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The investigation analyses the effects of local bottom slope and roughness 
coefficient variations in overland flow over a plane by using the kinematic 
wave theory. Results are compared with the usual approach, and it is found 
that certain configurations of surface topography and roughness characteris- 
tics yield results, that deviate from the usual predictions. 

Introduction 

Overland flows are the result of complex interactions regarding precipitation, 
infiltration, evaporation and storage effects. A complete mathematical descrip- 
tion of flow phenomena is possible in principle, but will be extremely time-con- 
suming and sophisticated with respect to the numerical treatment. A simpler 
approach assumes one-dimensional flow characteristics, for which de Saint- 
Venant's equations hold. Yet, the solution procedure is far from being elementary, 
and a proper numerical treatment must include shock wave analysis, among other 
pecularities (Abbott 1966). 

Since typical Froude numbers F and relative flow depths are small when com- 
pared to unity, the kinematic wave theory described extensively by (Eagleson 
1970) allows an effective and accurate modelling of the main flow properties. This 
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principle reason makes the kinematic wave approach so widely applied in hydrolo- 
gy. The successful investigations of (Wooding 1965) and (Woolhiser and Liggett 
1967) consider the simplest catchment area, consisting of a plane with constant 
bottom slope and constant roughness characteristics. Solutions for the resulting 
discharge as a function of space and time may be computed analytically, provided 
the excess rainfall remains essentially constant. Note, however, that the effect of 
locally variable bottom geometry and roughness coefficient on the resulting 
hydrographs have not yet been analysed in detail. The usual approach assumes 
more or  less constant values of bottom slope and roughness coefficient along a 
reach, without accounting for the complex basin topology. The present study aims 
at investigating these effects in general by assuming plausible relations for the two 
parameters in question. Analysis will be restricted to the usual assumption of 
constant excess rainfall, and comparisons include the rising hydrograph and resul- 
ting peak discharge. 

The results of the present investigation are of particular importance regarding 
the simplicity of the kinematic wave approach. The non-dimensional representa- 
tion of solutions allows a simple and direct application to realistic cases. Further, it 
will be possible to compare results of the present study with the well-known 
results valid for catchment areas with constant bottom slope and constant rough- 
ness coefficient. 

Governing Equations 

Flows with predominant direction may be modelled using the (one-dimensional) 
de Saint-Venant equations. Typical overland flow properties are: 

- Low Froude number; 
- Low flow depth when compared to the elevation difference of two points of 

the reach. 

These properties allow the simplified version to be valid (Eagleson 1970), namely 
the kinematic wave equations 

in which Eq. (1) corresponds to the full continuity relation for plane flows, while 
Eq. (2) is the simplified version of the dynamical relation. The latter states that 
friction slope Sf is balanced by the bottom slope So, the resulting flows are said to 
be pseudo-uniform. Eq. (1) relates flow depth h and discharge q per unit width 
with precipitation p. Note that x and t are the longitudinal coordinate and time, 
respectively. 
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For relatively heavy precipitation p, flow state will be turbulent; friction slope 
then may be adequately expressed by the Manning-Strickler formula 

in which K= lln is the roughness coefficient having the order of K-10' for typical 
overland flow. 

A) Effect-of Local Bottom Slope Variation 

Bottom Slope Function 
The effect of the local bottom slope on the overland flow characteristics may be 
analysed by considering two typical points of the catchment area, namely its 
highest (top of the mountain) and lowest (lateral inflow to small stream) points. 
The average slope then obtains i=zlL in which z is elevation difference and L 
length of the considered reach. Let X=xIL be the non-dimensional longitudinal 
coordinate measured downwards from the highest point of the plane catchment 
area, then X=O and X=l correspond to the two points considered (see Fig. 1). 

