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The coefficients in the General Hydrologic System (GHS) model of Chow and 
Kulandaiswamy (1971) are estimated using the method of curnulants. Based 
on this method a rational criterion is developed to determine the number of 
terms to be retained in the GHS Model. The least squares method used by 
Chow and Kulandaiswamy (1971) and the method of cumulants proposed here 
are compared and are found to yield comparable values of the model coeffici- 
ents on an example watershed. 

Introduction 

The so-called General Hydrologic System (GHS) model (Kulandaiswamy 1964; 
Chow 1964; Dooge 1973) developed by Chow and Kulandaiswamy (1971) has 
been utilized in several studies (Chaudhary 1976; Chaudhary, Simoes and Ferreira 
Filho 1976; Kulandaiswamy, Krishnaswamy and Ramalingam 1967; Kulandaiswa- 
my and Subramanian 1967; Kulandaiswamy and Rao 1970, 1971a, 1971b) dealing 
with watershed runoff modeling and flood routing in open channels. The GHS 
model hypothesizes that storage S in the watershed can be expressed as a linear 
sum of surface runoff Q, rainfall excess I, and their time derivatives 
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where ai and bj are coefficients as functions of Q and I. M and N are finite 
nonegative integer numbers with M>N. Eq. ( I ) ,  when coupled with the' spatially 
lumped form of continuity equation 

together with the initial conditions 

constitutes the GHS model 

Of practical expediency Chow and Kulandaiswamy (1971) introduced two sim- 
plifications in Eq. (4 ) :  

1 )  The coefficients ai and b, are constants, or only functions of some characteri- 
stic of Q and I such as mean or maximum. In this study we will consider them to be 
constant. 

2) M and N equal 2 and 1 respectively. This choice was based on fitting various 
forms of Eq. ( 4 )  to observed watershed runoff data. They reported that higher 
derivatives of I and Q were insignificant for the cases which they studied and could 
therefore be ignored without causing appreciable error in model results. 

Thus the GHS model reduces to 

In fitting Eq. (5) to observed runoff data Chow and Kulandaiswamy (1971) used 
the least squares method to determine the coefficients ai and b,. This implies that 
the coefficients will depend on how accurately the derivatives of I and Q can be 
determined. Given I in a histogram form the accuracy of its derivatives is doubt- 
ful. Given skewed shape of Q, its derivatives can hardly be determined accurately 
(Conte 1965). It may therefore be desirable to develop a method to estimate ai 
and bi which is independent of the derivatives of I and Q. This study proposes the 
method of cumulants which satisfies this requirement. It may be remarked that 
this method offers an explanation for determining M and N .  Utilizing, rainfall- 
runoff observations from a small agricultural watershed the model coefficients are 
determined for M=l by the method of cumulants and are compared with those 
determined by the least squares method. 
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Simplification of Eq. (4) 

Chow (1964), Kulandaiswamy (1964), and Chow and Kulandaiswamy (1971) deri- 
ved the instantaneous unit hydrographs (IUH) for various cases depending upon 
the roots of the equation a2x3 + a1x2 + a+. + 1 = 0. The use of IUH is consistent 
because ai and b, are constant and Eq. (5) is linear. There is, however, an inconsi- 
stency in their derivation recognition of which simplifies Eqs. (4) and (5) conside- 
rably as discussed by Singh and McCann (1980). 

For an IUH rainfall excess is represented by a delta function 6(t). If an impulse 
of rainfall excess 6(t) takes place uniformly over the entire watershed then it is 
natural to assume that the IUH will be 0 at t=O and will experience rise and fall 
with the progress of time. Singh and McCann (1980) have proved that in order for 
this to be true and Eq. (5) to have a unique solution, where I is 6(t), the coeffici- 
ents bo and bi must vanish. Therefore, Eq. (4) reduces to 

Eq. (5) to 

and initial conditions in Eq. (3) to 

where u is the IUH. Thus it is seen that u, will be independent of bi. Chow and 
Kulandaiswamy (1971) incorrectly complicated their model. Runoff Q can be 
determined by convolution of u with I 

where t*=t for t< T, duration of I, and t*= T for t 2  T. 

