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Combination of a Conceptual Model and 
an Autoregressive Error Model for 
Improving Short Time Forecasting 

Angela Lundberg 
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WREL, Lulei, Sweden 

An autoregressive error model has been tested on the residuals of the concep- 
tual HBV-model for the EmAn catchment. The autoregresslve model gives 
considerable improvements for real shorttime forecasting, but for long range 
(10 days or more) forecasting no improvement is achieved compared to the 
conceptual model. Separation of the error functions for h~gh and low dis- 
charges does not give any further improvement. 

Introduction 

Hydrologists working with runoff modelling can roughly be devided into two 
groups: those using the physical laws for modelling and those using the statistical 
laws. The discussion between these groups have often been hot-tempered and 
each group has rejected the methods of the opponents. The main argument of the 
statisticians are that the physical problems are too complicated and the physical 
parameters too unevenly distributed to be properly modelled. The "physicists" on 
the other hand claim that one must use one's knowledge of the physical processes. 
It is difficult to understand why it is so uncommon to utilize the advantages of both 
fields and to combine the two ways of looking upon the problem for achieving 
good results. An attempt to combine the two approaches is made in this paper. 

Today the releasing plan is revised every fifth day. In the future with automatic 
data collection and improving computer capacity it would be possible to run 
conceptual models with automatic updating which would make it possible to 
change the plans with shorter intervals. To hydro power plants with low capacity 
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due to small reservoirs or small installations this would mean that they could be 
used more efficiently. 

The Conceptual HBV-Model 

A conceptual model, i.e. a model based on physical arguments, developed by 
Bergstrom (1976) at the Swedish Meteorological and Hydrological Institution 
(SMHI), called the HBV-model has been shown to give good estimates of the 
runoff from several Scandinavian catchments. The regression coefficient is about 
0.8-0.9 so there is still room for improvements, and a possi&le approach is to 
utilize a statistical error model in conjunction with the original HBV-model. This 
has been done in the present paper. 

When simulated runoff is compared with observed runoff it is often found that 
there is a pronounced inertia in the errors (cf. Fig. 1). This means that if the model 
overestimates the runoff today, it will most likely do so tomorrow as well. The 
great inertia in the errors makes an autoregressive model suitable as an error 
model. 

There is a restriction in the use of an error model; since the corrections are 
made on the residuals, i.e. the difference between the calculated and the observed 
runoff, the recorded runoff data have to be reliable. The quality of the recorded 
runoff data is today often rather poor, but it should be possible to improve those 
at a moderate cost. 

The way the HBV-model is run today at the SMHI is that an experienced 
hydrologist with good knowledge of the model updates the model before a fore- 
cast is made (if updating is considered necessary). The updating is made by 
entering modified indata. A step towards automatic updating is to improve the 
forecast with a residual model. 

Arma-Models 

Autolegressive-Moving Average model is a combination of an autoregressive and - 
a moving average model. Anderson (1976), Box-Jenkins (1976). 

Autoregressive Processes 
For an autoregressive proees of order p, and AR(p)-process, the current value of 
the process is expressed as a weighed sum of past values and a current shock 

where zi = current value, @ = regression coefficients, ai = current shock from a 
random process with zero mean and variance oO2.. 
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Fig. 1. Obsewed and by the HBV-model simulated runoff from the E m l n  catchment in 
southern Sweden. The residuals are plotted above. Regression coefficient = 0.859, 
residual standard deviation = 11.8 m3/s. E m l n  catchment area 2.343 km2. 

The First Order AR-Process AR(1) 
Consider the process 

+ a zi = zi-l i (2) 

and assume stationarity. 
Taking expectations on Eq. (2) gives mean = 0 since 1. The variance of zi is 

var(zi) = EC(@, zi-l + a;)(Ol zi-l +a;)> 

Since the current shock ai is independent of zi-I this gives 

For uZ2 to be finite and non-negative this requires -1 < < 1. This is the region of 
stationarity. Multiplying Eq. (2) by z ~ - ~  and taking expectations 