The effect of variable bottom geometry may be analysed by altering the shape 
of the curve connecting the two boundary points. A plausible approach is to 
consider bottom geometries of parabolic shape, for which 

stream 

C. Fig. 1. Typical bottom geometry of catchment area with 
top of the mountain (x=O) and stream (x=L) .  

1 

0.5 
Fig. 2. Analytical approximation of the bottom 

geometry function Z(X) ;  y=O corresponds to a 
bottom with constant slope, while y=-1 and 

0 X y=+l are the two extrema for which the bottom 

0 0.5 1 slope remain always positive. 
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Since S F 0  according to Eq. (3), So must also be positive according to Eq. (2). 
Therefore, the possible domain of shape parameters p is - l S p S + l ,  and it is 
noted that p=-1 yields a horizontal bottom at X=O (mountain peak), while this 
occurs at the catchment outlet X = l  for p=+1. Furthermore, the usual approach 
of a constant bottom slope results for p=0. 

Since So=-dzldx=-i dZldX, Eq. (4) yields for 

Modified Flow Equation 
Runoff from a catchment area may be predicted once the bottom geometry 
So=So(x), the roughness coefficient K=K(x), precipitation p=p(x,t) are given and 
appropriate initial and boundary conditions are imposed. The simplest treatment 
assumes excess precipitation given as 

in which t, is the time interval of constant precipitation p*, and roughness coeffi- 
cient as independent of x. 

Combining Eqs. (2) and (3) yields the discharge-stage relation 

or, when accounting for the bottom geometry function Eq. (6) 

The scalings 

transform Eqs. (1) and (9) into 

or, since p is independent of time and space 

from Eq. (12). Finally, upon inserting this into Eq. ( l l ) ,  the governing equation 
becomes 
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which is a first order, non-linear partial differential equation for the unknown 
Y(X,T) subject to the conditions Y(O,T)=O (no flow on top of mountain) and 
Y(X,O)=O (initially dry catchment area). Note that this reduces for constant bot- 
tom slope (p=0) to (see e.g. Eagleson 1970) 

Solution 
The characteristic form of Eq. (14) is (see e.g. Abbott 1966) 

Note that time T misses explicitely in this system. The solution of the equation 
formed by the center and right hand-sides obtains (see Appendix I) 

in which C is the constant of integration. The particular case Y(O)=O yields 

and corresponds to the steady state flow profile Y= Y(X) represented graphically 
in Fig. 3 for typical values of p. It is noted that all curves intersect at points (0,O) 
(as imposed) and (0.5, 0.66). In the interval OSX<0.5, the curve with p=-1 lies 
above all others, while this is the lowest curve for 0.5<XS1. Because the bottom 
slope vanishes for p = l  at X = l ,  corresponding flow depth Y tends to infinity. 

The general solution of Eq. (17) is obtained by setting Y(X=Xo)=O, whence 

Fig. 3. Steady state surface profiles Y(X)  
for various typical bottom - 

0 0.25 0.5 0.75 1 geometry parameters p. 
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0.5 

Fig. 4. Time-space locii on which Eq. (19) 
is valid. Note that y=+0.5 (solid 

0 
0 0.25 0.5 0.75 1 curves) and y =O (dotted curves). 

in which Xo designates the constant of integration for this equation. The time- 
space coordinates on which Eq. (19) is valid are evaluated with the relation given 
by the first and second terms of Eq. (16). Eliminating Y(X) with Eq. (19) then 
yields 

subject to the condition T(X=Xo)=O. This has been solved numerically, and 
typical solutions are plotted in Fig. 4. Combining this with Eq. (19), the complete 
solution Y=Y(X, T )  is found. Fig 5 represents the result for the particular values 
p= f 0.5, and it is observed that, for a specific location X, Y(T) increases steadily 
whenever OGXSX,, but then remains constant for any time T>T,, T, being the 
time of concentration. The coordinates (X,, T,)are determined by Eq. (20) by 

0 Fig. 5. Hydrographs Y(X,T) for y = 4 . 5  
0 0.25 0.5 0.75 1 (top) and y=+0.5 (bottom). 
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Fig. 6. Time of concentration T, as a function of bottom 

0.5 shape parameter p. 
-1 0 + 1 

setting Xo=O. An evaluation of the integral 

is shown in Fig. 6 as Tc(y) (for details see Appendix 11). For fixed p the plot 
divides values of time T into two ranges, namely T<Tc and T>Tc; the first case 
applies to flows which have not yet reached steady flow conditions, whereas the 
second refers to times with steady flow conditions (see also Eagleson 1970, or 
Overton and Meadows 1976). This state is reached whenever precipitation time t, 
is larger than the corresponding time of concentration. 

