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Correlation structure of river runoff is a complicated set of different persistence 
phenomena in the watershed itself and in the meteorological input to the wa- 
tershed. 

Correlation functions and time scale of isolated processes in a watershed 
(groundwater level and river runoff) are derived analytically from the linearized 
equations of motion for these processes. Nonlinear effects on the correlation 
functions are shown for river runoff and for the watershed as a whole. 

Introduction 

Natural hydrologic systems are stochastic and nonlinear. Nevertheless, deterministic 
and linear models of hydrologic systems can be well adapted in many situations. The 
choice what kind of model should be used in a certain situation is actually not free. 
Whether the model to  be used is deterministic or stochastic depends mainly on the 
character of the specific practical problem, that should be tackled, and whether a 
linear o r  nonlinear model is appropriate depends on the studied phenomena. 

It is usually so  that deterministic models are non-linear wliile stochastic models are 
linear, although the same type of phenomena should be described. Further, determin- 
istic models are to  a greater extent based on physical understanding of hydrologic 
processes while stochastic models, almost without exceptions, are totally black box 



Lars Gottschalk 

models. There is a controversy among hydrologists which kind of mathematical mod- 
els should be applied, stochastic or deterministic. It is our opinion that there exists 
some sort of confusement in this discussion and that the actual controversies are 
between a physically based and statistical approach for the construction of a model. As 
it was commented above, stochastic models are of the black box kind and the level of 
abstraction from the natural hydrological system is high. Structure and parameters of 
the models are determined by purely statistical methods. Deterministic models, on the 
other hand, are usually more directly formulated from what we know about the 
processes in the watershed. Many of them are of the black box kind but less abstract, 
for instance, - the unit hydrograph. Statistical methods are, however, often used to 
determine parameters and also make judgements about the structure. Why are sto- 
chastic models not based physically then? There is, of course, no opposition between 
the concepts stochastic and physical. It is, may be, so that it is more difficult to 
formulate a physical model in stochastic terms. The hydrologist in this case also suffers 
from the fact that he uses tools of statisticians, always reasoning from the information 
that can be gained from observations. Hydrologic data usually are poor and that is 
why we end with a model that is quite simple in its structure, say an antoregressiv or 
moving average model. 

The language of the hydrologist in case of stochastic models abandons natural 
watersheds, when using terms like correlation and spectral functions etc., which can be 
hardly found in a watershed, even with the uppermost imagination of the spectator- 
hydrologist. Applying deterministic models, the hydrologist is speaking in terms of 
boxes, each box, linear or non-linear. describing in simple terms some part of the 
watershed like the unsaturated zone of the soil, the groundwater zone, lakes, river 
reaches etc. and it is already much easier to imagine the actual watershed. Neverthe- 
less, the two languages though different in terms reflect the same phenomena, different 
reservoir mechanisms in the watershed. 

The correlation function is fundamental and is a measure of the reservoir mechan- 
isms in the watershed mentioned above. In this paper we shall try to  develop this 
subject. We start with the equations of motion for ground water and river runoff. We. 
shall examplify effects of different time scales on the structure of the correlation 
function and also discuss non-linear mechanisms. Finally, we shall discuss stochastic 
models in general, their structure and the question of stationarity. 

Response Function of a Linear System 

A linear system, as illustrated in Fig.1, is described by a homogeneous partial diffe- 
rential equation of the form: 
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Fig. 1. Linear system. 

where L is a linear partial differential operator, x space coordinate and t  time coordi- 
nate. Boundary condition is given at x =  0 : y(0,  t )  = y,(t ) .  Wewrite down the solution to 
Eq. (1): 

t 
y ( x , t )  = ( U ( x , t - ' T )  y ( 0 , ' T )  d'T ( 2  

0 

where U(x,  t  - T )  is the impulse response function. We assume stationarity and that the 
system is at rest at t  = 0 .  If we, in particular, set the input at x = 0 equal to Dirac delta 
function y(0 ,  t )  = 6 ( t ) ,  the solution to Eq. (2) will be given by: 

The expression for the response function of a hydrologic system can, thus, be found by 
solving the linearized equations of motion, that describe best the system, for a Dirac 
delta input. 