ECz; z ~ - ~ I  = E[ziUl Zi-kI + Erai Zi-21 

so for k 21 to make sure that ai and z ~ - ~  are independent 
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where y(k)  the autocoviariance at lag k is defined 

y ( k )  = c o v [ z i  z I i-k 

The set of { y ( k )  ; k = 0,1, ....) is called the autocovariance function. 
The autocorrelation at lag k ~ ( k )  is defined ac  

The set of { ~ ( k ) ;  k = 0,1 . . .) is called the autocorrelation function ACF. 
Eq. ( 3 )  is a first order difference equation with solution 

The partial autocorrelation function PACF denoted by { $ k k ;  k = 1,2 . . .) is the set 
of partial autocorrelations of various lags k. These are defined by 

where Pk is the k x k autocorrelations matrix. 

and P; is Pk 
with the last 
column 
replaced by 

so estimates of +kk can be obtained by replacing ~ ( i )  by r(i)  where r(i)  is the 
autocorrelation of lag i determined from the set. For the AR(1) process the 
theoretical PACF is given by a single term 

@,, = p ( 1 )  = m, 

since 

General AR(p) 
For the general AR(p)-process the region of stationarity, mean, variance, ACF 
and PACF, can be obtained in a similar way as for the one order process. 

For an AR(p)-process the +kk = 0 for k > p SO the PACF cuts off after p terms. 
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Mean Square Error of r(k) and $kk 

Barlett's formula, Bartlett (1946), states that 

and the square root of this is the large-lag standard error of r(k) .  

Quenouille's formula, Quenouille (1949), states that 

for lag large enough for the PACF to have died out. 

Moving Average Processes MA(q) 
The general form for a moving average process of order q, the MA(q), process is 

where 0, are the moving average coefficients and a, as before is a shock from a 
random process with zero mean and variance 02. 

The First Order Moving Average Process MA(1) 

The MA(1) process is said to be invertible, a condition analogous to that of 
stationarity for an AR-process, if 

A MA(co)-process can be shown to be equivalent to an AR@)-process and an 
AR(w)-process to be equivalent to an MA(q). 

The invertibility condition avoids certain model multiplications. 
The ACF given by 

cuts off after lag 1. 
The PACF does not, however, cut off, but it can be shown to decay geometrically 
towards zero. 

General Moving Average Processes MA(q) 
The general MA(q)-process has complicated invertibility conditions but the ACF 
cuts off after q. The PACF does not cut off but decays towards zero. 
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Mixed Processes ARMA(p,q) 
- 

zi = 01 ZiT1 + . . . +  8 z + ai + 0 1  ai-l+ . . . +  8 a . . .  ( 5 )  
P i-P 9 i-q 

For mixed processes the stationarity and invertibility conditions are the same as 
for AR(p) and MA(q)-processes. 

For mixed processes the ACF behaves like an AR@) process after q-p lags and 
the PACF resembles that of an MA(q) process after p-q lags. 

Identification and Estimation 
The mean variance, ACF and PACF, is calculated and inspection of r(k) and Qkk 
indicates which model should be tested. If the process has not zero mean, it can be 
made so by replacing z ,  with 2, = z, - 2. Which model should be entered is decided 
by considering where the cutoffs, if any, occur in { ~ ( k ) )  and {Gkk) by comparing 
the estimated functions with their large-lag standard errors and see if the results fit 
into any of the theoretical patterns. Thus, the values of p and q are obtained (see 
Table 1). 

The estimated autocorrelations are often highly correlated, thus r(k) and +kk can 
only be used as general guidelines. If the patterns are not very obvious, several 
models might have to be fitted. 

After having identified which model is to be entered one can find rough starting 
values in Table 2 (MA(2) has been excluded). First a check should be made to 
ensure that the values are in the admissible region. 

After having identified a suitable model the next step is to obtain better estimates 
of the parameters using the rough values obtained at the identification as starting 
values. This can be done by a non-linear least square procedure and is rather 
complicated, but some statistical packages have procedures which give ARMA- 
estimates. The MINITAB (Ryan 1981) statistical package has been used for the 
calculations presented. 

