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A number of variables of interest in precipitation studies can be interpreted as 
sums of random numbers of random variables, where the summed quantity is 
a power transformation of raindrop diameter. Included in this category are 
raingauge measurements and radar reflectivity. A general expression is given 
for the coefficient of variation of such variables when the number of terms per 
sum and the transformed variable follow any specified probability distribu- 
tion. Some simple expressions are obtained for the special case of an exponen- 
tial distribution of raindrop diameters. 

Introduction 

Many measured variables of interest in precipitation studies represent sample 
sums of variables derived from a power transformation of raindrop diameter. 
Included in this category are the depth of rainfall measured from a raingauge, and 
the radar reflectivity of a given volume of air containing raindrops. Gertzman and 
Atlas (1977) derived an expression for the coefficient of variation of such variables 
when the number of drops per sample follow a particular type of mixed Poisson 
distribution. In this paper, it is shown that some statistical results obtained by 
Robbins (1948) can be used to obtain a more general expression for the coefficient 
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of variation, permitting any combination of sample size and drop distributions. 
Some results of Gertzman and Atlas (1977) are obtained as special cases of the 
general expression. 

Assumptlons 

Following Gertzman and Atlas (1977), the basic assumptions are: 

1) One or more samples of N raindrops are obtained. Such samples are assumed 
to have been accumulated in collectors over some time interval At, or alterna- 
tively the raindrops may have been obtained from an instantaneous volume 
sample. 

2) The magnitude of N in any one sample is independent of the magnitude of N in 
any other, i.e. N is a random variable. 

3) The drop size distribution remains constant through space, and through the 
time At in the case of accumulated samples. The present treatment differs from 
that of Gertzman and Atlas (1977) in that no assumption is made with respect 
to the probability function governing the distribution of N. 

Derivations 

Defining D as a random variable representing raindrop diameter, the probability 
density function of drop diameter can be written 

A derived variable x is related to drop diameter by the power transformation 

and the random variable y is defined as the sample sum of x 

It is evident that y represents the sum of a random number of random variables. 
From Robbins (1948, Eq.(5)) the cofficient of variation of y is obtained immedia- 
tely as 
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where p and a denote mean and standard deviation with respect to the subscrip- 
ted variable. The expression (4) is of course quite general, and x could represent 
any random variable. 

If N is a Poisson random variable with expectation A, then Eq. (4) simplifies to 

where E denotes expectation. It will be noted that Eq. (5) is the same as Eq. (14) 
of Gertzman and Atlas (1977). If h is large, y is approximately normally distribu- 
ted (Robbins 1948). 

Exponential Drop Size 

For the special case where the raindrop diameters follow a negative exponential 
distribution, the transformed variable x follows a Weibull distribution with shape 
parameter c-' (Johnson and Kotz 1970, p. 221). The cofficient of variation of y is 
obtained by substituting p, and a, in Eq. (4) with the expressions for the Weibull 
mean and standard deviation. This gives 

where r denotes the gamma function. It will be noted that Eq. (6) is independent 
of the parameter of the exponential distribution. 

If the raindrops are randomly distributed in space (over a surface or through a 
volume), then the number of raindrops in samples collected from equal areas or 
volumes will be Poisson distributed with some expectation h. The coefficient of 
variation Eq. (6) then simplifies to 

If the raindrops are obtained from volumes or areas which are not constant but 
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follow some probability distribution then this implies a probability distribution of 
A. In this case pN and a, in Eq. (6) will represent the mean and standard deviation 
of a mixed Poisson distribution, as defined by Haight (1967, p. 35). 

It should be pointed out that Eq. (7) is a special case of the equivalent expressi- 
on of Gertzman and Atlas (1977), corresponding to their Eq. (29). The unnecessa- 
ry complexity of the latter equation results from the erroneous conclusion of 
Gertzman and Atlas (1977) that area sampling devices (raingauges, hailpads etc) 
accumulate samples from volumes of air, presumably with defined boundaries. 
Given the turbulent nature of atmospheric motion and the variable fall velocities 
of individual raindrops, it is apparent that such hypothetical >>volumescc cannot 
have any physical meaning. Areal collectors, therefore, can only be viewed as 
devices for obtaining samples from particular portions of surface. 

The use of Eq. (7) leads to particularly simple expressions for the coefficient of 
variation of a number of variables of interest. For example, an expression can be 
directly obtained from Eq. (7) for the coefficient of variation of rainfall depth as 
measured by a raingauge. The assumptions are that at the end of the sampling 
period, the raindrop impact points are distributed randomly over the surface of 
the area of interest and the drop diameters follow a common exponential distribu- 
tion. The required transformation is given by 

where g is the gauge aperture and x the depth increnient contributed by a single 
raindrop. The coefficient of variation of the observed depth is obtained from Eq. 
(7) with c=3 as 

The raingauge aperture size is implicitly included in Eq. (9) since A is directly 
proportional to g. 

It is apparent from Eq. (7) that the coefficient of variation in this case will 
always be of the form hA-%, where h is some constant determined by the magnitu- 

Table 1 - Some c and h values for some quantities resulting from Poisson sums of power 
transformations on raindrop diameters. 

c quantity h 
2 optical extinction 2.45 
3 water volume 4.47 
6 radar reflectivity within the Ray- 30.40 

leigh scattering region 



Random Raindrops and Sampling Error 

de of c. As noted by Gertzman and Atlas (1977), a number of important variables 
in precipitation studies can be defined with respect to particular values of c. Some 
of these variables are listed in Table 1, together with their associated h values. 
These expressions are only applicable to the particular case of exponential drop 
size distribution and Poisson distributed sample size. 

Conclusions 

In the case of raingauge measures, the sampling period is often long, and observed 
rainfall depth must represent the cumulative effect of a sequence of m different 
drop size distributions. In this situation, a given measured depth represents the 
sum of m variously distributed random variables, each one of which represents the 
sum of a random number of random variables. It would be useful, therefore, to 
preserve the discrete raindrops as they enter the gauge, perhaps through the use 
of a suitable chemical. The resulting sample could then be interpreted as a vertical 
core through a stratified sedimentary deposit, and the mean and variance of the 
total rainfall depth could then be obtained as the sum of the mean and variance of 
each individual layer. 

The interpretation of some hydrologically important variables as representing 
sums of random numbers of random variables provides a useful base for investiga- 
ting their stochastic behaviour. If required, more sophisticated models could be 
constructed by allowing the drop size distribution to vary through space and time. 
It is emphasised that the results given in this paper apply only to random sampling 
variation. Systematic components of variability may or may not be of greater 
importance, depending on the physical environment and the particular variable 
sampled. 
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