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Signature Inversion in Odd-odd Nuclei
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Abstract; Signature inversion in odd-odd nuclei is investigated by using a proton and a neutron cou-
pling to the coherent state of the core. Two parameters are employed in the Hamiltonian to set the
energy scales of rotation, neutron-proton coupling and their competition. Typical level staggering
is extracted from the calculated level energies. The calculation can approximately reproduce exper-
imental signature inversion. Signature inversion is attributed to the rotational motion and neutron-

proton residual interaction having reversed signature splitting rules. It is found signature inversion

can appear at axially symmetric shape and high-K band.
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1 Introduction

An interesting phenomenon in deformed odd-
odd nuclei is signature inversion. The total angular
momentum I of two-particle band in odd-odd nuclei
can be classified as two A I=2 branches character-
ized by signature quantum number ¢ =0, 1. The
branch with I — j, — j, being even (a = 1/2
[(—DHWY24+ (=D Y] is favored, i. e.
in energy. while the other I —j, —j, being odd is

lower

unfavored, where j, and j, is the respective angular
momentum of valence neutron and proton. When
the rule is broken at low spin, it is the so-called
low-spin signature inversion. Several explanations
for signature inversion have been made including

]

Coriolis effectst”, triaxial deformation* , neutron-

proton residual interaction® *', band crossing™® ™,
band mixing'®, quadrupole pairing'® , and the in-

1,10J

teraction boson-fermion mode Usually, it is

difficult for the theory to explain signature inver-

* Received date: 12 Sep. 2008; Received date: 16 Sep. 2008;

sion in high-K bands without configuration mix-
ing, particularly when the 2 component of the total
angular momentum K=K, +K,, like nth,,,»Qvi s
bands of A ~170 nuclei” ") In this paper we
will employ a very simple theory of coherent state
plus angular momentum projection to reduce and
describe the very complex inversion mechanics in
odd-odd nuclei, which have always proven difficult
to study for high level density. We will pay espe-
cial attention to signature inversion in why,, (9/2°

[514 D & viyy, (7/27 [633]) band (K* =
87)[3,11.12]'

2 Outline of the Theoretical Approach

When one neutron and one proton is added in-
to the even-even core to form a two-particle band,
we construct an intrinsic state for the system by
filling the lowest possible Nilsson orbits. Because

of the exclusion principle each level can accommo-
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date at most two identical nucleons with adverse =
component of angular momentum; their wave
function with K =10 is not angular-momentum ei-
genfunction, but the coherent state of different an-
gular-momentum. On the other hand, the basic
idea of the Interacting Boson Approximation is to
assume that the identical nucleons couple in pairs
only to s and d bosons and the low-lying collective
excitations of even-even nuclei can be described in
terms of the energies and interactions of such
pairs. This leads that the two identical nucleon
pair can be approximately described by the coher-
ent state of boson {s"+g [cosyd! + (1/2)siny (d}
+dt,)

trinsic shape and we set y=0 to study only the axi-

Here parameters g and y describe in-

ally symmetric case. For the 2N-nucleon core, the

coherent state has the form

{s"+Bcosydi}"
VNI (15N

Since a decoupled state has a weak j-admixture, it

0yHed,

is close to a spherical one, of angular momentum j
and its = component m""?. The Nilsson orbit of va-
lence neutron and proton may be written approxi-
mately as |j,K,> and |j,K,) respectively with K
=|m|". Finally, we assume a many-body wave
function for the system to have the form of product
of the wave functions of two single particles and

the boson coherent state of the core

| Nﬁ§ijp;jl‘K“>
:ajnKnaijp{s*+Béosyd$}'Nr o). 5
NI A+

However, this many-body wave function is

NIK:(/‘%

:(1+1

I

:<1+

=(1+

not appropriate for the description of nuclear states
with given angular momentum. In order to infer
the level energies of the odd-odd nuclei within the
framework of angular momentum projection, we
resort to the expansion of the coherent state in a
series of angular momentum eigenfunction
| NB:j K, 5. K.
= j.K.) | j,K,» D)Cr | RO
R

=>Cx | IK), (2
I

where R(I) and 0(K=K,+K,) are the core (to-
tal) angular momentum and z component, respec-
tively. The coefficient Cy is determined by the an-
gular momentum coupling of boson. The compo-

nent C; of | IK) in this many-body wave function

can be deduced by using operator R(@):e oy

(NB 3j,K,55.K, | RGO | NB3j, K, 37K,
= D> CHIK | e | IK)
I
= DI DCHIK | dh | IM)
I M

=D Cid ik () (3)
1

where J, is the rotation about the y axis through

an angle 0. Using Eq. (3) and the orthogonality of
the d-functions dlx (9)H"
(14 5) | sin(o dadiue )i (00
=00 mm OKK’ » 4)

we obtain the norm for two-particle angular mo-
mentum J described by Clebsch-Gordan coeffi-
cients (j,K,j,K,|JK) and (JKRO|IK) ,