Calculations and Results 

Autoregressive Process on the Residuals of the HBV-Model 
A four year sequence of daily means show in Fig. 1 from the catchment Emln  has 
been used as a test period. With the runoff simulated by the pure conceptual 
HBV-model the regression coefficient R~ is 0.859, and the standard deviation 
error aE is 11.8 m3/s. The difference between the observed and simulated runoff is 
called the error or the residual (i.e. the sequence part that still is not explained). 
The error in Fig. 1 was made zeromean and a check was made to ensure that there 
was no trend. The autocorrelation function ACF and the partial autocorrelation 
function PACF are plotted for different lags in Fig. 2. 
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T a b l e  1 

n e i t h e r  m k k  n o r  r ( k )  c u t s  o f f  - ARYA 

Tab le  2 - (From Anderson O.D.  Time S e r i e s  A n a l y s i s  and Forecasting) 

Process A d r n ~ s s i b l e  r e g i o n  I n i t i a l  e s t i m a t e s  

where 

b  = ( l - 2 r 2  + 

- 

*'  The s i g n  b e i n g  chosen t o  ensure  I;, 1 < 1 .  

The standard deviation error for the PACF = 1/V% is also indicated. The ACF 
is slowly decreasing towards zero, while the PACF is oscillating around zero with 
decreasing amplitude. This indicates that an autoregressive-moving average 
(ARMA) model would be applicable. The PACF of lag 1 is much greater than the 
other lags. An AR(1) should therefore be sufficient. On account of the statistical 
principle of parsimonity (i.e. models prodigal in parameters are neglected in 
favour of those which are more economical) an AR(1) model is tested. Since for 
AR(1) + l l=e( l ) ,  and since the estimates achieved by the non-linear least square 
method differ very little from e(l) ,  the ~ ( 1 )  values are used. 

ACF o f  1 9 6 4 - 1 9 6 8 ,  N = 1 L 6 2  PACF o f  1 9 6 4 - 1 9 6 8 ,  N = I 4 6 2  

Fig. 2. Autocovariance function, ACF, and partial autocovariance function, PACF, for the 
Emdn catchment 1964-1968. Standard deviation error of PACF r 1 / m  

239 
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The error model for the lags 1, 3, 5 ,  and 7 becomes 

z i t l  = 0.968 x z  + a  .(I) z  i z ; + s  = 0.685 x z  i + a i ( 5 )  
z i + 3  0.848 x z  f a . ( 3 )  z i + ,  = 0.520 x z i  + a . ( 7 )  i z z 

where z,,, is the remaining error of the n days ahead forecast after correcting for 
the error of day i of the conceptual model; i is the day number, z, is error of the 
conceptual model for the i day, and a,(n) is a process, which should have mean = 0 
and be random. 

The simulated discharge from the combined conceptual and autoregressive 
model QAR.,(,) can thus be calculated 

where index AR stands for autoregressive, n for number of days ahead of fore- 
cast, t is the day number, QcoNc is the discharge calculated with the conceptual 
model, QoBs is the observed discharge. The function CONST(n) is the above 
determined regression coefficient. 

In Figs. 3-4 the results of the combined conceptual and error models from the 
Emdn catchment for 1964-1968 are plotted for different lags. In Table 3 the 
regression coefficient and the residual standard deviation are shown. 

For forecasting up to nine days ahead an improved fitting is achieved, as can be 
seen from Table 3, with an error model. For forecasting up to five days the 
improvement is considerable. 

Test on an Independent Period 
For an independent period 1969-72 forecasts for different lags were also made. 
For the conceptual model the entire period 1964-72 is independent. Since only one 
parameter is introduced the risk of overparametrization should be small. The 
remaining residuals are plotted in Figs. 5 and 6. In Table 4 the regression coeffi- 
cient and the standard deviation coefficient of the residuals for different lags are 

Table 3 - Regression coefficient and standard deviation of residuals for the basic concep- 
tual model and for the combined model for different *umbers of days forecast. 
Calibration period 1964-1968. The Emdn catchment. 

Regression Residual standard 
coefficient deviation (m3/s) 

Basic conceptual HBV-model 0.859 11.8 
Conceptual + AR(1) 1 day ahead 0.990 3.0 
Conceptual + AR(1) 3 days ahead 0.958 6.4 
Conceptual + AR(1) 5 days ahead 0.922 8.7 
Conceptual + AR(1) 7 days ahead 0.893 10.3 
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Table 4 - Regression coefficient and standard deviation of residuals for the basic concep- 
tual model and for the combined model for different numbers of days forecast. 
Independent period 1969-72. The Emin catchment. 

