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A Unified Approach to Watershed Modelling 

A. Afouda 
Universite Nationale du Benin, Cotonou 

This paper summarizes the main points of a theoretical study of the general 
watershed behaviour, on the basis of the known deterministic physics-based 
approaches for overland flow, underground flow and unsaturated medium 
phjlsics. A parameter z ( 0 )  which describes the soil water movement in the 
unsaturated zone and accounts for evaporation is introduced. Thus, a diffe- 
rential equation which allows a state-space formulation of the processes in the 
watershed is obtained, and the solution of the state equation can be given the 
form of the Volterra Integral series. The obtained results are compared with 
those of previous studies. 

Introduction 

Watershed response to rainfall has been studied extensively in recent years. 
Models, both linear and non-linear, have been proposed to simulate the watershed 
behaviour. Though the components of the rainfall-runoff transformation process 
are well described, serious difficulties arise whenever the models must combine 
all the components involved. 

This paper describes the general behaviour of the watershed by combining a 
deterministic physics-based model for overland flow, underground flow, and for 
unsaturated flow. Since hydrological practices are concerned mostly with lumped 
parameter systems, a lumped formulation of the continuity equation for the 
watershed process is derived. This formulation introduces as a natural consequ- 
ence the concept of a state-space approach to watershed modelling. 
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The Simplified Conceptual Watershed Model 

A large number of schemes have been proposed for the representation of the 
Hydrologic processes in the land phase of the hydrological cycle, but they are 
generally too complex for the parametrical modelling of the rainfall-runoff pro- 
cess. A description of these models has been made by Dooge (1977). This study is 
based on the simplified model shown in Fig. 1. 

This model makes a distinction between direct storm response and baseflow 
and also between the movement of soil moisture in the unsaturated zone and the 
flow of ground water in the saturated zone. 

This simplified catchment model has thus two main components: that is, the 
component of overland flow (direct storm response) and the component of 
underground flow which is in itself a component of several processes. A detailed 
description of inter-actions between the two components is given elsewhere 
(Afouda 1974) and it can be summarized as follows: the unsaturated zone is of 
main importance in that it separates the total amount of water into two major 
parts: the overland component and the underground component. The processes in 
the unsaturated zone also comprise depletion of soil moisture by evaporation and 
transpiration soil moisture movement. The resulting overland flow can be positive 
or equal to zero. As a response to the change in the stream stage, due to the 
overland runoff, the base flow decreases and inflow to the aquifer can occur (i.e. 
the baseflow can be either positive or negative). These model features are given in 
the form of block diagram in Fig. 1. 

Overland 

Transform. 

Fig. 1. Simplified catchment model. 
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Mathematical Description of the Model 

Now, letx be the total storage of water not yet discharged from the watershed and 
be defined by 

where 

p ( t ) .  = I ( t )  - E ( t ) ;  

I(t) is the rainfall intensity and E(t) is the evaporation flux in the watershed; Q(t) is 
the discharge at the outlet from the watershed. Let x,, x, be the volume of rainfall 
not yet discharged from the watershed and thus in surface and subsurface storage. 

Conservation of mass yields: 

x  = x1 t x 2  ( 1  

If the action of the unsaturated zone is characterized by a parzimeter z ( e )  
depending on the water content, then x, and .u, are related to the total volume by 
the following relations. 

2, - [ I  - z ( e ) i  x (2) 

x, " a ( 0 )  x  ( 3 )  

z ( e )  can vary from 0 to 1 and physically it depends on the rainfall intensity, the 
antecedent precipitation and evaporation and the soil properties. For any given 
soil structure however, this parameter will largely be governed by the amount and 
distribution of moisture in the soil. The soil structure is assumed as constant and 
z ( e )  is approximated as a function of soil moisture only. 

