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Combination of a Conceptual Model and
an Autoregressive Error Model for
Improving Short Time Forecasting

Angela Lundberg
Div. of Water Resources Engineering,
WREL, Luled, Sweden

An autoregressive error model has been tested on the residuals of the concep-
tual HBV-model for the Emén catchment. The autoregressive model gives
considerable improvements for real shorttime forecasting, but for long range
(10 days or more) forecasting no improvement is achieved compared to the
conceptual model. Separation of the error functions for high and low dis-
charges does not give any further improvement.

Introduction

Hydrologists working with runoff modelling can roughly be devided into two
groups: those using the physical laws for modelling and those using the statistical
laws. The discussion between these groups have often been hot-tempered and
each group has rejected the methods of the opponents. The main argument of the
statisticians are that the physical problems are too complicated and the physical
parameters too unevenly distributed to be properly modelled. The “physicists” on
the other hand claim that one must use one’s knowledge of the physical processes.
It is difficult to understand why it is so uncommon to utilize the advantages of both
fields and to combine the two ways of looking upon the problem for achieving
good results. An attempt to combine the two approaches is made in this paper.
Today the releasing plan is revised every fifth day. In the future with automatic
data collection and improving computer capacity it would be possible to run
conceptual models with automatic updating which would make ‘it possible to
change the plans with shorter intervals. To hydro power plants with low capacity
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due to small reservoirs or small installations this would mean that they could -be
used more efficiently.

The Conceptual HBV-Model

A conceptual model, i.e. a model based on physical arguments, developed by
Bergstrom (1976) at the Swedish Meteorological and Hydrological Institution
(SMHI), called the HBV-model has been shown to give good estimates of the
runoff from several Scandinavian catchments. The regression coefficient is about
0.8-0.9 so there is still room for improvements, and a posstble approach is to
utilize a statistical error model in conjunction with the original HBV-model. This
has been done in the present paper.

When simulated runoff is compared with observed runoff it is often found that
there is a pronounced inertia in the errors (cf. Fig. 1). This means that if the model
overestimates the runoff today, it will most likely do so tomorrow as well. The
great inertia in the errors makes an autoregressive model suitable as an error
model. _ :

There is a restriction in the use of an error model; since the corrections are
made on the residuals, i.e. the difference between the calculated and the observed:
runoff, the recorded runoff data have to be reliable. The quality of the recorded
runoff data is today often rather poor, but it should be possible to improve those
at-a moderate cost. B

The way the HBV-model ‘is run today at the SMHI is that an experienced
hydrologist with good knowledge of the model updates the model before a fore-
cast is made (if updating is considered necessary). The updating is made by
entering modified indata. A step towards automatic updating is to improve the
forecast with a residual model.

Arma-Models

Autoregressive-Moving Average model is a combination of an autoregressive and
a moving average model. Anderson (1976), Box-Jenkins (1976).

Autoregressive Processes
For an autoregressive proees of order p, and AR(p)-process, the current value of
the process is expressed as a weighed sum of past values and a current shock -
.= T . ta. 1)
52 ¢1 Bi-1 ¢p Zz—p a4 .
where z; = current value, ¢ = regression coefficients, a; = current shock from a
random process with zero mean and variance o,>.
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Fig. 1. Observed and by the HBV-model simulated runoff from the Eméan catchment in
southern Sweden. The residuals are plotted above. Regression cogfficient = 0.859,
residual standard deviation = 11.8 m*s. Eman catchment area 2.343 km?.

The First Order AR-Process AR(1)
Consider the process

2, =¢,8,_ ta, (2)
and assume stationarity.
Taking expectations on Eq. (2) gives mean = 0 since ¢, + 1. The variance of z; is

var(z ) = E{(¢ 2, +a) (¢ =, +an}

-1 1

Since the current shock g; is independent of z;_; this gives

2 2 2 2 2 2y = 2
= 0% +0 1= =0
o ¢; o p or oz( o) e

For 6, to be finite and non-negative this requires -1 < ¢, < 1. This is the region of
stationarity. Multiplying Eq. (2) by z;, and taking expectations
Elzyz; 0= 6, Bley 2, )+ FBlayz; ]

so for k =1 to make sure that g; and z;_, are independent

235



Angela Lundberg

y(k) = ¢, v(k=1) (3)
where y(k) the autocoviariance at lag k is defined

y(k) = 'cov[zi Zi-k]