)Jﬂ Sln(@)d6§<K<N‘8;]pKP ;jnKn ‘ R(@) ‘ N‘B;ijp ;jnKn>
0
) | sin(@dbhnde i, | D1Ce S Caddldue |

R R

. ]*]I,‘an
)J sin(dtdlec D) G,K,j K. | JK) dix > ,Cird,
0 T=1i,=i,| R



. 160 - i F %Y e 55 26 %

I'=R+J
:<1+%)L sin() dokx > G, K, j K, | JKD* > Ck > (JKRO | I'K)?dix
J R =R
J ]P+/"
=2 CiGuK,iuK, | JK)*(JKRO | IK)?. 5
R J=15, i,
where the overlap
(NB3j, K, 5. K, | RGO | NBsj, K, 37K,
= GuKo L e | KD GUK, [ e [, K (D 5Ck DJCR(R'0 [ e | ROY} O
R R
can be got by using the following relationship™*’ ;
GK | e | KD =di
I:Il+12
Ay dix, = > (WM LM, | IM) (LK, LK, | IK)d. 6)
B I=[1,—1,|

The Hamiltonian reads H=H*+ H™+ H® + H™ and the core rotational Hamiltonian H®=AR? with

the energy scale A satisfies

H® | RO)=AR(R+1 | RO) . 7
The other interactions are of multipole-multipole types'*1. The energy of the level |IK) is given by angu-
lar momentum projection™® "1,
HIK
Ex = . (8)
IK NIK

The core-nucleon interplay can be approximately deduced by the difference between the rotational energy of

odd-A nucleus and its even-even core, r representing proton or neutron,
H*=A[I' —R*]=2LF—R —ji]+2aji=22;.R+2Aji. (9

Here we omit the single-particle energy and assume the odd-A nucleus has the same rotation constant A as

the even-even core for simplicity. We neglect the proton-neutron quadrupole-quadrupole interaction QJPKP

© Qo

1 T . . - . .
Hix= (IJF?)JO Sln(@)d@;ﬂ(<Nﬁ;]|>Kp5]nKn ‘ prKp ’ QJnKn RO | N‘B’ JPKP;]“K">

1 T ) . - . . 2
:(H?)JO sin(@) dfkx G K, 15,K, | Q ok + Qi RO | j,K, 37K > Chdb,
R
:(]PKPZO ‘ ijp)(jnKnZO | jnKn)<jp ‘| Q/'p ‘ ‘ jp><_jn || Q/n ‘ ‘ jn>NIK9 (10)

which contributes the level energy a term oc(j,K,20|;,K,) (j,.K,20|j.K.> {j, | \Q_,p [17,0 <l |Q,n 7.0

and represent just a renormalization of the core, where

GoKyiaKo | Qi - Q. RO | K, 57,K)
= 2 <j|>K;);jnKn ‘ Q/pr * Q,ynKnd][\P’nK"dj}‘%)'p[(p |ij/p;jnK/n>
K, K
n p

- Z dj}é"nK“d]Ig'pr (ijpZ/l | ij/p)(jnKnZ/l ‘ jnK/n)<jp ‘ ‘ ij | ‘ jp><_jn ‘ | Qj“ | ‘ ]n>

KK o

= > di s div s GK20 1K) GLK20 | 5K DGy QT3 G 1@ T
K .K'

=dpx digx GpK20 |7, KD GaKL20 [ KD G, T QT Ga 1TQ i) (1)
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Here we use the condition K:K,,+Kn:K/erK/,,:KPJr/JJrKnJr# , i.e. g =0. The other higher-rank
multipole-multipole interactions give the similar results and only the dipole-dipole interaction j, - j,"'*" af-
fects the level spacing, which has been used in Ref. [5] to account for signature inversion. The Hamilto-

nian is hence simplified as

H=2R*+2y.,R+22j,R+26j,+j,, 12

where £ represents the energy scale of the neutron-proton residual interaction. The energy contributed by

the core can be expressed in the following form:

(I+%)f sin(0) dd ko ¢ NBsj, K, 37K, | AR RO | Ngsj, K, 5, K.)
0

N

IK — NIK
L R I Iy Ty 2 JR 2
I+ sin(@) dod kdy  die o >, Ckd% (RO [ AR* | RO)
B . WKa O K, £
NIK
/*/114’]‘
DT> ChGuKjuK, | JKD*(JKRO | IK)*AR(R+ 1
R J=1j,—i
= — . (13)
]\71}\'

The energies related to the interactions between the core and the particle outside the core is

(”%)f Sin(0) dod ke (NB3j, K,y 570K | 227, - RR(O | NB3j, Ky 5ju K.
cp 0

IK —
NIK

(H%)Jn sin(0) ddd ki (NB3j, K, | 247, RR(O) | NB3j,K,)

NIK
— (145 )| sin@dohed’e . DICiCROs K, | 22, RR(O) | RO3j,K,)
0 non R
II):I+]H
>V > Ci(LK,j. K, | IK)*G,K,RO | LK)O* A1, (I, +1) —j,(,+1) —R(R+ 1]
R I,=l1-j,|

p— P n
- b

NIK

I,=Hij,

>0 2 ChULK,joK, | IK)? GLK,RO | I,KD?A L1,(1, 4+ 1) —j, (o +1) — R(R+ 1]

o RO =1
IK NIK
(14)
where
(RO:j,K | 24j,- RR() | R0;j,K>
= D1¢R03j,K | 22, - RdSodie | RM3j, K"
M, K’
— Safd , (ROK | A(1* —j2—R*) | RM3j,K
M. K’ ver
=xddy  {(ROj,K | I | ROsj,K) —[j,Gy + 1+ RMR+ D7)
=xdfidy  ((RO@ j,K:LK | P IRO® j,K: LK) — [, G, + D+ RR+ D}
=Ady GuKRO | LKDL, + 1D —j,Gy+ 1D —RER+ D) o)

The energy of neutron-proton residual interaction reads
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np__

(145 ) | sinC@ datl (N8, K, 37, K, | 267, 5, RO | Ngsj K, 1,K,)

IK —

NIK

(”%)JK sin(@) dd e D) Crd G K, 55, K, | € (J2— 2 — i) RO | j,K,55.K.»
0 R

J=iy T,

NIK

>0 D) ChGuKju K, | JKO*(JKRO | IK)? 6 [J(J+ 1D —j, G+ 1 —j, Gy + D]

R J=1j,—i,|

]VIK
(16)

The vertex of J(J+1)—j,(j,+1)—j.(j.+1) lies at the position/j, Gn+ 1) +j,G, 1) — /40— (1/2)

and therefore the neutron-proton residual interaction is somewhat similar to the parabolic rule/® .

1. Signa-

ture splitting and inversion can be discussed by the level staggering S(I) ,

S =S + S+ S*(D + S (D .

1 y
S*(I) =Ef —Ef x — ?EE}HK —Ef +EL — E)I(;ZK:I .

QYD)

where y represents ¢, cn, cp and np (see Egs. (13), (14) and (16)).

3 Discussions

Fig. 1 displays the dependence of C} on R with
p=0.25, N=30 and C:=1; the trend of the curve
indicates Cy drops rapidly as R increases. Once it is
true, the [I—j,—j,| or [I—j,—j,|+1 is the lar-
gest component among the coherent states, signed
by R located in the respective interval of |I—j,—
Jol to I+j,+j,as I—j,—j, being even or |I—j,
—jol+1toI+j,+j,—1as I— j,—j, being odd
with increment 2. The level staggering S (I) +
S (D) +S®(I) is shown in Fig. 2 with a rotational
constant A=~ 7 keV for ground band in W%,
normal signature splitting can be seen above =12
below which the total angular momentum is smal-
ler than j,+j, and the numbers of coherent states
| RO) decrease abruptly. The splitting at higher
spins can be understood as follows. Indeed, the
|IK) and | I+1K) states have the same coherent
states if I—j,—j, being odd., where R ranges {rom
I—j,—j,T1toI+j,+j,—1 with step 2; this
means that the rotation of the corresponding core
for I—j,—j, state is relatively faster than the I—
jn—J, 11 state. This leads the branch with I—j,

—j, being even is favored, i. e. low in energies,

while the other I —j, —j, being odd is unfavored.
It is obvious that the split for given total angular
momentum I is caused by the interference lower or
upper limit and numbers of the core angular mo-
mentum eigenfunctions | RO), which differs from
the split induced by Coriolis effects in the particle-

rotor model®’.