Further, whenp(t) and Q(t) are designating the input and the output of the 
system, the lumped continuity equation for the system is given by: 

and the momentum equation will have the form 

q ( t )  = G ~ X  ; ~ ( e )  ; p ( t )  ;tl 

Eqs. (4) and ( 5 )  can be combined to obtain 

Eq. (6) describes in principle the dynamic behaviour of the hydrologic system in 
study, and together with Eq. ( 5 )  it constitutes the state equation. 
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Explicit Formulation of the State Equations 

In a previous paragraph we have considered the system to be composed of two 
subsystems of which one produced the overland runoff and the other produced 
the underground contribution to the watershed response. This decomposition is 
now used to specify explicitly the state equations of the hydrologic system. 

Let us consider the overland component characterized by x,(t), pl(t); q,(t) 
which represent the rainfall volume available for overland transformation and the 
input and the output of the subsystem respectively. As previously, the lumped 
continuity equation for the subsystem is given by 

and the dynamic equation takes the form 

q ,  (t) = g ,  ( x ,  ; p1  ; t) (8) 

As it will be demonstrated later that hydrological analyses have shown that a 
simple power relationship can be assumed between discharge at the downstream 
end of the catchment and the corresponding surface storage over this catchment, 
q ,  can be assumed to be given by 

If x2(t), P ,(t), q,(t) are the total amounts of rainfall volume available for under- 
ground transformation and the input and output of the underground subsystem 
respectively, the same argument leads to the following equation 

It will be demonstrated later that g, (x; p,; t )  can have the form 

q2 ( t )  = E 1 X 2  (t) ( 1 2 )  

Now Eqs. (7) ,  (9) and (lo), (12) can be combined with (I) ,  (2) and (3) to yield the 
equations of the system as 

where 

E, is the coefficient of underground transformation 
E~ is the coefficient of overland transformation 
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and the other parameters are defined as previously. Eqs. (13) and (14) are explicit 
forms of Eqs. (5) and (6) .  

From Eqs. (13) and (14) it appears that, although the system is described in the 
lumped form, it remains non-linear. 

Non-linearity is introduced by the parameters z(e), E,, €,which characterize 
the system and summarize the information about the past history of the system. 
The basic assumption made is that for all 

x(t ) = x l p ( t o  ) ; z ( 6 )  I t = t o  
0 

; El ! E2 I 

at t o  and all ~ ( t )  for t>t, , knowledge of x(t,) and ~ ( t )  uniquely determine Q(t) for 
the same time interval. 

In fact this is an approximation as the hyrological system of a watershed is well 
known to behave in a way that is dynamic, non-linear and stochastic. Neverthe- 
less, for the moment this deterministic approximation of the physical process can 
be accepted. 

Further, non-linearity is introduced by the power relationship between over- 
land flow and the storage. This non-linearity is of a dynamic character and related 
to the turbulence processes while the first mentioned non-linearity is related to 
the structural characteristics of the watershed. 

Solution of the State Equations 

Parameter estimation - Since the parameters of Eqs. (13) and (14), summarize all 
the information about the past behaviour of the system, it can be expected that 
available information on the past behaviour of the system allows for their 
objective estimation. 

Estimation of.z(8) - From Eqs. (2) and (3) it appears that the estimation of z(e) 
involves either the knowledge of x and x, or the knowledge of x and x ,  . Let us 
define 

where r(t) = p ,(t) is the infiltration rate. This infiltration rate can be estimate from 
soil physics or hydrologic models of infiltration and q, can be evaluated utilizing 
traditional hydrograph separation methods. It is not the purpose of this study to 
present in detail these methods and their validity. Basic information and discus- 
sions can be found in classical hydrological textbooks such as Roche (1963), 
Eagleson (1970), Remenieras (1970), Overton and Meadows (1976), and others. 

The mathematical expression for both z(e) and other parameters is here 
presented. 



Suppose that r(t)  and q, ( t )  have been adequately evaluated, then z(e)  can be 
estimated from the following: 

t 

f (y(T)-q2 ( T ) ) ~ T  J 

For a given rainfall event z(Oj is thus the ratio of the volume of rainfall not yet 
discharged from subsurface storage and the total amount of water not yet 
discharged from the watershed. When calculated from past events, z(e) is a 
constant parameter for each rainfall event. Hence the mean value can be estima- 
ted for a particular watershed by: 

where n is the number of storms considered. 

