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A prediction model capable of aggregation with recursive unbiased minimum 
variance estimation algorithms based on the Kalman filter technique has been 
formulated and applied for predicting monthly flows such that their summa- 
tion is equal to annual flow in the same year. The model represents a discrete 
linear stochastic system where the states are defined as monthly flows in 
addition to the measurement equation with time invariant measurement ma- 
trix and annual flow measurement. Provided that observed or generated 
annual flows are available then the proposed model can be employed to 
predict monthly flows so that their aggregation yields the total annual flow. 

Introduction 

The design and operation of water resources system can be achieved objectively 
by operational hydrology techniques which have been developed at an explosive 
rate during the last decade. Especially, in the reservoir design and operation the 
runoff volumes expected to occur over the future economic life of the system must 
be predicted in a 'best' possible way. For this purpose, in addition to the com- 
monly used annual and seasonal Markov or  ARIMA type of models, various 
other techniques such as the fractional Gaussian noises to generate future likely 
synthetic sequences have been proposed some of which are capable to  account for 
the long term as well as the short term properties inherited from the historic 
record. 

During the past 15 years, an extensive research effort has been spent on analys- 
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ing theoretically, experimentally as well as empirically the stochastic characteris- 
tics and thus devising suitable generating mechanisms of single site hydrological 
variables. These researches have been initiated by the pioneering work of Thomas 
and Fiering (1962) with the aim of generating annual or seasonal runoff volumes. 
Subsequently, among others Yevjevich (1963), Quimpo (1967), Beard (1967), 
Mandelbrot and Wallis (1969a,b,c), O'Connell (1971), Mejia et. al. (1972), Jack- 
son (1975) and Phien and Ruksasilp (1981) have proposed various alternatives. 

Since, the information available at a single site is not sufficient, in an actual 
design and operation of water resources systems on a regional basis, the joint 
analysis of all the sites concerned within the project area become indispensible 
requiring multivariate generating schemes. Therefore, in the mean time, several 
multivariate models have been deviced by Fiering (1964), Matalas (1967), Matalas 
and Wallis (1971) and Mejia et. al. (1974). These models preserve both long- and 
short-term covariance and cross-covariance properties of the hydrologic records. 

However, among the multivariate models the one proposed by Valencia and 
Schaake (1973) and referred to as the disaggregation model, deserves a special 
attention due to its capability to maintain relevant statistics at all aggregation 
levels. However, it requires a great amount of computer memory and time for 
parameters estimation. A common point to all of the models proposed heretofore 
is that, their parameter estimations have been achieved through the application of 
either moments or least squares or maximum likelihood techniques all of which 
require the available historic data to reside in the computer memory as a whole. 

The parameters estimation of the proposed model are obtained by the applica- 
tion of the Kalman filter (Kalman 1960) which executes the data as it becomes 
available; hence, giving rise to no problem as far as the computer memory is 
concerned. The model is of predictive type Gith recursive estimation of parame- 
ters and state variables. Hereafter, the model will be referred to as the predictive 
aggregation model. The necessary equations both for parameter and state estima- 
tions have been developed leading to unbiased and minimum variance estima- 
tions. The main advantages of this model are that, (i) it is computationally very 
efficient; (ii) only the current data are needed to be stored in the computer 
memory; (iii) the computation time is short; (iv) the estimations are updated with 
the coming of new data. 

The Model Description 

The predictive aggregation model has two components which take the simple 
implicit mathematical forms as 

and 
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Z k  = I?k C k  + V k  (2) 

where cgpital letters denote matrices and vectors are shown by lowercase letter 
with an underbar. The meanings of notations are as follows: 

gk is a (12x 1) vector of states at time k, (monthly flows). 
A k  is a (12x12) time invariant transition matrix representing dynamics of the 

system. 
Bk is a (12x 12) time invariant matrix representing the effect of the noise input on 

the state vector, zk. 
a is a (12x 1) vector of independent random variables which are independent of 

2 k - 1  

zk  is a measured value corresponding to the total annual flow. 
hk is a (1 x 12) time invariant vector of measurement dynamics. - 
vk is the measurement noise. 

The model in Eq. (1) is a first order discrete linear expression and the problem is 
to estimate the unknown parameter matrices A k  and Bk from a given historic data 
for xk. As will be evident from the subsequent sections the historic data need nei- 
ther to be transformed into Gaussian nor to have zero means. Hereafter, Eqs. (1) 
and (2) will be referred to as the system and measurement equations, respectively. 