M9themafical Solutions 

We can solve Eq. (6) subject to the initial condition in Eq. (8) for some special 
cases using the Laplace transform. Let the Laplace transform of u be defined as 
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Then, taking the Laplace transform of Eq. (6) subject to Eq. (8) 

M 
Hence, u(f) is the inverse Laplace transform of (1  t 1 ai sit 1- I  . When 
M = O  C = O  

When M = 1 

a  B u ( t  = - [ e P t - e a t  
B-a I 

Where a,  are the roots of 

When M  = 2 

where a,b,c are the roots of 

g(x) = a2x3 + a,x2 + n o x  + 1 

Similarly we can solve Eq. (6) for M = 3, 4 ,  and so on, though with increasing 
complexity. In general it is difficult to determine the inverse Laplace transform of 
Eq. ( l l ) ,  but this is not needed from a practical standpoint as noted by Chow and 
Kulandaiswamy (1971). 

Method of Cumulants to Determine Coefficients a, 

The coefficients ai in Eq. (6) can be estimated using either moments or cumulants. 
A distinct advantage of cumulants is that they, except for the first, remain unaffec- 
ted by the change of origin (Dooge 1973). We, therefore, resorted to the use of 
cumulants. 

The R-th cumulant of IUH, u, can be defined as 
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Substituting Eq. (11) into Eq. (17) 

The nota t i~n] , ,~  means that the associated quantity is to be evaluated at s=O. Eq. 
(18) yields 

K l  = a0 

K ,  = a: - 2a1 

K ,  = 2a: - 6 a , a 1  + 6a2 

K M  - f u n c t i o n  o f  a ,  ,a l  ,a2 a a w l  

Hence, Eq. (19) yields 

a ,  = K ,  

1 a ,  = T ( K :  - K , )  

1 1 a ,  = ( K ,  + K : )  - -  K K 
2 1 2  

a  = f u n c t i o n  o f  K l  , K 2  , K ,  , is;. KM+ M 

The cumulants K1, K,, K3, . . . of u can be determined from rainfall excess-runoff 
data using the theorem of cumulants for linear, time-invariant hydrologic systems, 
Dooge 1973) 

Thus it can be seen from Eq. (20) that the coefficients ai can be determined 
without using derivatives of Q. This advantage coupled with simplicity of compu- 
tation might make the method of cumulants more attractive and preferable in 
some cases than the least squares method as used by Chow and Kulandaiswamy 
(1971). A method of computing cumulants for a given set of data is discussed in 
the appendix. To compare these two methods a, and al for the case M=l  were 
computed for six rainfall excess-runoff events from watersheds SW-17, Riesel 
(Waco), Texas (U. S. Department of Agriculture 1965; Singh 1976) as shown in 
Table 1. The two methods yielded comparable values of the coefficients. 
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Table 1 - Estimation of the coefficients a0 and a,  for the case M = 1 using the least squares 
method and the method of cumulants for some rainfall excess - runoff events on 
watershed SW-17, Riesel (Waco), Texas. 

Rainfall-runoff event Method of cumulants Least squares method 

Serial Rainfall Runoff 

Number Date volume volume 80 a 1 ao  a1 
(cm) (cm) 

1 3-12-1953 2.11 1.7 1.0458 0.2468 0.4276 0.0253 
2 4-24-1957 4.45 4.39 .2863 ,0054 .2504 ,0014 
3 6-24-1959 5.05 3.86 0.34 0.0043 0.2830 0.0046 
4 7-16-1961 4.45 4.39 .2863 ,0054 .2504 .0014 
5 6- 9-1962 5.28 4.24 .4287 ,0267 .3661 ,0183 
6 3-29-1965 12.67 8.9 1.0381 0.062 0.8766 0.0415 

Note: Units used in computation were cmlhour 

Criterion for the Determination of M 

Eq. (20) shows that the coefficients ai are functions of the cumulants. Since 
cumulants, especially higher order, are sensitive to small changes in the function 
we expect the coefficients ai to be sensitive to small errors in the rainfall excess- 
runoff data. Therefore, choosing M higher than 2 does not usually increase the 
accuracy of the model. In fact, a very high value of M may lead to entirely 
unrealistic results due to unreliable estimates of the coefficients. 

