the alternating direction implicit and the backward difference) and examined the 
behavior of discrete time steps in digital computer analysis of square aquifers 
containing pumped wells and suggested guidelines for an optimum choice of dis- 
crete time steps. The square grids used by Rushton in the finite difference model 
can be well represented in the finite element method by the use of a four node 
linear isoparametric quadrilateral elements. In this work, in order to demonstrate 
the comparison between the two numerical schemes, it was found adequate to 
develop the above problem for the Crank-Nicholson method. Two types of solu- 
tions for the square aquifer problem were found by Rushton. An analytical solu- 
tion has been obtained by using the image well theory. The Crank-Nicholson 
scheme was used to study the behavior of the numerical scheme where different 
time increments were used. It was found that the smallest ATIU~S = 0.01 is 
designed to give full details of the time drawdown curves, whereas A ~ T I ~ ~ S  > 1 
demonstrates the behavior of the numerical technique as manifested by oscilla- 
tions in the numerical results. 

This paper summarizes the result of a finite element analysis of discrete time 
step behavior in digital computer analysis of square aquifers containing pumped 
wells, and compares the result of the finite element solutions with both finite 
difference and analytical results. Finite element in space and centered -in-space 
time discretization (Crank-Nicholson) procedures have been chosen to illustrate 
the approach. 

Theoretical Formulation 

The transient flow of groundwater in a confined aquifer can be expressed with the 
partial differential equation 

Initial and boundary conditions for the system are 
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in which 

h - hydraulic head, ( L ) ,  
T - transmissivity, ( L 2 r 1 ) ,  
Q - pumpage rate from well, ( L 3 T 1 ) ,  
S - storage coefficient, 
- the flux of water per unit area of boundary, ( L 2 T 1 ) ,  

ti - is the unit outward normal to the boundary, 
rl represents Neumann conditions and 
r2 represents the Dirichlet conditions on part of the system. 

The development of the finite element equations has been described in previous 
works. Zienkiewicz and Parekh (1970), Pinder and Frind (1972). Although prime 
interest is focused in this work on the comparison of the results of the two numeri- 
cal methods, it is essential to include the salient features of the finite element 
equations, so that the reader can compare the theoretical formulations and the 
numerical solutions of the two numerical procedures. For details on the finite 
difference formulation the reader is referred to Rushton's work. 

The minimization of Eq. (1) scbject to the initial and boundary conditions 
yields a system of first order differential equation of the type 

The element matrices in Eq. (2) have the following form 

where 4 and are square matrices which represent the transmissivity and storage 
coefficient respectively. is a column matrix representing the dicharge, is a 
column matrix of nodal value of the hydraulic head. 

To perform integrations over the isoparametric element, the following trans- 
formations are essential to change the derivatives in the global (x ,y)  coordinates 
to the local ( 5 , ~ )  coordinates. The two dimensional nabla operator is transformed 
as 
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where J is the Jacobian matrix for the coordinate transformation. The Jacobian 
matrix J becomes 

The element area has to be changed 

dA = d e t  < d c d v  (9) 

Eqs. (3-5) have to be transformed accounting Eqs. (7-9) and change the limita- 
tions of the surface integrals to -1 and + 1 in both integrals in accordance with the 
isoparametric rule. Zienkiewicz (1971), Connor and Brebbia (1976), Aalto 
(1978). 
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The element boundary on side 5 = constant and q constant is accounted by the 
second and third expression of Eq. (12). The integrations in Eqs. (10-12) are 
performed by a Gaussian quadrature scheme, Zienkiewicz (1971). 

The time marching process is accomplished by using the temporal operator 
Crank-Nicolson time stepping scheme in interval t to [+At. Matrices 4, and at 
the mid point of the time interval can be expressed as 
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which can be rearranged to yield 

Starting from the initial condition IfO = $(to), ;lH at subsequent time steps t+At  
can be solved recursively by using Eq. (14). 

Finite Element Discretization 

The square aquifers in Figs. 1 and 2 correspond exactly to that of the models of 
Rushton (1973). Each square aquifer of sides, a, with a well positioned at the 
centre of the aquifer is considered. Rushton (1973) divided the sides of the aquif- 
ers into 20 mesh intervals. In this work, because of symmetry of the square 
aquifers, only, a quadrant of the aquifers with 100 elements and 121 nodal points 
is simulated to save computing time. In example 1, Dirichlet conditions (h = 0) 
are maintained on all boundaries. The pumping well is set at nodal point 1 and 
observation wells at the nodes 9 and 25 are located at a distance of 0.4a and 
0.1414a respectively from the pumping well. In example 2, Dirichlet conditions (h  
= 0) are maintained on the two opposite boundaries. The remaining boundaries 
have Neumann type (q=O) conditions. The pumping well is set at nodal point 1 
and observation wells at the nodes 25 and 111 are located at a distance of 0.1414a 
and 0.5a, respectively, from the pumping well. 

Finite element mesh of square aquifer, with a pumping well at the centre. 

Fig. 1. Example 1. Fig. 2. Example 2. 
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Fig. 3. Comparison of finite element and finite difference solution. Example 1. 

Fig. 4. Comparison of finite element and finite difference solution. Example 2. 
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Results and Discussion 

In the analysis, both time and drawdown were expressed as dimensionless factors. 
The computed dimensionless drawdown hTlQ for both examples with dimension- 
less time t ~ l a ~ ~  are illustrated in Figs. 3 and 4. The upper time scale t T l r & ~  refers 
to the nearest observation well, at nodal point 25 in both examples while the 
lowest time scale tTla2S refers to the breadth of the aquifer. The importance of the 
two nondimensional parameters in finite difference analysis was discussed in 
detail by Rushton (1973). For the sake of brevity they are not treated here. The 
discussion will be limited to comparison of the results of the two numerical schemes 
which appear to be of particular importance in this work. In Figs. 3 and 4 the 
analytical results are indicated by solid lines. The dots and triangles represent the 
finite difference and finite element solutions, respectively, when they differ from 
the analytical results. The finite element results show that for small time incre- 
ments h t ~ l a ~ ~  = 0.01 the solutions agree very closely with the analytical and finite 
difference results. However, for htTIa2S = 0.1 and 1, the solutions show signifi- 
cant and very large osciallations, respectively, about the analytical results as illus- 
trated in Figs. 3 and 4 and have suffered the same degree of oscillation as the finite 
difference solutions. For htTlaZS = 0.1 the oscillations die out after 15 time steps 
in both examples, versus 30 time steps in the finite difference analysis. For time 
steps htTla2~>1,  neither numerical scheme shows the true response of the pump- 
ing test, but demonstrates the behavior of the numerical technique when large 
time steps are used. Apparently, the two methods do not agree. 

Each example problem needed 40.48 sec of CPU time, 1.24 min for execution 
and required 256K bytes of core storage on a UNIVAC 1108 computer using the 
FORTRAN V compiler. Rushton's paper does not address the question of com- 
putation time, core storage requirements, or the type of computer used for the 
finite difference work. A judicious choice of a numerical method is commonly 
based on the accuracy, runtimes and computer storage requirements of a model. 
In the absence of such requirements for the finite difference scheme, this paper 
has made the comparison only on the basis of the accuracy issue, and falls short of 
establishing the rather simplistic, but very essential conclusion on the relative 
efficency and performance of the two numerical procedures. 
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