In fact, if considered individually and provided that the parameters are given 
the system equation gives the prediction of monthly flows from the previous year's 
monthly flows. However, the measurement equation aggregates these predicted 
monthly flows in such a way that their summation within a given error is equal to 
the total annual flow in the same year. Furthermore, a joint use of the two 
equations through a Kalman filter procedure gives rise to adaptive prediction of 
monthly flows and simultaneously their aggregation to the total annual flow. 
Contrarily, the same procedure can be viewed as a disaggregation procedure 
capable of disaggregating given sequence of total annual flows into the respective 
monthly flows. Especially, when the measurement error is equal to zero then the 
summation of monthly flows become equal to the annual flow. 

Various physical interpretations can be attached to variables in Eqs. (1) and (2) 
in the hydrological context. For instance, in the rainfall-runoff studies might 
represent rainfall and zk  the resulting runoff and vice versa. In fact, Eq. (1) 
subsumes most of the models employed in the hydrological studies concerned with 
simulation. In the case of one dimensional studies it may represent either the 
stationary lag-one Markov process or the Thomas-Fiering model with seasonal 
parameters. On the other hand, an interesting property of Eq. (1) is that it leads 
to Matalas (1967) multivariate autoregressive model. 

As for the statistical properties, the system noise ek is assumed to have zero 
mean vector and (12x12) covariance matrix, Q k ,  as, 

T 
E(ek) = g  and E ( g k e k ) = Q k  ( 3 )  
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The same assumptions are also valid for the measurement noise, vk, therefore 

I '  E ( v k )  = 0 a n d  E ( v k v k )  = R k  ( 4 )  

where Rk is the measurement error variance. It is further assumed that the system 
and measurement noises are uncorrelated, that is 

where superscript T denotes the matrix transpose. On the other hand, Eqs. (1) 
and (2) can be written explicitly as, 

( 6 )  

and 

where [hl h2 . h12] are the weights attached to the monthly flows so that their linear 
combination with flows in a year yields the total annual flow in this year plus an 
error. However, if the summation is required to be equal to the total annual flow 
in the same year asproposed by Valencia and Schaake (1973) then in Eq. (7) one 
has to assume that h ,  =h2= . =h12= 1.0 and vk=O which implies Rk=O. In such a 
case Eqs. (6) and (7) considered together give monthly flows the summation of 
which is equal to the total annual flow. Contrarily, given the total annual flow, 
one is interested in finding the constituent monthly flows as is possible through 
disaggregation model proposed by Valencia and Schaake (1973). The main inter- 
est in this paper is to disaggregate the total annual flows into respective monthly 
flows through an adaptive procedure based on the Kalman filter. 

It is welk established that in any modeling problem there are three stages, 
namely, identification, parameters estimation and diagnostic checking (Box and 
Jenkins 1970). By hypothesing that the model in Eqs. (1) and (2) fits suitably the 
generating mechanism of the phenomenon concerned one has to find the parame- 

z k  = [ h ,  h2 . . .  h , , ]  

( X I  

IC2 

. 
x1 2 , 

+ u k  



Predictive Aggregation Models in Hydrology 

ters estimation from the available historic data. For the purpose of this paper, the 
general approach to the state estimates of model in Eqs. (1) and (2) will be 
summarized on the basis of Kalman filters. However, the fundamental of such a 
filter can be found in the pioneering works of Kalman (1960) and Kalman and 
Bucy (1961). In addition, practical aspects of the Kalman filters have been pre- 
sented by Gelb (1974) who gave an algorithm to perform an optimal estimation. 
The state estimate e x t r a p ~ l a t i o n $ ~ , ~ . ~  to time k prior to any measurement can be 
obtained by exploiting the information available at time (k-1) through the system 
equation as, 

where gk-l/k-l denotes all of the available information by all means up to time (k- 
1). The error covariance extrapolation is given as, 

where by definition the prediction covariance is, 

The updated estimations of state vector and covariance matrix after the measure- 
ment can be obtained by incorporating the measurement equation leading to, 

and 
- - K  h  P P k l k  - P k l k - l  - k - k  k l k - 1  ( 1 2 )  

respectively, herein _Kk is known as the Kalman filter gain given by, 

hT [ h  P T  - 1 
K = p  h  + R B I  
- k  k l k - 1 - k  - k  k / k - ' 1 - k  ( 1 3 )  

In the following calculations with no loss of generality, the system and measure- 
ment error covariances will be taken as identity matrices. 

Parameter Estimation 

Since the objective is to find the parameter estimations by the Kalman filter 
applications, first of all the relevant system and measurement equations for the 
parameters similar to Eqs. (1) and (2) must be deviced. Therefore, original Kal- 
man filter state estimation shortly summarized in the previous section need to be 
modified. An important point to be noticed at this stage is that parameter matrices 
Ak and Bk, exist in the system equation only and therefore, their estimation need 



to be based on the monthly flow data hence their estimation is independent of the 
total annual flow. 

