D000 http://iwww.cqvip.com|

P k¥ RB¥D Dec. 2003
Journal of Northwest University (Natural Science Edition) Vol. 33 No. 6

2003 4 12 A
FBHEFHM

Adaptive explicitly parallel instruction computing

for embedded systems

LIAO Ji-rong',DONG Hai-tao®

(1. School of Computing.National University of Singapore .Singapore 117543;2. National Laboratory of Computational

Fluid. Beijing University of Aeronautics and Astronautics.Beijing 100083 ,China)

Abstract ; Reconfigurable hardware offers the embedded systems the potential for significant perfor-
mance improvements by providing support for application-specific operations. Adaptive Explicitly Par-
allel Instruction Computing is a prototype model such that fine-grain and dynamically reconfigurable
structure is tightly coupled with a generic EPIC machine. AEPIC allows application programs to add
specialized functional units yielding a dynamically varying instruction set interface to the running appli-
cation without compromising current compatibility model. Two advantages of AEPIC are (U dynamic
configuration support ; @application specific instruction set synthesis. In order to investigate the ideaof
AEPIC's potential realistic experiments are conducted in an environment that incorporates the AEPIC

simulator and actual reconfigurable hardware of Xilinx FPGA. Results show that AEPIC can achieve

the similar or higher performance at a much lower execution frequency ,compared with EPIC.

Key words:adaptive EPIC; instruction synthesis; dynamic reconfiguration

HESHES . TP3 X HkFRIRAED A

In traditional view. instruction set architecture
(ISA) is designed to provide a fixed set of primitives
that enables low-complexity implementations of vari-
ous applications. A consequence of the ISA-based
processors is that an application implementation can
use the instructions from the fixed instruction set on-
ly. In many cases, specialized operations tailored to-
ward specific application domains can result in signifi-
- cant performance benefits. For example,digital signal
processing applications contains many multiply-accu-
mulate operations. The implementation of these appli-
cation will be more efficient if multiply-accumulate
instruction is available. However. extending instruc-
tions sets directly may cause bloated instruction sets
and lead the processors design more complex and ex-

pensivet'because they should be specialized enough to

Reviced date;2003-07-15

CEHRE.1000-274 X (2003)06-663-06

allow significant performance benefits, and at the
same time, be general enough so that they are useful
for a variety of applications. Reconfigurable hardware
is one alternative to realize specialized instructions to
simplify processor designs and improve application
performance. Moreover, as the specialized instruction
sets provided by reconfigurable hardware is flexible,
reconfigurable hardware has the potential to evolve
with the applications and tailor the instructions on a
per application basis. Adaptive Explicitly Parallel In-
struction Computing (AEPIC)™! is proposed to aug-
ment the EPIC architecture®™® with a reconfigurable
component on the same die that is amenable to com-
piler optimizations. The AEPIC architecture combines
the advantages of the EPIC with simpler architecture

and that of programmable logic that exploits fin-grain

Authors:Liao Ji-rong(197%->,Man.Guandong Zengcheng.Master of science candidate at the National University of Singa-

pore.,his research interests focus on computer application and computer system architecture.

http://www.cqvip.com

— 664 —

P RFF M CHRBEB)

D000 http://iwww.cqvip.com|

¥ 33 3%

parallelism through explicit control over micro-archi-
tecture features. It allows multiple instructions to be
processed on each cycle and allow application pro-
grams to dynamically alter the functional unit compo-
sition of the data-path of the processor using the pro-
grammable logic resources. In this paper, we describe
the AEPIC architecture and the software environ-
ment support for this architecture. Realistic experi-
ments on actual FPGA hardware are conducted to e-
valuate the potential of the AEPIC idea.

The rest of this paper is organized as follows:In
Section 2 we review the AEPIC architecture to see
how it supports dynamic configuration. In Section 3
we discuss the software environment supporting the
architecture and instruction synthesis that produces
the specialized instructions. In Section 4 we present
our results of realistic experiments. Finally ,the paper

concludes with Section 5.

1 AEPIC

An abstract execution model for an AEPIC pro-

cessor is shown in Figure 1.