Estimation of c1 .- From ground water flow theory, it is well known that under 
appropriate assumptions (Rorabaugh 1969, Dooge 1973), the contribution of 
groundwater to runoff for a uniform rate of recharge is given by 

where q = the horizontal flow per unit width and for one side of the watercourse. 

ho = the maximum elevation of water table 
T = the transmissivity coefficient 
S = the underground storage coefficient 
a  = the distance to the topographic divide of the ground watershed 

It has been shown that as t becomes large and i f (T /a2S)  t>0,2 the first term in 
the infinite series will dominate and the outflow will approximate that from a 
single reservoir (Dooge 1973). 

Taking this result into consideration and bearing in mind the knowledge of Z; 
then c, can be calculated from 



A Unified Approach to Watershed Modelling 

Thus E,, which is the coefficient of underground transformation is shown to 
depend on the transmissivity, the underground storage coefficient, the size of the 
watershed and the initial saturation condition. Hence 11 E, which corresponds to 
the time constant for this linear groundwater reservoir is related to the characteri- 
stics of he watershed by a physics based expression. 

Estimation of c p  - Among the parameters to be determined E, and k are the most 
familiar to hydrologists. These two parameters can be easily derived from the 
kinematic wave theory. Henderson (1969), Eagleson (1970), Woolhiser (1977) 
Overton et al. (1976) have discussed the governing equation of this approxima- 
tion. Following Henderson's analysis on the order of magnitude and taking into 
account the kinematic wave results, the momentum equation for overland flow 
can be written in the form: 

where 

C = the Chezy resistance coefficient or laminar resistance coefficient 
II = the wetted area of the section 
I, = the bed slope 

A = the watershed area. 

Eagleson (1970) has shown that for laminar flow k = 3 and for turbulent flow k 
= 513. However, for a typical vegetated surface the flow regime may vary 
between laminar and turbulent. Horton found that for natural surface k = 2. As 
noted by Eagleson this result is supported by the results of other investigators 
when dealing with surfaces varying from clipped grass to tar and gravel. 

The above analysis leads to the following expression for E, and k. 

Hence, E, depends on the surface characteristics of the watershed i.e. the slope, 
the Chezy's resistance coefficient which describes the effect of roughness and the 
degree of vegetated surface, the watershed area and the wetted area of the 
channel cross-section. 

The parameter k gives the indication about the degree of flow turbulence. 
Thus each parameter of the model has a precise physical meaning, and together 

they describe the dynamics of the watershed rainfall and runoff transformation. 
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Mathematical Derivation of the Solution 

The state equations of the system is now given by: 

where 

Eqs. (22) and (23) can be solved using the local inverse theorem as presented by 
Halme and Orava (1972) and applied to hydrologic systems by Afouda (1974). 
When appropriate initial conditions are found, the solution of the state equation is 
given by: 

If we call 

the linear part of Eq.(26), then 

k l  - exp { -  X 1  -rl 1 (27a) 

The kj  Kernel functions for the non-linear components are derived from the 
following convolution product 

The discharge is then given by: 

where the Hi ( t ;  T, . . T i )  Kernel functions are obtained by appropriate combina- 
tion of Kernel function kj  in accordance with Eq. (23). 
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Discussion 

The following discussion deals with the theoretical aspects of applicability. 
Whether'the developed model has a good performance in practical applications 
has yet to be proved. 

Comparison with earlier models - Most of the earlier physics-based models are 
devoted either to overland flow studies (kinematic wave theory) or to the 
transient saturated-unsaturated flow-studies. 