Discussion of Results 
Preceding analysis indicates that both, time of concentration Tc and maximum 
flow depth Ymax depend on the bottom shape parameter y. If Tp2Tc at a particular 
location X, steady flow characteristics occur, and discharge becomes the maxi- 
mum value, Q=QmaX. The non-dimensional discharge-flow depth relation Eq. 
(12), combined with Eq. (19), may be written as 

Q ( X )  = X-X, ( 2 2 )  

Maximum discharge appears for Xo=O, whence Qma,=X or, since OGXS1, 
Qm,x,ab,=l independent of y. Consequently, the effect of variable bottom 
geometry vanishes for steady flow conditions with respect to the maximum possi- 
ble discharge. 

Fig. 7 shows the rising part of the surface profiles Y(T), and corresponding 
maximum reach X = l  is denoted by a spot. It is observed that, for a particular time 
T, flow depth is highest in the case y = + 1  (flat downstream portion) and lowest 
for p=-1. Peak discharge occurs after relatively short time for p=+1  (Tc=0.93), 
while it takes Tc=1.62 for y=-1; note that corresponding time is T,=l for y=0 as 
given by Eagleson (1970). 

The non-steady development of discharge Q as a function of time T is evaluated 
with the aid of Eqs. (21) and (22), the result being 
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Fig. 7 .  Flow profiles Y(T) at location X = l  (rising portion of hydrograph) for various 
typical values of p. Dots indicate the transition between unsteady and steady flow 
characteristics, and corresponding time is time of concentration T,. 

Fig. 8. Rising portion of hydrograph Q(T)  at lowest point of catchment area X = l  for 
various significant bottom shape parameters p. Note that transition between 
unsteady and steady flows appears as soon as Q=1. 

This is plotted in Fig. 8 as Q ( T )  and refers to the maximum downstream length 
X=l. Note that hydrographs deviate only slightly from the usual approach (p=O), 
provided -0 .56p6+1.  However, differences become significant whenever p+-1. 
Since the usual valley shape is rather between O6pS+1  (see Fig. 2), the effect of 
p on the resulting hydrograph is normally insignificant. To the lowest order of 
approximation hydrological computations may be evaluated assuming the aver- 
aged bottom slope instead of accounting for the complete bottom topography. 
This important conclusion allows a simplified description of complicated basins 
and is particularly well-suited for the kinematic wave approximation. Note, 
however, the limitations of the above statements regarding valley shapes with p+ 
-1 and predictions regarding the surface profiles (see Fig. 3). 

The above analysis assumes constant precipitation. It is possible to extend 
considerations for time-dependent precipitations, p=p(t), by using an appropriate 
hydrological model (see e.g. Hager 1984). Typical evaluations suggest analogous 
conclusions as have been found above. 
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6) Effect of Local Roughness variation 

Roughness Coefficient Distribution 
The roughness coefficient is in general a function of time and space; for a strip 
with unit width it may be expressed as K=K(x,t). Note that this coefficient is a 
typical macroscopic quantity difficult to define for a particular reach of the basin. 
Moreover, investigations concerning strictly uniform flow conditions in channels 
with well-defined boundaries are still in vital research stage (Hager 1984). Owing 
to these difficulties, K=lln in overland flows is a quantity to be estimated. Note 
that, for fixed flow depth and fixed bottom slope, discharge augments linearly 
with K; this latter parameter influences significantly the final result, therefore. 