Silicon die

EPIC Core

AEPIC
executable

Fig.1 AEPIC e;cecution model
The processor can be viewed as composed of one
EPIC core and one adaptive component. The EPIC
core is intended for performing non data-processing
tasks. The adaptive component consists of functional
units that have been configured into the datapath by
some reconfiguration instructions. Operations per-
formed by the configured functional units are trig-
gered by specific AEPIC instructions invoked on the
EPIC core. One side-effect of this execution model is

the extra cost for loading a configuration before the

instructions are executed. In this section..we describe
how AEPIC architecture supports dynamic configura-
tion to minimize this extra cost.
1.1 AEPIC architecture

Figure 2 shows in detail an abstract model of an
APEIC architecture. The EPIC core is a standard
EPIC machine with additional functional units to exe-
cute the non-EPIC instructions. These non-EPIC in-
structions cause execution control switch to or state
changes on the adaptive component. The instruction
cache, Fetch/Decode. and the generation of control
signals comprise the control unit. Control unit is not
only responsible for the fetching and processing of in-
structions in program order,but is also responsible for
flushing or stalling the pipelines of the functional u-
nits caused by program events such as branch opera-
tions or interruptions. The adaptive component of the
AEPIC processor consists of the Configuration Cache
Hierarchy , Multi-context Reconfigurable Logic Array
(MRLA), Array Register File (ARF) and Configu-
ration Register File (RCF) connect together via bus
configurable interconnect. The MRLA is the primary
resources used for hosting the Configured Functional
Units (CFU) which execute specialized instructions.
Like a typical FPGA ,the MRLA is a two dimension-
al region of programmable logic and interconnect
bocks. In order to mask the reconfiguration over-
head, the programmable elements in MRLA are asso-
ciated with multiple CFUs. This allows multiple logic
designs to.be simultaneously resident on the MRLA.
The desired logic design can be activated by selecting
the appropriate CFUs for each programmable ele-
ment. Thus the MRLA allows rapid switching be-
tween two different sets of CFUs so that context
switching (reconfiguration overlhead) of two different
logic designs is very fast. In some sense, MRLA can
be effectively viewed as an array of FPGAs. The
memory system of AEPIC architecture consists of the
standard instruction and data cache memory hierar-
chies. The instruction cache and data cache are dis-
joint at the highest level of the memory hierarchy but
share the subsequent levels of the memory hierarchy.
The first level cache is followed by a large second lev-

el cache and then the main memory. In addition.

http://www.cqvip.com

D000 http://iwww.cqvip.com|

LIAO Ji-rong et al: Adaptive explicitly parallel instruction computing for embedded systems

%6 M

— 665 —

AEPIC architecture supports a novel memory hierar-
chy for configuration data. The Configuration Cache
Hierarchy consists of two hierarchies. namely C-
Cache and C1 Cache. It simulates the functions of
register and cache in general processor for program
data except that it is explicitly controlled by the com-
piler. C-Cache serves as a temporary cache for config-
urations before they are instantiated on the MRLA,
which way is analogous to that registers serve as stor-
age for program values. The next level C1 Cache is
larger than C-Cache and is connected to the external
memory. The configuration is loaded to C1 Cache
from external memor, if a request for a particular
configuration is not located in C-Cache or C1 Cache.
This is analogues to the way that cache is used in in-
struction/data memory hierarchies of standard micro-
processors.

The Configuration Register File (CRF) consists
of a set of configuration registers (CR). Each CR
serves as an alias to either a CFU allocated in the C-

Cache. Configuration register is used as an operand in

AEPIC instructions to refer to a CFU.

r_1 I

Fig. 2 AEPIC architecture
Besides the features mentioned above, the
AEPIC architecture provides the following supports
to enable efficient dynamic configuration .
1) Architecturally transparent reconfigurable re-
source assignmernt.
2) Implicitly specified operands for CFUs.

3) Explicitly specified operation latencies.

4) Parametric description of the architecture.

