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This paper presents kinematic solutions, both analytically and nomographi- 
cally, of surface water lag time for diverging overland flow. These solutions 
can be utilized to estimate lag time from physically measurable watershed 
characteristics. 

Introduction 

There exists a multitude of concepts of surface water lag time. This study utilizes 
the concept proposed by Overton (1970). He defined the lag time t ,  as the time 
difference between 50% of the volume of the effective rainfall q and 50% of the 
volume of discharge Q. If MI and MV denote respectively the times of 50% of the 
volumes of q and Q then for a long steady effective rainfall as shown in Fig. 1, 

t L  = M V - M I  ( 1 )  

From the volume continuity, 50% of the discharge volume must equal 50% of the 
effective rainfall volume. Referring to Fig. 1, the volumes, 

I + I1 = I1 + 111 (2) 

and, therefore, the volume, 

I = I11 

The volume I equals the watershed surface storage S, at equilibrium condition, 
and will remain unchanged as long as q remains steady. The volume 111 is 
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Fig. 1 .  

- 
Derivation of lag time from sche- 
matic equilibrium hydrograph (after 
Overton 1970). 
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TIME 

S e  = q ( M V  - M I )  = q  t L  ( 4  

Therefore, 

It is evident that tL  will remain unchanged for the duration of the equilibrium 
condition. 

Diverging Overland Flow 

For a diverging surface as shown in Fig. 2 the basic equations of flow, based on 
kinematic wave theory as derived by Singh and Agiralioglu (1980), can be written 
on a unit width basis as 

where 

h - local depth, 
Q - discharge per unit width, 
u - local velocity, 
q - effective rainfall intensity, 
r - space coordinate, 
t - time coordinate, 
a - friction parameter, 
n - exponent indicative of flow regime. 

At equilibrium condition the transient term in Eq. (6) will vanish, i.e., 
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The solution of Eq. (8) subject to the condition, Q = 0 at r = aR, is 

where a is a parameter relating to the degree of divergence. In many watersheds a 
is vanishingly small. Therefore, 

By eliminating Q from Eqs. (9) and (7) the solution for the depth at equilibrium 
can be written as 

1 - 

For a = 0, 
I - - 

For a diverging surface the lenght of flow is R(l -a)  where R = the length of the 
section. The average depth at equilibrium S, then follows 

where h(r) is the depth of flow as a function of space coordinate r. Upon substitut- 
ing Eq. (11) into Eq. (13), 

a R  

On simplifying and using Binomial theorem, 
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where m = lln. Upon integration, 

However, if a = 0, 

Therefore, the solution of lag time follows directly from Eqs. (14)  - (15)  for two 
different hydrologic situations. If a is not negligible, 

( 1 6 )  

For a = 0, 

Eqs. (16)  - (17)  can simply be written as 

- ( n - I  ) / n  
tL = P q  

where 

and when a = 0, 
1 - 1 

n  n l n  
P = ( x ) R  ( - )  2 a 

The quantity p is what Overton (1971) termed as lag modulus which depends on 
watershed physiography, and can be assumed to be constant for a given water- 
shed. The variation of p with a is shown in Fig. 3. Eq. (18)  points out that the lag 
time changes as the effective rainfall intensity changes. This has been observed by 
investigators before (Overton 1971; Singh 1975). Eq. (18)  may be useful in hydro- 
logic regionilization studies. For example, hydrologically similar basins will manif- 
est their lag time behavior in a similar manner. Therefore, a similarity factor Q, 

can be defined as 
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Fig. 3. Variation of lag modulus with degree 
of divergence. 

DEGREE OF DIVERGENCE, 0 

where subscripts 1 and 2 denote basins 1 and 2. Hence, 

= O M , q  -(n-1 )In 
t ~ l  

( 2 1  

That is, the lag time of one basin can be obtained from the lag modulus of another 
basin if the basins are hydrologically similar. 

Agiralioglu and Singh (1980) have shown that the geometric parameters a and R  
can be determined from the watershed topography. The parameters n and a can 
be determined using open channel flow formulas for turbulent flow. To illustrate 
we consider the following. 

Chezy Equation. This forms a special case of Eq. (7), i.e., 

u = C(HRS f 
where 

C - Chezy friction coefficient, 
H R  - hydraulic radius, 
Sf - friction slope. 

In kinematic approximation So = Sf where So = bottom slope. H R  can be express- 
ed as 
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Example 

R :  4 0 0 m  

R 8 
I L = 0 4 4 8  , C = 3 

q 3  C T ~ o S  q: 2 5 c w h r  

So= 0 0 2  

I read)  1,: 32 m ~ n  

Fig. 4. Nomograph for lag time using 
Chezy coefficient. 

where a l  = a constant, and b l  = a constant. Then 

Q = ~ h ( a ~ h ~ ' ~ , , ) ~ . ~  = C ( a l S o ) o * r  h ( b 1 + 2 ) / 2  

Therefore 
a = C ( a , S o ) 0 ' 5  

and 

The nomographic solution of Eq. (17), in conjunction with Eqs. (24) - (25), is 
shown in Fig. 4. The parameter values used were: a l  = b,  = 1 ,  which yielded n = 
1.5 and a = CS,?.'. The equation for lag time then becomes 

where R is in meters, q in cmthour and t ,  in minutes. 
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Fig. 5. Nomograph for lag time using 

o 05 Manning coefficient. 

Manning Equation. If Manning equation is applied, 

where n,  = Manning frictio 

where a2 = a constant and b2 = a constant. Therefore, 

Then 
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Example 

R - 3 0 0 m  

c = 20,000 

q = 7 5 cm/hr 

Fig. 6. Nomograph for lag time using 
Darcy-Weisbach coefficient. 

0 1 

The nomographic solution of Eq. (17) in conjunctio'n with Eqs. (28) - (29) is 
shown in Fig. 5. Similarly, the parameters used were al = b l  = 1, a2 = n, and b2 = 
0 which gave n = 513 and a = ~ ~ ~ . ~ / n , .  The equation for lag time then becomes 

Darcy-Weisbach Relation. If the Darcy-Weisbach friction factor is used, 

where f = friction factor and can be expressed as 

where 

Re- Reynolds number, v - kinematic viscosity, c - a constant, b - constant. 
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Therefore, 

On simplifying it, 

Therefore, 

The nomographic solution of Eq. (17) in conjunction with Eqs. (35) - (36) is 
shown in Fig. 6. Here the parameters used were a ,  = 6 ,  = 1 which yielded n = 3 
and a = 8qSd(c v). The equation for lag time then becomes 

Application 

Determination of lag time of a given watershed will require knowledge of geome- 
tric parameters and friction characteristics. The former can be obtained as discus- 
sed by Agiralioglu and Singh (1980), and Singh and Agiralioglu (1981a, 1981b). 
The latter can be obtained as discussed by Lane, Woolhiser and Yevjevich (1975), 
and Lane and Woolhiser (1977). Once this information is obtained, lag time can 
be obtained either from mathematical equations or nomographs as shown in Figs. 
4-6. 

Conclusions 

The surface water lag time for diverging overland flow has been derived using 
kinematic wave theory. Both analytical and nomographic solutions have been 
presented. The lag time for a given watershed is not constant but changes with 
rainfall characteristics. 
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