The kinematic wave approximation is a macroscopic approach; unevenness in 
both K and So with respect to the longitudinal coordinate (and to time) are usually 
ignored, and both are considered as essentially independent from x and t. Typical 
valley shapes reveal that K is higher at the top zone of it than at the lowlands. This 
general trend results from relative smooth surface at the upper valley regions, and 
from cultivated planes at the lower ones. Evidently, these tendencies may also be 
inverse, but, for a sensitivity analysis, it seems appropriate to vary K= K(x) linearly 
with the longitudinal coordinate. Ensuing considerations are the counterpart of 
the above. Henceforth bottom slope So will be assumed constant, So=i, while the 
effect of local roughness variation will be investigated, thereby accounting for Eq. 
(7) regarding the precipitation characteristics. 

Let K, be the average roughness coefficient for turbulent flow, then 

corresponds to a linear variation of local roughness coefficient K. This relation is 
shown graphically in Fig. 9, and it is noted that the distribution factor + is phy- 
sically defined in the domain - l S @ S + l .  Inserting Eq. (24) into Eq. (8) results in 

or, upon introducing the scalings Eq. (10) 

Combining this with the non-dimensional continuity Eq. (11) leads to the analo- 
gon of relation Eq. (14), namely 2pr& Fig,9,  
1 

Assumed local distribution of roughness coeffi- 
+1 - x 

0 
cient K(X)IK,. The kinematic wave theory 

0 0.25 0.5 0.75 1 applies only for -IS@< + 1. 
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which must be solved subject to the conditions Y(T=O)=Y(X=O)=O as above. 
Note, that the particular and well-analysed case defined by Eq. (15) occurs for 
+=o. 

Solution 
The equivalent characteristic system to Eq. (27) reads 

Again the steady state solution is described by the center and right hand-side parts 
and reads (see Appendix 111) 

on which Y(X=O)=O has been imposed. This is plotted in Fig. 10, and it may be 
noted that point (0.5, 0.66) is commom to all curves. Moreover, all curves except 
that for +=+ 1 start in the origin, while the last remains independent of X (real 
uniform flow with depth ~ = 0 . 5 ~ ' ~ - 0 . 6 6 ) ;  the curve with +=-I  tends to infinity for 
x* 1. 

Discharge Q(X)  for steady flow conditions may directly be computed combining 
Eqs. (26) and (29), the result being 

Q ( X )  = X (30) 

which is independent of @ and comparable to Eq. (22). 

Fig. 10. Surface profiles Y(X) for steady 
flow conditions (T>T,) and for 
various roughness coefficient 
parameters @. 

Fig. 11. Effect of @ on rising portion of 
hydrograph Q(T) at location X=l 
(stream inflow). 
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The time-space locii leaving at point (0,O) are prescribed by the first and center 
terms of Eq. (28), which, upon eliminating Y(X) with Eq. (29) obtains 

This has been solved numerically using the expression derived in Appendix IV for 
its initialisation. The result, T=T(X), allows determination of the unsteady por- 
tion of the solution, and typical results are plotted in Fig. 11. Note again that, for 
-1<@<0.5, the effect of @ on Q(T) is insignificant, but becomes important for 
++ 1. This case, which corresponds to a catchment area being much rougher at 
the top zone than at the lowlands is seldom encountered in practise, yet it may 
reflect a realistic case. Conclusions regarding the local variation of bottom slope 
and roughness coefficient for both steady and non-steady flow phenomena thus 
resemble. To the lowest order of approximation, the roughness characteristics of a 
catchment area may be described using a properly chosen average value. Since 
this quantity is normally subject to considerable variation (estimation of upper 
and lower extrema), computations should preferably be performed for different 
average roughness coefficients, provided the local variation of K ( x )  is not near the 
particular value @ = + 1. 

Conclusions 

This investigation analyses the effects of local bottom slope and roughness coeffi- 
cient variations in overland flow by using the kinematic wave theory. The two 
respective parameters, y and $, are defined in the limits -1 to + 1, and y=@=O 
reflects the usual approach accounting for an average bottom slope and friction 
coefficient along the reach. 