The parameters in Eq. ( 1 )  are assumed to be invariant and therefore the system 
equation for A can be written as, 

where Wk is (12x 12) system noise component of parameters with E ( w ~ )  =O and 
E ( W ~  w~)=s:;  Sk being the covariance matrix. For a given sequence of observed 
monthly state vector the relevant measurement equation A; can be written as, 

Vk is ( 1  x 12) error vector of measurement equation. Here, E ( v ~ ) = o  and E ( V ~  Vk) 
= Rk. However, it is assumed that Rk=O which means to say that all of the 
available monthly flow information is exploited in estimating matrix Ak. The 
reason for employing transpozes in Eqs. (14) and (15) is entirely due to get a 
consistency with Eqs. ( 1 )  and (2 ) .  The sample estimation of matrix A: can be 
evaluated by Kalman filter provided that an observation sequence of monthly 
state vector zk is given for a finite time period. In Eq. (15) _xr plays the role of 
currently measured vector as zk in Eq. (2)  and corresponds to measurement 
matrix hk. Since, the transition matrix representing system's dynamics in Eq. (14) 
is (12x12) identity matrix it has not been shown explicitly. After some simple 
algebra in the light of Eqs. (8)-(13) necessary steps in the recursive estimation 
procedure of matrix can be written as, 

and the error covariance update can be evaluated simply as, 

where the diagonal -elements in matrix Pklk-l give the total variance of weights 
attached to months and off diagonal elements are the total covariances between 
pairs of weight vectors. For instance, a location ( i , j )  in the matrix has the follow- 
ing explicit form, 

1 2  

- 1 COV ( a . , , a . . )  ( i , j = l , 2 ,  , .  1 2 )  ( P i j ) k / k - l  - 23 3 J  

In other words, the Kalman estimation of matrix Ak is based on the minimization 
of the total covariance between pairs of the matrix elements. Subsequently, paral- 
lel to Eqs. ( l l ) ,  (12) and (13) one can obtain the relevant estimation equations as, 
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- - K P  P k / k  - P k / k - l  - k Z k - l  k / k - 1  

and 

The resultant matrix multiplication in square brackets of Eq. (20) is in fact a scalar 
value the inverse of which is simple to take. Therefore, the successive executions 
of Eqs. (16)-(20) digest available monthly data through simple matrix algebra. 
This is an important advantage over other widely used estimation procedures 
where the inverse of a matrix is unavoidable. More explicitly Eqs. (16)-(20) can be 
written in terms of elements at i-th row and j-th column leading to, 

and 

After having evaluated the estimate of Ak the residuals can be found from Eq. (1) 
as. 

E k e k  = x - A  x -k k  - k -  1 

or by defining a new residuals vector as 
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where uk may be regarded as a vector of apparent 'error' in the historic sample 
function of monthly flows. The vector of independent random variables, _ek, can 
be generated as a sequence of white noise with zero mean and unit variance; 
hence it can be considered as a known quantity. In the light of this information the 
state and measurement equations for matrix Bk can be written as, 

and 

where g: plays the role of the measurement dynamics matrix similar to _hk in Eq. 
( 2 ) .  The filtering equations for the recursive estimation of Bk can be found in 
their implicit forms as, 

Here again the elements of error covariance extrapolation includes the total 
covariances of error weight vectors. 

- 
B k / k  - B k / k - l  ' L k [ z k  - 2 2  B k / k - l l  

- 
'klk - 'klk-1 - A k  e k  'k/k-1 

and 

whereas the explicit formulations are, 
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where ti's denote elements of the white noise vector. It can be shown likewise to 
Ak that the estimation procedure given for Bk is based on the monthly flow data 
only. 

State Estimation 

With the parameters known or estimated by procedures presented in the previous 
sections Eqs. (1) and (2) can be used jointly for predicting the monthly flows so 
that their summation is equal to the total annual flow. In this part of the estima- 
tion only the total annual flow values are needed as data. The main purpose is to 
find the monthly flows of the same year which means a disaggregation. The best 
least square unbiased and minimum variance estimate of the unknown state vector 
xk can be obtained by applying the linear Kalman filter which after some algebra - 
leads to, 

and 

- T - 1  
4 - P k / k - ~  hl [hk P k / k - l  h L ]  

The corresponding explicit formulations are, 



and 

the summation of each one of the terms in Eq. (45) for 12 states leads to, 

12 

z k  = I ( % i ) k / k  (48) 
i= I 

which proves that the summation of lower-level (short-time) events yields the 
corresponding higher-level (long-time) events. For instance, the summation of 
monthly flows in a year gives the total annual flow. On the other hand, Eq. (48) 
shows that a linear relation will be preserved exactly by the predictive aggregation 
model between historical data at successive levels of aggregation. 