Nevertheless Smith and Woolhiser (1971) have presented a physics-based 
model that combines the differential equation for overland flow with infiltration 
from rainfall. The infiltration model developed in the form of Richard's equation 
was combined with the overland flow equation formulated as a cascading kinema- 
tic wave equation. The model presented in this paper allows for the use of the 
complete infiltration equation when ~ ( 0 )  is to be found for a selected rainfall 
event. Moreover, in Eqs. (13) and (14) the combination of overland flow and 
underground flow appears clearly through parameter z(0) as an internal coupling 
while in the studies of Smith et al. an external coupling was obtained between 
overland flow and infiltration. It should also be noted that Smith et al. did not take 
into account the effect of underground flow and the effect of evaporation. 

Another physics-based model that combines three dimensional transient satura- 
ted-unsaturated subsurface flow and one dimensional gradually varied unsteady 
channel flow models has been developed by Freeze (1972). But as reported by 
Natale et al. (1977), the computer implementation of the model uses programs that 
are very complex and requires a large amount of cumputer time. Moreover the 
model was concerned only with base flow generation. The model studied in this 
paper deals with the major components involved in the complex runoff process 
that occurs in a watershed. 

Parameter variations - The parameters involved in the mathematical formulation 
have been shown to have precise physical meaning. The accuracy in estimating 
the watershed behaviour are of course related to the approximations made on the 
parameters, in particular ~ ( 8 ) .  

If z(0) = 1 ;  P (t)>O the watershed response take the form of underground 
contribution 
If z(0) - 1; p (t)<O; that is Z(t) = O  then ~ ( t )  = -Eft) and r(t) = -E(t).. Assuming Q(t) 

= 0 and E = ria (8,-e,,) Eq. (30) is obtained: 

where 
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n u  is an atmosphere transfer coefficient 
0, refers to the soil moisture at the soil surface 

and e, is the surface moisture content which would be in equilibrium with the 
vapor pressure existing at elevation h above the soil surface. 

If z(e) = 0: P (t)> 0, the model corresponds to the well known Horton-Izzard 
model for urban studies. 

Ifz(e) = const.# 0: p(t)>O, for a given interval we necessarily underestimate and 
overestimate the volume of infiltration for dry and wetted period respectively. 
This is the reason why time invariant model linear (linear reservoirs IUH), as well 
as non-linear (non-linear reservoirs, Volterra series) overestimate the low flow 
and underestimate the peak. The performance of the model could be improved if 
the values of Z are considered for each appropriate subinterval. In summary the 
parameter z ( e )  together with and Ep relate the internal dynamics of the system 
to the input-output and contribute to the answer to the question D What is going on 
inside the black-boxcc . 

Advantages of the Volterra Series Formulation 

The solution of the state equations assuming a time invariant system lead to the 
Volterra' series representation of the watershed processes. This form of represen- 
tation has earlier been applied to hydrologic systems by Amorocho and Orlob 
(1961), but their result did not have widespread application because of the 
difficulties involved in the identification of the non-linear Kernel function. The 
problem to be solved was that of the non-linear deconvolution which is a 
complicated inverse problem. The formulation given in this paper is a well defined 
problem (in a mathematical sense) which lead to separable Kernel functions 
which are more easy to handle. A major advantage is that the solution can be used 
in its analytical form (directly or with the multidimensional Laplace transform), 
provided the input function is known in its analytical form. An example is given 
for the Horton-Izzard model when ~ ( t )  = P,  = const. Then 

where u(t) is a unit step function. By simple calculation and algebraic transforma- 
tion 

1 

P o2 1 1  1 1  

z(t) = .-----T t a n h [ ~ ~ '  pO2 tl and Q ( t )  = p, t a n h  [ E ~ '  p o 5 t l  
E 22 
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Conclusion 

One of the basic ideas of this study is to consider a watershed as an inseparable 
environmental unit which consists of the input- the storage - the output. Any 
combination of the action of the major components (overland, underground) must 
preserve this physical unity. It has been shown that the interaction of these 
components through a defined parameter z ( 0 )  together with a lumped formulation 
of the continuity equation preserves the environmental unity and satisfies the 
theoretical physic laws of the system. The obtained mathematical formulation of 
the system introduces the concept of a state approach to watershed modelling. 
The parameters of this model are shown to have precise physical meaning and 
they relate the internal behaviour of the system to its input - output response. 
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