The set of {y(k) ; k = 0,1, ....} is called the autocovariance function.
The autocorrelation at lag k o(k) is defined a<
p(k) = L&S

The set of {o(k); k = 0,1 ...} is called the autocorrelation funcnon ACF.
Eq. (3) is a first order difference equation with solution

y(k) = d>1 y(o) or o(k) = ¢1 for k>1

The partial autocorrelation function PACF denoted by {¢; k =12..)is the set
of partial autocorrelations of various lags k. These are defined by

bpr = IPEL /17, ]

where P, is the k X k autocorrelations matrix.

1 p(1) pl2) . . . . . .pk-1) p(1)
p(1) 1 pC1) p(2)
P, = |p(2) p(1) 1 and Py is P,
. with the last
column
replaced by
L. t p(1) .
p(k=1) p(k=2) . =+ . = . o(1) 1 o (k)

so estimates of ¢, can be obtained by replacing o(i) by r(i) whére r(i) is the
autocorrelation of lag i determined from the set.. For the AR(1) process the
theoretical PACF is given by a single term

6y = 0(1) = ¢,
since _
_ 2 ¢2-02
b,, = p(2)=p(1)" _ 1 1 _ since = ¢2 # 1

1-p(1)? 1=¢7

General AR(p) :
For the general AR(p)-process the region of stationarity, mean, variance, ACF
and PACF, can be obtained in a similar way as for the one order process.

For an AR(p)-process the ¢, = 0 for k > p so the PACF cuts off after p terms.
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Mean Square Error of k) and ¢y
Barlett’s formula, Bartlett (1946), states that

e

) k .
varlr(k)] 2 3 (1+2] r(:)?)
. 1

and the square root of this is the large-lag standard error of r(k).

Quenouille’s formula, Quenouille (1949), states that

=)=

varlo,,] &

for lag large enough for the PACF to have died out.

Moving Average Processes MA(q)
The general form for a moving average process of order g, the MA(q), process is

‘2. =a.+0, a.
7 1 77—

z t6,a.~ +t ... +O a.

! =2 q t-q

where 0, are the moving average coefficients and a; as before is a shock from a
random process with zero mean and variance 0

The First Order Moving Average Process MA(1)
(W)

Ay = agtiag,
The MA(1) process is said to be invertible, a condition analogous to that of

stationarity for an AR-process, if
-1 <6, <1

A MA(w)-process can be shown to be equivalent to an AR(p)-process and an
AR(®)-process to be equivalent to an MA(q).

The iinvertibility condition avoids certain model multiplications.
The ACF given by

p(k) =0 k> 1

6,

p(1) =

1407

cuts off after lag 1.
The PACF does not, however, cut off, but it can be shown to decay geometrically
towards zero.

General Moving Average Processes MA(q)

The general MA(q)-process has complicated invertibility conditions but the ACF
cuts off after g. The PACF does not cut off but decays towards zero.
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Mixed Processes ARMA(p,q)

: P Byt ep Zi—p+ a, +8 a, ... eq Apog * e (5)
For mixed processes the stationarity and invertibility conditions are the same as
for AR(p) and MA(q)-processes.

For.mixed processes the ACF behaves like an AR(p) process after g-p lags and
the PACF resembles that of an MA(q) process after p-gq lags.

Identification and Estimation

The mean variance, ACF and PACEF, is calculated and inspection of r(k) and ¢
indicates which model should be tested. If the process has not zero mean, it can be
made so by replacing z; with Z; = z:— Z. Which model should be entered is decided
by considering where the cutoffs, if any, occur in {g(k)} and {i.} by comparing
the estimated functions with their large-lag standard errors and see if the results fit
into any of the theoretical patterns. Thus, the values of p and g are obtained (see
Table 1).

The estimated autocorrelations are often highly correlated, thus r(k) and ¢, can
only be used as general guidelines. If the patterns are not very obvious, several
models might have to be fitted.

After having identified which model is to be entered one can find rough startmg
values in Table 2 (MA(2) has been excluded) First a check should be made to
ensure that the values are in the admissible region.

After having identified a suitable model the next step is to obtain better estimates
of the parameters using the rough values obtained at the identification as starting
values. This can be done by a non-linear least square procedure and is rather
complicated, but some statistical packages have procedures which give ARMA-
estimates. The MINITAB (Ryan 1981) statistical package has been used for the
calculations presented.