5) Inherited EPIC features.
1.2 Comparing AEPIC with other architecture

AEPIC is an extension of EPIC. It inherits the
innovative features of EPIC architectures and recon-
figurable hardware. EPIC is the evolution of very-
long-instruction-word (VLIW) with addition of fea-
tures such as predicated execution and support for
software pipelining, etc. The advantage of AEPIC
over EPIC is that it enables dynamic specialized in-
struction. For the execution of sequential code. there
is no difference between these two architectures. For
parallel code.the AEPIC can exploit far more paral-
lelism and do not compete for function units because
it has an extra reconfigurable hardware. Superscalar
processor can exploit parallelism in sequential code.
and they can adjust their execution on the fly for op-
erations with variable latency. However, the hardware
complexity of dynamically determining dependencies
between instructions prevents superscalar processors
from scaling well beyond a modest number of instruc-
tion issue slots. AEPIC can identify the parallelism
during compilation. AEPIC targets fine-grain special-
ization. It is capable of building functional units that
can implement the synthesized operation of several in-
AEPIC from GARP-,

PipeRench™ and Rapid'® which target coarse-grain

structions. This differ

parallelism in loop level. Another distinct aspect of

AEPIC is that it support dynamic configuration.

2 Software environment

AEPIC compiler and simulator have been creat-
ed to enable research and study for AEPIC. Both of
them are built upon the Trimaran'™ compilation in-
frastructure which is based on the HPL-PD"™! EPIC
architecture.

2.1 Compilation framework

The AEPIC compiler's inputs include the appli-
cation source program,the architecture description of
the AEPIC processor and a library containing param-
eterized configurations for popular computational rou-
tines. After a series of standard lexical and syntactic

analysis, the source program will be partitioned two

http://www.cqvip.com

-~ 666 —

Fadt k¥ 2 B RBE D

D000 http://iwww.cqvip.com|

%33 %

parts. One will be executed on EPIC core and the
other one in adaptive component. The two parts will
then be processed in parallel by high-level optimiza-
tion phase and the instruction synthesis phase respec-
tively. The high-level optimization targets on the
EPIC core and is similar with a standard ILP compil-
er. The instruction synthesis phase combines several
instructions to generate a new operation which will be
realized in the adaptive component. Subsequent phas-
es of the compilation are similar in structure to back-
end phases of a typical ILP compiler adapted to the
characteristics of configurations. One distinct phase is
added to the AEPIC compiler is configuration alloca-
tion‘?). The configuration allocation phase is aimed at
optimizing allocation of resources for configurations.
The resource for reconfiguration referred to the C-

Cache and the MRLA.

sign

(a)

g=b+C+d

(b)

Fig. 3 Instruction synthesis

2.2 Instruction synthesis

Instruction synthesis is a systematic technique
for defining new instructions for a given micro-archi-
tecture. In the AEPIC,the new instructions are real-
ized in the reconfigurable hardware. The process of
instruction synthesis typically involves analyzing the
program to infer the most suitable operation reper-
toire based on its computational characteristics for the
intended micro-architecture. The Instruction Synthe-
sis phase takes a list of candidate partitions that have
been identified from previous partitioning analysis
phase.combine several instructions to a new operation
and map it onto the programmable logic. and then
synthesizes a set of functional units that can imple-
ment all the computations of the code partitions. Fig-
ure 3 shows two examples. The combined operation

can reduce the execution cycles and alleviate the

memory traffic and register pressure by data reuse.

To accelerate the procedure .a library of pre-syn-
thesized macros for various basic operators and fre-
quently used kernels can be used as a guide for this
phase. The library should be applicable to a wide
range of the target programmable logic parameters.
and also accommodate variations in the structure of
the input partitions.
2.3 Simulator

A complete hardware implementation of AEPIC
does not yet exist,so AEPIC program must be exe-
cuted on a simulator. The AEPIC simulator is based
on the cycle level simulator of the HPL-PD EPIC ar-
chitecture. It translates the intermediate representa-
tive generated by the AEPIC compiler to the AEPIC
format and simulates the AEPIC semantics for a us-
er-defined architecture. AEPIC generates run-time
information such as clock cycles taken for execution,
static instruction count,etc. It also provides detailed
information about the execution profile on the adap-
tive component of AEPIC such as time spent for da-
ta-path reconfiguration. computation time on MR-

LA ,effectiveness of configuration caches.etc.