Correlation Function of a Linear System 

The autocovariance function Cy(r) of y(s,t) is calculated as: 

m 

= (( U ( x , u )  U ( x , v ) E  { y ( O , t - u )  y ( 0 , t t - r - v ) )  d u d v  
0 

Here we have taken advantage of the fact that the mean of the process y(x,  t )  is equal to 
zero i.e. py = E { y ( x ,  t ) ) =  0 .  Let the input at x = 0 be defined by: 

where 6 ( ~ )  is the Dirac delta function. We thus assume that the input y(0,  t )  is an 
independent in time process. Making use of the specific properties of the delta func- 
tion, the covariance function of y(x,  t )  for this case is given by the integral expression: 

The correlation function of y(x, t )  is expressed by definition as: 
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Time Scale of a Linear System 

A simple measure of the persistence or memory of a process is the time scale 7' defined 
as the integral of the correlation function over time T >  0, i.e.: 

Equation of Motion for Groundwater Level 

The linear differential equation for the operation of a groundwater aquifer in terms of 
groundwater piezometric height h(x, t )  is written down as: 

where 

k is the permeability coefficient, 
HX- thickness of aquifer and 
m - the active soil porosity 

Eq. (9) is applicable to one dimensional confined flow in a homogeneous isotropic 
aquifer, and it is a good approximation for unconfined flow if changes in the water 
level h(x, t )  are small compared to the aquifer thickness H!! 
The impulse response function corresponding to the linear partial differential equa- 
tion is written down (Venetis 1970): 

4 H x k  t where t X = -  
m x 2  

Correlation Function of Groundwater Movement 

Inserting the expression Eq. (10) for the impulse response function of groundwater 
level to Eq. (6) we derive an expression for the autocovariance function of an ground- 
water aquifer for independent input, namely: 

km 2 For T = 0 we find that C (x , 0 1 = (-) The correlation function is thus expressed Y x H 
as: 
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By integrating Eq. (12) over time T we derive the time scale as: 

In Fig. 2 the correlation function Eq. (12) is drawn. We can notice a very slow descend 
of the function for large lags. For comparison the ordinary exponential decay function 
is also drawn for equal time scale. 

Fig. 2. Correlation function of groundwater level Eq. (12) and exponential function 
with equal time scales. 

Inserting characteristic values for the parameters of the expression for the time scale 
given above, we find a value T,:equal to eight months (x = 1000 m, m = 0.33, HX- 50 m, 
k = 5.10-4 m/s). It should be mentioned that groundwater response of precipitation 
and evaporation input calculated directly from observed data is usually faster than the 
theoretically derived response from Eq. (9) (Gottschalk and Nordberg 1977). 

Linearized Equation of Motion for River Runoff 

The linearized differential equation governing the flow in a river reach can be written 
down in the following way: 



where 

x is the distance along the reach, 
t - time, 
g - acceleration of gravity, 
q - fluctuation of river runoff, 
Q, - mean river runoff, 
H,  - mean depth, 
F,  - mean section area and 
C - chezy coefficient 

Considering slow processes we can neglect the inertia terms in Eq. (13) which in this 
case has the simple form: 

The solution of this latter equation for a delta function input (the impulse response 
function for the river reach) is: 

A complete solution to Eq. (13) for a delta function input can be found also (Lighthill 
and Whitham 1955) but gives a very complicated expression. 

River reaches behave very nearly as linear systems over small runoff ranges. Anoth- 
er condition for good result with linear approximations is that the considered reach is 
small compared to the wave length of the floo,dwave. For a larger river the reach 
should be devided into a set of linear subsystems. The theoretical basis for such 
division of a river into linear subsystems is given by Kalinin and Miliukov (1958). 

Let us consider such a subsystem of a river reach. With a proper choice of the length 
of this river reach an unambiguous functional relation is valid between volume Wand 
runoff Q: 

The derivative d Q / d  W is always positive and we can write 

where k is a positive parameter with dimension time. In generalcase k is not a constant 
but is dependent on the level of flow. The Glomma river in Norway was devided into 



Correlation Structure of Hydrologic Systems 

0 5 1 0  15 io 
VOLUME W MILL. hi3 

Fig. 3. Volume-discharge curve for a river reach at Skarnes, Glomma river, 
Norway. 

such subsystems for routing purposes (Gottschalk 1975 unpublished). A typical look 
of the relation (16) for this river is given in Fig. 3, whichalso illustrates the dependence 
of k on the level of flow. Linear approximations for different ranges of flow are drawn. 
For n equal linear subsystems the impulse response function will be 

for a certain range of flow, determined by the parameter k. 