Calculations and Results

Autoregressive Process on the Residuals of the HBV-Model

A four year sequence of daily means show in Fig. 1 from the catchment Emén has
been used as a test period. With. the runoff simulated by the pure conceptual
HBV-model the regression coefficient R* is 0.859, and the standard deviation
error o is 11.8 m¥/s. The difference between the observed and simulated runoff is
called the error or the residual (i.e. the sequence part that still is not explained).
The error in Fig. 1 was made zeromean and a check was made to ensure that there
was no trend. The autocorrelation function ACF and the partial autocorrelation
function PACEF are plotted for different lags in Fig. 2.
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Table 1

- 1

by —— k > p= AR(p)
kk N

q , 1/2
(k) ;(1 +22r(_1')) K> q- HA(q)
A 1
neither $kk nor r(k) cuts off = ARMA

Table 2 -(From Anderson 0.D. Time Series Analysis and Forecasting)

Process Admissible region Initial estimates
AR(1) S 1< <t iy _
~ ) 2
AR(2) S 1<, < o = r‘1(1=r2)/(1-r1)
2 ' SR 2y 01,2
ry < alry) Jby = (rper)/(1-ry)
MA(1) -0.5<r, <0.5 o ={ /1 4r1)r/2r
ARMA(T,1) 2% = |r [ <ry<Iny] by = rlry
8 .= {b B /(b2-4)} 2t
where )

b = (1-2r, + &f)/(r1-$1)

*) The sign being chosen to ensure !é1| <.

The standard deviation error for the PACF = 1/V/N. is also indicated. The ACF
is slowly decreasing towards zero, while the PACF is oscillating around zero with
decreasing amplitude. This indicates that an autoregressive-moving average
(ARMA) model would be applicable. The PACEF of lag 1 is much greater than the
other lags. An AR(1) should therefore be sufficient. On account of the statistical
principle of parsimonity (i.e. models prodigal in parameters are neglected in
favour of those which are more economical) an AR(1) model is tested. Since for
AR(1) ¢11=0(1), and since the estimates achieved by the non-linear least square
method differ very little from o(1), the o(1) values are used.

ACF of 1964-1968, N =1462 PACF of 1964-1968 , N = 1462
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Fig. 2. Adtocovariance function, ACF, and partial autocovariance function, PACF, for the
Eman catchment 1964-1968. Standard deviation error of PACF = 1/VN.
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The error model for the lags 1, 3, 5, and 7 becomes

Zi, = 0.968xzi+ai(1) Br,s = O.6‘85><zi+ai(5)

Bi,4 = 0.8148><z7:+ai(3) B4, = 0.'520><zi+a7:(7)

where z;,, is the remaining error of the n days ahead forecast after correcting for
the error of day i of the conceptual model; i is the day number, z; is error of the
conceptual model for the i day, a'nd a,(n) is a process, which should have mean = 0
and be random.

The simulated discharge from the combined conceptual and autoregressive
model QAR () can thus be calculated

g .n(s) = conc(t) * CONST(nI[Qpgyo(2n) = Qopg(tn)]

where index AR stands for-autoregressive, n for number of days ahead of fore-
cast, ¢ lS the day number, QOconc is the discharge calculated with the conceptual
model, Qopgs is the observed discharge. The function CONST(n) is the above
determined regression coefficient.

In Figs. 3-4 the results of the combined conceptual and error models from the
Emén catchment for 1964-1968 are plotted for different lags. In Table 3 the
regression coefficient and the residual standard deviation are shown.

For forecasting up to nine days ahead an improved fitting is achieved, as can be
seen from Table 3, with an error model. For forecasting up to five days the
improvement is considerable. '

Test on an Independent Period

For an independent period 1969-72 forecasts for different lags were also made.
For the conceptual model the entire period 1964-72 is independent. Since only one
parameter is introduced the risk of overparametrization should be small. The
remaining residuals are plotted in Figs. 5 and 6. In Table 4 the regression coeffi-
cient and the standard deviation coefficient of the residuals for different lags are

Table 3 — Regression coefficient and standard deviation of residuals for the basic concep-
tual model and for the combined model for different numbers of days forecast.
Calibration period 1964-1968. The Eman catchment. :

Regression Residual standard

coefficient - deviation (m’/s)’
Basic conceptual HBV-model .0.859 11.8
Conceptual + AR(1) 1 day ahead 0.990 3.0
Conceptual + AR(1) 3 days ahead 0.958 6.4
Conceptual + AR(1) 5 days ahead 0.922 8.7
Conceptual + AR(1) 7 days ahead -0.893 10.3
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Table 4 — Regression coefficient and standard deviation of residuals for. the basic concep-
tual model and for the combined model for different numbers of days forecast.
Independent period 1969-72. The Eman catchment.