3 Realistic evaluation

To evaluate the idea of AEPIC’s potential, we
conducted realistic experiments on actual reconfig-
urable hardware to compare AEPIC against EPIC.
The Xilinx XCV1000 FPGA chip on the Celoxcia
RC1000 board is used instead of the MRL A as no ac-
tual MRLA hardware exists The EPIC architecture is
a 9-slot width architecture consisting of four inte-
gers,two floating point.two memory and one branch
units. The EPIC processors assumes running at
200MHz. The FPGA programs for AEPIC are coded
manually. The benchmarks we used include the Ad-
pcmdec.IDEA and DCT. Adpcmenc is Adaptive Dif-
ferential Pulse Code Modulation Encryption. It is
widely used in speech compression. IDEA implements
a complete 8-round International Data Encryption
Algorithm. DCT is 2D discrete cosine transform. It is
widely used in image compression application. Table

1 shows details of the application implementation in

http://www.cqvip.com

F6W

LIAQ Ji-rong et al:Adaptive explicitly parallel instruction computing for embedded systems

D000 http://iwww.cqvip.com|

— 667 —

AEPIC and EPIC platform respectively. A total of six
implementations were made of these benchmarks.
The column of Slices No. is the source requirement
for the FPGA implementation. All of the FPGA im-
plementations use less than 10% of total slices on the
RC1000 board. The Max frequency of AEPIC design
is the FPGA’s frequency returned by the place and
route tools. From the Operations and Time column,
we can see that AEPIC achieve similar performance
with EPIC in benchmark Adpcmdec and IDEA. As
for benchmark DCT, AEPIC's speedup is more sig-
nificant,reaching as twice fast as the EPIC. These re-

sults indicate that «n AEPIC processor running at a

lower frequency can achieve the similar or even high-
er performance of an EPIC processor running at a 10
times higher frequency.

Author names and affiliations are to be centered
beneath the title and printed in Times Roman 12-
point . non-boldface type. Affiliations are centered. i-
talicized » not bold. Include e-mail addresses if possi-
ble. Follow the author information by two blank lines
before main text. For papers with multiple authors al-
ways group authors from the same institution togeth-
er.that is, list each institution only once. When au-
thors are from more than one institution center the

name and addresses across both columns.

Tab. 1 Evaluation results
Conliguration Slices Max. Freq)]
Benchmark Architecture Operations and Time
File Size/kb No. /MHz
AEPIC 749 915 19.752 0.033 8s
Adpcmdec
EPIC - - 200 0.028 5s
AEPIC 749 975 14.913 0.094 8s
IDEA
EPIC — — 200 0.106 9s
AEPIC 749 612 17.504 7 589 dct/s
DCT
EPIC - — 200 3 890 dct/s

4 Conclusion

In this paper.we review a fine-grain,dynamical-
ly reconfigurable AEPIC architecture that consist of
an EPIC core tightly coupled with a reconfigurable
hardware that implements compiler synthesized in-
structions. Preliminary evaluation using actual FPGA
hardware shows that AEPIC of low execution fre-
quency can achieve the same or higher performance
with those EPIC processors of 10-times higher execu-
tion frequency. As the work for_ AEPIC is mainly fo-
cused on the dynamic configuration, the future em-
phasis would be placed on compiler work to find effi-

cient instruction synthesis algorithm.

References:

(1] BURGER D,.GOODMAN] R. Guest editors’ introduc-
tion: Billion-transistor architectures{ J]. IEEE Comput-
er,1997,30(9) :46-49.

[2] TALLA S. Adaptive explicitly parallel instruction com-
puting[D]. New York :New York University, 2000.

[3] SCHLANSKER M S,RAU B R. EPIC:An architecture

for instruction-level parallel processors[R]. Palo Alto;

Hewlett Packard Laboratories, 2000.