Model Application 

The aforementioned model is applied to St. Lawrence and Gota rivers. The 
characteristics of these rivers are given in Table I. 

Table 1 - Drainage basin characteristics 

River name Station name Drainage Observation 
area (km2) period 

Gota (Sweden) Vanesborg 46,480 1807-1964 
St. Lawrence (USA) St. Lawrence 614,000 1879- 1964 
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Fig. 1. Observed and predicted monthly river flows of the S t .  Lawrence river. 
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Fig. 2. Observed and predicted monthly river flows of the Gota river. 

The primary concern is to disaggregate the total annual flows into monthly flows. 
To initiate the recursive estimation of matrix Ak its initial form is arbitrarily taken 
as units along the main diagonal and 0.5 values at other locations. The initial 
measurement error covariance. Polo, is assumed to possess 100's along the main 
diagonal and 10's at other locations. With these initial values processing of the 
available monthly data through Eqs. (21)-(25) gives sequences of matrices two of 
which are All, and Pll, where i=1,2, . N; N being the number of years. As the 
recursive calculations advance these matrices approach to their respective asymp- 
totic values with steadily decreasing error covariance matrix. It has been observed 
that the diagonal elements of Aklk are the greatest compared to the elements in the 
same row and column. This is an expected result showing the fact that the major 
contribution to a month comes from the same month in the previous year. 

In the estimation procedure of matrix Bk the same initial values as for the Ak 
matrix are assumed and Eqs. (33)-(37) are executed recursively. During the 
execution a vector of independent random variables, gk, with zero mean and unit 
variance. The final B matrix in the recursive parameters estimation is employed in 
the state estimation. 

After having estimated Ak and Bk from the monthly data the historic total 
annual flows are calculated. The problem is now to predict monthly flows such 
that their summation is equal to the total annual flow. The initial estimatexolo, is 
taken equal to the first year's historical monthly flows. Then recursively by apply- 
ing Eqs. (43)-(47) one year ahead predictions of monthly flows are obtained. Figs. 
1 and 2 show the observed and predictions of monthly flows. It is evident from 
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Fig. 3. Trace of the estimation error Fig. 4. Trace of the estimation error 
covariance update matrix for covariance update matrix for 
the St. Lawrence river. the Gota River. 

these figures that the predicted and observed monthly flows follow each other 
very closely. On the other hand, the prediction errors that is the trace Pkik of the 
state estimation covariance matrices are depicted in Figs. 3 and 4 which show a 
continuous decrease and after some months it attains at a constant value. 

In order to evaluate the goodness of the predictions there are several criteria. 
However, the one used here is an analysis of the innovation sequence vkIk,  
defined by Kailath (1968) with notations relevant to this paper, 

It has been shown by Mehra (1969) that the inndvation sequence is a white 
Gaussian process for an optimal filter. Heuristically, this means that if Gklk  is a 
white Gaussian noise process there is no information left in the measurement 
sequence. This can be further interpreted that all of the relevant information has 
been exploited during the estimation procedure and better estimations cannot be 
made with the proposed model. After some algebraic calculations the lag-i 
covariance at k-th recursion can be found as. 

i- I 
H I .' H k - j  A k / k - j [ ' n .  - ' k l k - j  k - j  J = 1 

Hence, it is clear from Eq. (50) that in order to have all the Cov (E,k) =O for i 1, it 
is sufficient that 
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This last expression, however, is satisfied by the Kalman gain derived in Eq. (42) 
which leads to the conclusion that the estimation procedure presented in this 
paper is optimal in the sense defined above. 

Conclusions 

A predictive aggregation model with recursive parameter estimations has been 
proposed, necessary estimation formulations have been explicitly derived and 
then applied to monthly flows. The presented estimation procedure does not 
impose any restrictions concerning neither the parameter matrices such as positive 
semidefiniteness nor the standardization of observations to have zero mean. The 
estimations are unbiased and have the minimum variance as properties of the 
Kalman filter. 

The overall advantages of the model are: (i) the computations are based on 
simple matrix algebra; (ii) no need for an inverse matrix operation provided that 
the measurement matrix is scalar; (iii) the parameters and states are estimated on- 
line as the data becomes available; (iv) no need to preserve all the data in the 
computer memory; (v) computations can be performed in a short time. 