Correlation Function and Time Scale of River Runoff 

We shall restrict ourselves to the further development of Eq. (18). Inserting this into 
Eq. (6)  we derive the following expression for the covariance function of river runoff 

Developing (q)"-' in its binomial series we find after somecalculations the expres- 
sion: 
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For -r = 0 we get: 

The correlation function we thus write down as: 

Integrating the correlation function Eq(22) over time r > 0, we find the time scale to 
be: 

Let us return to the routing model for the Glomma river to examplify Eqs. (22) and 
(23). An average subsystem in this model has the following characteristics: length of 
river reach 20 km, k= 0.41 when discharge Q= 500 m3/ s, k = 0,21 for Q 5 1500 m3/ s and 
k = 0,17 for=2500 m3/ s. Fig.4 shows the correlation function Eq. (22) fork = 0,4 and n 
1, ..., 10. 

The upper curve (n=10) thus reflects the reservoir mechanism for a 200 km long river 
reach when discharge is about 500 m3/ s. The time scale of the process, calculated from 
Eq. (23), is 2.2 days. Fig. 5 illustrates nonlinearities in this reservoir mechanism where 

Fig. 4. Correlation function for cascade of n river reservoirs (n = 1, ..., 10) Eq. (22) 
for K = 0.4. 
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Fig. 5. Correlation function for cascade of 10 river reservoirs Eq. (22) for 
K = 0.41, 0.21 and 0.17. 

correlation functions are drawn for n = 10 when discharge is around 500 m3/s,  1500 
m3/ s and 2500 m3/ s, respectively. The time scales are 2.2, 1 . I  and 0.9 days for respec- 
tive range of the flow. 

Linearized model of watershed 

We have analysed the correlation structure for isolated elements in the watershed, and 
shown that they in general have a complicated form. The correlation function of river 
runoff reflects composition of these different elements. Each element like river runoff, 
groundwater and soil water flow, for a certain range, can be approximated by cascades 
of linear reservoirs, characterized by their respective time scales. The total watershed is 
thus described by a network of linear reservoir in parallel and in series. A simple 
example of such network is shown in Fig. 6, where we have a soil water system in 
parallel with a groundwater system and both are joined to a river system. 

Fig. 6. Linear watershed system. 

137 
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The correlation function for this system has the expression: 

- - r / K S  - - r / K G  -T / K  
p ( ~ )  = ( A S -  e + A G -  e + * A R -  e ( A S  + A G  + A R }  

(24) 

where 

C is a coefficient distributing input between soil water and groundwater systems and 
Ks, K G  and K are the respective time scales. The time scale corresponding to Eq. 
(24) is easily found: 

We shall note that the coefficient Cis not a constant but is dependent on the intensity 
of the flow from the soil water zone. The nonlinear behaviour of the system in Fig. 6 is 
illustrated by calculating the correlation function Eq. (24) for three different values of 
C which is shown in Fig. 7. The time scale for the three cases are also given in the figure. 

Conclusions 

Correlation functions estimated from observed series of river runoff do not have the 
necessary accuracy to distinguish specific effects of nonlinearities and varying time 
scales. The empirical correlation function is therefore in many respects a very coarse 
instrument to describe the complex nature of the river runoff process. 

The empirical correlation functions of river runoff are also influenced by correlation 
structure and time scale of climatic input to the watershed. For Scandinavian condi- 
tions this structure is quite complicated. During winter the input to the watershed 
system is zero. Snowmelt has a relatively high memory as long as the snowcover has 
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Fig. 7. Correlation function of river runoff from watershed system Eq.(24) 
with C = 0.25, 0.50, 0.75, KS = 7 days, KG = 30 days and KR = 1 day. 

not melted away, but is influenced by abrupt changes in temperature. Summer rain is 
an intermittent process with short time scale. We thus have a highly nonstationary 
process. The extent of its influence on the correlation structure of river runoff depends 
on the time basis, on which the derivation of the correlation function is done. 

When using daily values to calculate the correlation function, the reservoir mechan- 
isms of the watershed will be predominant. The time dependence is therefore small. We 
shall maybe note a larger instability and some lowering in calculated values of the 
correlation function during summer. This is caused by the intermittent precipitation 
input and nonlinearities in reservoir behaviour. 

Integration of the river runoff process over larger time intervals, results in the fact 
that the nonstationarity in the climatic input will give dominant influence on the river 
runoff correlation structure. We can note, however, that the time scale of groundwater 
aquifers and lakes is quite large and can be of importance. Nonlinearities in the 
reservoir mechanisms of aquifers and lakes can cause a complicated correlation struc- 
ture of river runoff in a large time scale. 

We shall also stress the fact that runoff as an integrated process over some time 
interval is dependent on the correlation structure within this time interval. This has 
been examplified by Gottschalk, 1975, giving relations between statistics of monthly 
and annual processes. 
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