Moreover, it can be shown that if, for example, the second order equation 
(M=l )  accurately represents the system then the coefficients a,, a3, .. . aM in Eq. 
(20) will all be zero. Similarly, if the third order equation accurately represents the 
system then the coefficients a3,a4, .. . aM in Eq. (20) will all be zero, and so on. 

To  illustrate, if M,=l then a short calculation shows that a2 the leading coeffici- 
ent of the third order equation vanishes; that is 

Similar calculations can be carried out for third and higher order systems. It then 
follows that if the second order equation >>closely<< approximates the system, small 
errors in measuring the data may be relatively large compared to a,, the leading 
coefficient of the third order equation. This, coupled with the observation that 
sensitivity is related to the sensitivity of the cumulants, suggests that M = l  is the 
best choice for M in this case. These observations on the choice of M also help to 
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Fig. 1. Comparison of observed surface runoff hydrograph with hydrograph computed by 
method of moments and least squares method for rainfall-runoff event of 6-24-1959 
on watershed SW-17, Riesel (Waco), Texas. 

explain the occurrence of complex roots and oscillations in the results of Chow 
and Kulandaiswamy (1971). 

Thus a rational criterion for determining M consists in a) sensitivity of cumu- 
lants, and b) relative magnitudes of the coefficients ai. If these coefficients are 
accurately determined then it would normally follow that ai>ai+,, i=O, 1 , 2  . .. M. If 
the value of aM is very small relative to aM., for specified M then this value of M 
may usually be appropriate. Our experience (Singh and McCann 1980), coupled 
with these observations, suggests that on most watersheds M equal to 1 or at most 
2 will be satisfactory for the GHS model. To illustrate, the GHS model with M = l  
was utilized to generate surface runoff hydrographs for the rainfall-runoff events 
of watershed SW-17, Riesel (Waco), Texas, reported in Table 1. In each case it 
was found that important hydrograph characteristics were adequately reproduced 
as shown in sample Figs. 1-2. Thus the second order system may be acceptable 
from a practical standpoint. 
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Fig. 2. Comparison of observed surface runoff hydrograph with hydrograph computed by 
method of moments and least squares method for rainfall-runoff event of 7-16-1961 
on watershed SW-17, Riesel (Waco), Texas. 

Conclusions 

The following conclusions are drawn from this study: 
1) The method of cumulants yields values of the model coefficients comparable 

to those of the least squares method for a natural watershed studied here. The 
method of cumulants is simple and free of derivatives of rainfall excess and runoff. 
The least squares method may be unreliable whenever the derivatives of runoff 
are not estimated accurately. 

2) Based on the method of cumulants a rational criterion is developed to deter- 
mine M in the GHS model. The observations made in this study support the 
values of M reached empirically by Kulandaiswamy (1964) and Chow and Kulan- 
daiswamy (1971). 
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Appendix 

z 

Fig. A. A hypothetical hyetograph of 
rainfall excess. 

TIME , MIN 

Computation of Cumulants 
The cumulants can be easily computed for a given set of data by simply recalling their 
relationship with moments. It is well known in statistics that the first cumulant is equal to 
the first moment about the origin, the second and third cumulants are respectively equal to 
the second and third moments about the center of area, the fourth cumulant is equal to the 
fourth moment about the center of area minus three times the square of the second 
moment about the center of area, and so on. 

For this study we only need the first and second cumulants. To illustrate their determina- 
tion, consider a hypothetical hyetograph of rainfall excess as shown in Fig. A. 
Then 

where Di is the duration of the ith block of rainfall excess whose intensity is Zi and whose 
center of area is located at a distance of ti from the origin. Then we obtain, 

5 . 4 1 2 . 5 t 5 . 6 - 7 . 5 + 5 . 2 . 1 2 , 5  
5 . 4  + 5 . 6 t 5 . 2  6 . 6 6 7  min 

Similarly, we obtain Kz(Z) as 

3 I ( z x - K i ( ~ ) ) 2  I iDi  

K ,  ( I )  = i = l  
3 
I I i  Di 

i= l  

In like manner the cumulants of higher order can be computed without difficulty 