(4] HAUSER J R,WAWRZYNEK J. GARP:A MIPS pro-
cessor with a reconfigurable coprocessor[A]. POCEK K
L,ARNOLD]J. IEEE Symposium on FPGAs for Cus-
tom Computing Machines [C]. Los Alamitos: IEEE
Computer Society Press,1997.12-21.

(5] GOLDSTEIN S C, SCHMIT H, MOE M, e al.
PipeRench: A coprocessor for streaming multimedia ac-
celeration[A]. DEGROOT D. Proceedings of the 26th
Annual ACM/IEEE International Symposium on Com-
puter Architecture[C]. Los Alamitos: IEEE Computer
Society Press,1999. 28-39.

{6] CRONQUIST D,FRANLKIN P,BERG S,et al. Speci-
fying and compiling applications for RaPid[A]. POCEK
K L,ARNOLD J. 1EEE Symposium on FPGAs for Cus-
tom Computing Machines [C]. Napa: IEEE Computer
Society Press,1998.116-127.

[7] TRIMARAN R G. An infrastructure for research in in-
struction-level parallelism [OL J. http://www. tri-
maran. org,2003-03-15/2003-05-18.

[8] KATHAIL V,SCHLANSKER M,RAU B R. HPL-PD
architecture specification: Version 1. 1[R]. Palo Alto:

Hewlett Packard I.aboratories.2000.
(/"R 8/ . D)

http://www.cqvip.com

D000 http://iwww.cqvip.com|

— 668 -— WAL K¥F 2R BRBFBO P33 %

BARXNBRGZHWENEERERXFTESEAR

B-yk k', FHE
A.FmEEKY¥ HTE¥ER.EME 117543:2. L EAM XA KE BRITERENI¥LRE.JLFE 100083)

BMEAATEHBATUAZEAELALORE EEA5-MB T TIAHTEAZLAKLGES B E X H
APV R AEPICO)# A 48R, AL B I M2 XHFHHARK(EPIOL B R fo— Nirm
BETHAEENEMETEENR AR EETIARDETERNFHBLSER BRTUAREASH R
BARBEREANS AL, @id AEPIC i B A T €4 84 Xilink FPGA # 47 # 31 5~ 47 v B 4iE
EAHE, TRERAV UL XAFTHAIBEARA RAAHEEBUR O ETHAEFINESY
EATIR K,

X 8 H.EZEHRIXFABLGRABELEEAHEAXEL

cFRBAE -
BENS—HAEEX AR R

5HFR.ARERFEEMHLE 207 A A P HHRE A LLE 107 A, A FRBR—F L Lehsr & ns
1l R:A RS EMEH L2004 8 . AP SCI AB (GEEMIKFTHM 1997 #6 37 B L+
22001 #8109 % . A4 ASHRNHLH 1997 F4F 36 2%k A E 2001 $8F 2645 EHAGHGRFHEL
Fo AP HARLAERBATHBEAF RANELHERLH AL BHMHBIEAF LAGHELNILFERE
AR SCI KR ZRXH M ERLEY 28X F 13U . 58RO TESHALFHARL MG TET4,2002
FREBRLABATRTAHALHFEHEART L, KAGRLIIRARYELARHMFALERAD “£i4
LW R ECHER R ALBRTETALR I SFHEARARMF _F R, S AHBO L EFEARLL
NBEHLR IO FEARAE AT = F R, FRTFHRAA B GIYRBEAL T ORBFEXRSR FRLAL
% R4 Nature & EX £ AR AL AN 1999,2001 2B+ RKAHEBE F 1999 $“PERABHRL+ X
HHAAARKZB_BRKREIFFARL"—F LA 2BARTRHEAALELAKRS, LU FHLHF
AT @ KEIBRIFBN(THEREZIBAELG PREAAFAAILT ORI RR THAKKL I
(P RARZFF) . UHEHRIBGUFPARBREL) A NEBRILHH(AR AES5YEBR). LY
BERIBA(AEREXLR).FEHKRIBHN(ERATEALELF) AR L FTHB (RN EHR TR X

BREIFEHE EFARIRTHRRAR A,
(B #8)

http://www.cqvip.com