0 I—l'l'l».‘._.‘.‘
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Fig. 1 Relative coherent-state probability In(C%/C,?) against

angular momentum R of the core.

In Ref. [ 3] where the particle-rotor model is
used to discuss signature inversion, the member
Jmax =JnTJ, of two particle multiplet is dominated
in the favored states, while the member J,..—1 is

dominated in the unfavored states. The similar re-
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sult can be obtained in this work. It is because the
largest component of R is [—j,—j, from the above

discussion and therefore the main components of J

S /\ .
.
APy
>1‘0 i 1‘4 1‘8 2‘2 2‘6
I/'n

Fig. 2 Signature splittings arising from the core rotation and

particle-core couplings vs total angular momentum I.

is jot+j, due to j,+j,=J=I—R when I —j,—j,
being even. On the other hand, j,+j,—1 and j,+
jp» are the main components when I—j,— j, being
odd. If the value of neutron-proton interaction a-
mong j, +j, is larger than the value of neutron-
proton interaction among j, +j, —1, the neutron-
proton residual interaction makes the band having
the contrary splitting rule against the one resulting
from the core rotation and particle-core couplings.
Fig. 3 exhibits the neutron-proton residual interac-
tions 6(j,K,j K, [JK)'[J(J+D— j, (G, +1)—j,
Go 4107 for mhuy, (9/27 [5147) & virys (7/2°
[633]) two-particle multiplet with K= 9/2-+7/2
=38 for a tentative interaction strength £=50 keV.
The signature splitting S™ (I) is shown in Fig. 4.

It can be seen from Figs . 2 and 4 , the splitting

S 12F

X L

= L

S 4L

3]

s L

g

=) —_—

g ()7/ .

2‘ T I I | I
8 9 10 11 12

JIh

Fig. 3 Neutron-proton residual interaction for the two- parti-
cle multiplet wthy,/» @viys,, with K=3§ for a tentative in-

teraction strength é=50 keV.

amplitudes are also contrary at higher spins. The
former increases gradually with increasing total an-
gular momentum, whereas the latter decreases
gradually with increasing total angular momen-

tum.

P
/h
N |
(e 1+ / 1\ .
x |N\/ | ,f\
~ o " | | T
> \ (e
o [
= |
-~ =1~ | ‘f
< \ |
> ||
n -2+ \f
\
|
—3 Ll LI | |
10 14 18 22 26

I/h

Fig. 4 Signature splittings arising from neutron-proton resid-
ual interaction for the two-particle multiplet why,, &

viize vs total angular momentum 1.

Due to the splitting arising from neutron-pro-
ton interaction dominated at low spin, the compe-
tition of two mechanics S°(I) +S (1) +S®(I) and
S™ (I) results in low-spin signature inversion,

showed in Figs. 5 and 6 indicates the experimental

80 ;\

40 [~

S(I)/keV
I
i
P
g
I\-
—
\.
-/

—80 | | | | | | | |
10 14 18 22 26

I/h

Fig. 5 Plot of calculated signature splittings vs total angular

momentum 1.

signature inversion for whyy,, (9/27 [514]) Qviyy,
(7/2%[633]) band (K*=8 ) in "Re!*’. By Com-
paring Figs. 5 and 6, it is obvious that the calcula-
tion can approximately reproduce the experimental
signature inversion point. Because of high single-
particle level density in odd-odd nuclei which re-
sults in a multitude of rotation bands, further the-
oretical investigation to

reproduce the smaller
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splitting magnitude in Fig. 6 by using configuration
mixing is needed. This is, however, beyond the

scope of this work.

AV //T "\ how o7
/ \//\'\'/ | \‘ | | //
f ‘ / | / : /

S()/keV
(=]
T

| I | | I |
10 14 18 22 26

I/h

Fig. 6 Plot of signature splittings vs total angular momen-

tum I for the two-particle bands observed in ' Re.

4 Conclusions

Signature inversion is studied by using a pro-
ton and a neutron coupling to the coherent state of
the core and angular momentum projection theory.
The level energy is simply scaled by two parame-
ters representing the rotational motion, neutron-
proton residual interaction and their competition.
This provides a relatively simple and yet straight-
forward way to reduce the very complex odd-odd
nuclear systems. The calculated level staggering
indicates that signature inversion arises from the
rotational motion and neutron-proton residual in-
teraction having reversed signature splitting rules.

Signature inversion occurs at low spin  where the

splitting originated from neutron-proton residual
interaction is dominated. The calculation can ap-

proximately reproduce signature inversion at axial-

ly symmetric shape and high-K (K, + K,) band

without configuration mixing.
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