It is found that the effect of y and $ is significant on the resulting surface profile 
but may be ignored regarding the discharge characteristics, provided valleys are 
not flat in the upper and steep in the lower zones. In addition, the local effect of 
roughness coefficient must be accounted for when surfaces are significantly 
rougher at the upper than at the lower zones of the catchment area. 

The present investigation allows a simple application of results since all com- 
putations are performed with non-dimensional quantities. This particular notation 
allows a thorough comparison between different configurations of bottom and 
roughness coefficient variations. 
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Notations 

The following symbols have been used in this paper: 

h (m) flow depth 
i ( - 1  average bottom slope 
Sf (-) friction slope 
S o ( - . )  bottomslope 
~(rn"~s-') roughness coefficient 
L (m) length of catchment area 
p(ms-l) precipitation 
p*(ms-l) average precipit.ation 
q(m2s-') discharge per unit width 
Q (-1 non-dimensional discharge 

time 
time of concentration 
time of precipitation 
longitudinal coordinate 
non-dimensional coordinate x 
non-dimensional flow depth 
elevation 
non-dimensional elevation 
bottom slope parameter 
roughness coefficient. parameter 

Appendix I -Solution of Eq. (16) 

The differential equation consisting of the center and the right hand side part of Eq. (16) is 

With the substitutions 

this transforms into 

which is a differential equation of the Bernoulli type. Upon introducing the new variable 
u=v5, one has 
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The solution of the homogeneous equation is U=CIW, in which C is the constant of 
integration to be varied for the solution of the non-homogeneous differential equation. The 
final solution is computed straightforward, the result being 

with C as the real constant of integration. Resubstitution of U and V yields 

in which W is given by Eq. (33). 

Appendix II - Solution of Eq. (20) for X+O 

The integral given in Eq. (19) cannot be solved generally by analytical means; its numerical 
evaluation leads to difficulties for X+O, since X=O corresponds to a singularity. In order to 
initiate the integration procedure, an analytical solution must be found for X+O. Excluding 
the case where p=-1 (which is treated below), one has instead of Eq. (20) for X+O 

or, when developing term (1-(2pX) / ( l ~ p ) ) ~ " ~  in a Taylor series and retaining only the 
first order correction term 

in which X,* << 1. The first of these integrals will be used subsequently and is denoted as 
II. Its evaluation is straightforward, the result being 

This has been used for Xc=O.O1, and the numerical evaluation of the second integral in Eq. 
(39) finally allows Fig. 5 to be drawn. Eq. (20) may be solved analytically for the cases in 
which p=O, resulting in 

and p=-1, for which 

Tc 
= ( 2 7  X 3 ) l l l O  

C 

Appendix 111 - Solution of Eq. (28), steady state conditions 

The center and the right hand sides of Eq. (28) define the steady-state portion of the 
complete solution. With 
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E = 1  t + ( 2 X - 1 )  , v 3  = Y 

it transforms to 

which is of Bernoulli type. With u=V5, one has the linear equation 

of which the solution reads 

with C as constant of integration. Accounting for the boundary condition Y(X=O)=O, the 
final result obtains after resubstituting 

Appendix IV- Solution of Eq. (31) for X+O 

Eq.  (31) describes the time-space coordinates on which Eq.  (29) is valid. It reads 

Excluding the particular value + = I ,  this may equally be written for X+O as 

Integration of this is straightforward, the result being 

The values +=O and +=1 are special, since a complete analytical integration is possible. 
The  respective solutions become 

l n ( X c )  + c , + =  + I T c =  x : ' ~ ,  + = o  ( 5 1 )  and I " , = - -  ( 5 2 )  
5 , 5 3 1 5  

with C as constant of integration. Since ln(Xc)+-m for Xc+O, it is impossible to  define C. 
The  solution thus has been found approximately by starting with Tc(Xc=O.OO1)=O. 
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