It is possible to generate lower-order events which add up to the given higher- 
order events without any external intervention. 

References 

Beard, L. R. (1967) Simulation of daily streamflows, Proc. Int. Hydrol. Symn., at Colo- 
rado State University, Fort Collins, Colorado, Vol. 1, 624-632. 

Box, G. P., and Jenkins, G. M. (1970) Time series analysis forecasting and control. Holden- 
Day. 

Fiering, M. B. (1964) Multivariate techniques for synthetic hydrology. Journal of the 
Hydraulics Division, ASCE, 90, No. HY5, 43-60. 

Gelb, A. (1974) Applied optimal estimation. M.I.T. Press, Cambridge, Mass. 
Hoshi, K, and Burges, S. J. (1978) The impact of seasonal flow characteristics and demand 

patterns on required reservoir storage, Journal o f ' ~ ~ d r o l o ~ ~ ,  Vol. 37, 241-260. 
Jackson, B. B. (1975) Markovian mixture models for drought lengths. Water. Resour. Res., 

Vol.  11,  NO. 1 ,  64-74. 
Kalman, R. E. (1960) A new approach to linear filtrering and prediction theory. Trans. 

ASME, Ser. D . ,  Journal of the Basic Engineering, Vol.  83, 35-45. 
Kalman, R. E., and Bucy, R. S. (1961) New results in linear filtrering and prediction 

theort. Trans. ASME, Ser. D . ,  Journal of the Basic Engineering, Vol. 83, 95-107. 



Kailath, T. (1968) An innovation approach to least-squares estimation. I. Linear filtering in 
additive white noise, IEEE Trans. Automatic Control, AC-13, 646-655. 

Mandelbrot, B. B., and Wallis, J. R. (1969a) Computer experiments with fracti~nal Gaus- 
sian noises, Part 2 - Rescaled Ranges and Spectra, Water Resour. Res., Vol.  5. No. 1, 
228-241. 

Mandelbrot, B. B., and Wallis, J. R. (1969b) Computer experiments with fractional Gaus- 
sian noises, Part 1-Averages and Variances, Water Resour, Res., Vol.  5, No. 1, 242-259. 

Mandelbrot, B. B., and Wallis, J. R. (1969~) Computer experiments with fractional Gaus- 
sian noises, Part 3- Mathematical appendix, Water Resour. Res., Vol.  5, No. 1, 260-267. 

Matalas, N. C. (1967) Mathematical assessment of synthetic hydrology. Water Resour, 
Res., Vol. 3, No. 4, 937-945. 

Matalas, N. C., and Wallis, J. R. (1971) Statistical properties of multivariate fractional 
noise processes, Water Resour. Res., Vol.  7, No. 6 ,  1460-1468. 

Mehra, R. K., (1969) On the identification of variances and adaptive Kalman filtrering. 
Proc. 1969 Joint Automatic Control Conference, 495-505. 

Mejia, J. M., Rodriguez-Iturbe, I. ,  and Dawdy, D. R. (1972) Streamflow simulation. Part 
2- The broken line process as a potential model for'hydrologic simulation. Water Resour, 
Res., Vol. 8, No. 4,  931-941. 

O'Connell, P. E. (1971) A simple stochastic modeling of Hurst's law. Proc. Int. Symp. 
Math. Models in Hydrology. Warsaw. 

Phien, H. N., and Ruksasilp, W. (1981) A review of single site models for monthly stream- 
flow generation. Journal of Hydrology, Vol. 52, 1-12. 

Quimpo, R. G. (1967) Stochastic model of daily river flow sequences. Hydrology Paper 
No. 18, Colorado State University, Fort Collins, Colorado. 

Thomas, H. A., and Fiering, M. B. (1962) Mathematical syntehsis of streamflow sequences 
for the analysis of river basins by simulation, in "Design of Water Resources Systems," 
Cambridge, Mass., 459-493. 

Valencia, D.,  and Schaake, J. C. (1974) Disaggregation processes in stochastic hydrology. 
Water Resour. Res., Vol. 10, No. 2, 242-245. 

Yevjevich, V. (1963) Fluctuations of wet and dry years, Part I. Research data assembly and 
mathematical models. Hydrology Paper No. 1, Colorado State University, Fort Collins, 
Colorado. 

Received: 9 November, 1982 

Address: Present Address: 
Civil Engineering Faculty, Faculty of Earth Sciences, 
Department of Hydraulics and Water Power, Hydrogeology Department, 
Technical University of Istanbul, King Abdulaziz University, 
Taskisla, Taksim, P.O. Box 1744 - Jeddah, 
Istanbul, Kingdom of Saudi Arabia. 
Turkey. 