Regression Standard deviation

coefficient residual (m?s)
Basic conceptual HBV-model 0.859 11.8
Conceptual + AR(1) 1 day ahead forecast 0.990 3.0
Conceptual + AR(1) 3 days ahead forecast 0.959 6.3
Conceptual + AR(1) 5 days ahead forecast 0.926 8.6
Conceptual + AR(1) 7 days ahead forecast 0.900 10.2

shown. As can be seen the numbers are almost the same as for the dependent
period (cf. Table 3).

Separation of High and Low Discharges

Considering the error sequence of the conceptual model in Fig. 1 there seems to
be a difference in the error propagation of the high discharges and the low dis-
charges. The errors seem to decrease faster for the high discharges than for the
low ones. To find out if this is the case the autocorrelations and the partial
autocorrelations of the low and high discharges are plotted in Figs. 7 and 8. In
general the ACF for the high discharges decreases faster than the one for the low
discharges although the difference is not pronounced. An investigation is made to
find out if even better fitting can be achieved if a separation of the regression
coefficient for high and low discharges, respectively, is made.

Since there is no longer only-one, but several series the problem arises how to
derive one autocorrelation function for the high discharges and one for the low
discharges. A simple weighing of the different ACF has been performed although
what is obtained is not really an ACF. The expression for low discharges becomes

n
-ElNi’ ACF(K) . £,10W

" " -
ACE(K) " roraL, LOW

n
L5 Low
=1

where iisseries number, k is the lag, N;is the number of observationsin series number
i, n is the number of series.

The “ACF” for low and high discharges, respectively, obtained in the above
mentioned way and the ACF for the total series are plotted in Fig. 9

The “ACF” for high discharges decreases somewhat faster than the one for the
total series, and the “ACF” for the low discharges decreases somewhat slower
than the one for the total series.
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ACF OF LOW Q ACF OF HIGH Q ACF OF 1964-68
N=1230, 1964-68 N=232, 1964-68 N=1462, TOTAL

0 1
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' n N
—t- +——t—

Ny — 12
Fig. 9. Autocorrelation function ACF for the total series, for weighed high and weighed low
discharges.

The error model for high and low discharges becomes for lags 1,3,5, and 7:

Recorded discharge greater Recorded discharge less
than 40 m?/s than 40 m?/s

z,, = 0.955 x'z7:+ai(1) = 0-938><zi+a1.(1)'

2;p = 0.736xz . +a.(3) = 0.816 xz.+a.(3)

2y = 0.545 x5, +q.(5), = 0.716 x 3. +a.(5)

2;, = 0.315xz.+a.(7) = 0.652 xz,+a,(7)

The best improvement would be expected at large lags, since the difference in the
autocorrelation coefficient is greatest there. In Fig. 10 the results of the seven days
ahead forecast is shown. No improvement compared with the original model,
where separation of the ACF for different discharges was not done, can be
detected (cf. Figs. 3-4). Neither-do the statistics of the errors show any improve-
ment.

Conclusions

For a catchment where accurate discharges are available and the response of a
rainfall or snowmelt is not very fast, e.g. a moderately large catchment, the short
time forecast from a conceptual model can be considerably improved with an
autoregressive error model. For the tested area, Eman catchment, the regression
coefficient is improved from 0.86 for the original model to 0.99, 0.96, 0.93, and
0.90 for 1, 3, 5, and 7 days ahead forecast, respectively.
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Fig. 10. Discharge from the Eméan catchment, observed and calculated. Seven days ahead
forecast. Conceptual model combined with an AR(1) with separated correlation-
coefficient for high and low discharges. The residuals are plotted above. Regression
coefficient = 0.893, residual standard deviation 10'3', Calibration period 1964-1968.
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