Regression Standard deviation 
coefficient residual (mqs) 

Basic conceptual HBV-model 0.859 
Conceptual + AR(1) 1 day ahead forecast 0.990 
Conceptual + AR(1) 3 days ahead forecast 0.959 
Conceptual + AR(1) 5 days ahead forecast 0.926 
Conceptual + AR(1) 7 days ahead forecast 0.900 

shown. As can be seen the numbers are almost the same as for the dependent 
period (cf. Table 3). 

Separation of High and Low Discharges 
Considering the error sequence of the conceptual model in Fig. 1 there seems to 
be a difference in the error propagation of the high discharges and the low dis- 
charges. The errors seem to decrease faster for the high discharges than for the 
low ones. To find out if this is the case the autocorrelations and the partial 
autocorrelations of the low and high discharges are plotted in Figs. 7 and 8. In 
general the ACF for the high discharges decreases faster than the one for the low 
discharges although the difference is not pronounced. An investigation is made to 
find out if even better fitting can be achieved if a separation of the regression 
coefficient for high and low discharges, respectively, is made. 

Since there is no longer only one, but several series the problem arises how to 
derive one autocorrelation function for the high discharges and one for the low 
discharges. A simple weighing of the different ACF has been performed although 
what is obtained is not really an ACF. The expression for low discharges becomes 

where i is series number, k is the lag, N, is the number of observations in series number 
i, n is the number of series. 

The "ACF" for low and high discharges, respectively, obtained in the above 
mentioned way and the ACF for the total series are plotted in Fig. 9 

The "ACF" for high discharges decreases somewhat faster than the one for the 
total series, and the "ACF" for the low discharges decreases somewhat slower 
than the one for the total series. 
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ACF OF LOW Q ACF OF H I G H  Q ACF OF 1964-68 
N.1230, 1964-68 N=232,  1964-68 4=1462 ,  TOTAL 
C I C 1 

Fig. 9. Autocorrelation function ACF for the total series, for weighed high and weighed low 
discharges. 

The error model for high and low discharges becomes for lags 1,3,5, and 7: 

Recorded discharge greater Recorded discharge less 
than 40 m3/s than 40 mqs 

z i+ = 0 . 9 5 5 x z ; + a i ( l )  = 0 . 9 3 8  x z i  + a i ( l )  

z i +  = 0 . 7 3 6  x  z i  + a . ( 3 )  = 0 . 8 1 6  x z i  + a i ( 3 )  z 
z i+ = 0 . 5 4 5 x z t + a  ( 5 ) ,  = 0 . 7 1 6  x  z i  + a i ( 5 )  

z i 
zi'+ = 0 . 3 1 5  x z i  + ~ ' ( 7 )  = 0 . 6 5 2  x  z i  + a . ( 7 )  

2 z 

The best improvement would be expected at large lags, since the difference in the 
autocorrelation coefficient is greatest there. In Fig. 10 the results of the seven days 
ahead forecast is shown. No improvement compared with the original model, 
where separation of the ACF for different discharges was not done, can be 
detected (cf. Figs. 3-4). Neither do the statistics of the errors show any improve- 
ment. 

Conclusions 

For a catchment where accurate discharges are available and the response of a 
rainfall or snowmelt is not very fast, e.g. a moderately large catchment, the short 
time forecast from a conceptual model can be considerably improved with an 
autoregressive error model. For the tested area, Emin catchment, the regression 
coefficient is improved from 0.86 for the original model to 0.99, 0.96, 0.93, and 
0.90 for 1, 3, 5, and 7 days ahead forecast, respectively. 
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1965 1966 

ERROR 40 r 

Fig. 10. Discharge from the EmHn catchment, observed and calculated. Seven days ahead 
forecast. Conceptual model combined with an AR(1) with separated correlation- 
coefficient for high and low discharges. The residuals are plotted above. Regression 
coefficient E 0.893, residual standard deviation 10.3. Calibration period 1964-1968. 
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