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Abstract: We recently performed a series of improvement on evaluation of eigenvalues without
complicated iterations. In this work we first discuss evaluation of the lowest eigenvalue for given
systems, by which one conveniently obtains the value of the lowest eigenvalue based on the dimen-
sion and width of given matrix. We also discuss a strong correlation between eigenvalues and diag-
onal matrix elements for large matrices, by which one is able to predict eigenvalues approximately
without iterations.
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1 Introduction we explain our recent work on evaluation of lowest

eigenvalues by a statistical method. In Sec. 3 we

Diagonalization of matrices is a very common ) ) )
present the correlation between eigenvalues and di-

practice in many fields. It is important to obtain ei- . . .
agonal matrix elements. Summary and discussions

genvalues of large matrices, not only in nuclear . .
are given in Sec. 4.

structure physics, but also in many other branches

of sciences. For some cases the lowest few eigen- 2 The Lowest Eigenvalues

values are of the most interest in physics. Howev-

er, when the dimension becomes large. the diago- I 'was told the following fact for some years.

nalization becomes prohibitively difficult. Usually one does not need a very big number of it-

It is therefore interesting and important to erations to obtain exact the lowest eigenvalues by

study whether we can obtain the lowest ones and computer. The time of iteration in many cases is a-

also all eigenvalues if possible, without complicat- round or less than 50. Then there must be some

ed diagonalizations. The purpose of this proceeding clever quantities which play essential roles in the

paper is to review our recent efforts along this line. diagonalization process, although we do not know

We shall give a brief introduction to evaluation of what they are.

the lowest eigenvalue and all eigenvalues for a giv- There is a very naive idea. It is some-what

en system., hand-waving but it is almost precisely the way peo-

This paper is organized as follows. In Sec. 2 ple working on this problem: first one studies the

* Received date: 2 Sep. 2008
*  Foundation item: National Natural Science Foundation of China(10575070, 10675081); Research Foundation Doctoral Program of
Higher Education of China(20060248050) ; Scientific Research Foundation of Ministry of Education in China for
Returned Scholars(NCET-07-0557) ; Major State Basic Research Development Program of China(2007CB815000)
Biography: Zhao Yu-min(1967 —). male (Han Nationality), Funing. Hebei, China. Professor, working on the field of nuclear

structure physics; E-mail: ymzhao@sjtu. edu. cn



. 166 - i F %Y e

%26 &

average energy of eigenvalues which is nothing but
trace divided by dimension. Since it is well known
that average energy is not much related to and far
from the lowest eigenvalue, one next considers
proper modifications on the average energy.

The paper by Ratclifffd and the paper by

Margetan et al. were along this linel?.

They sug-
gested that one might use various moments to eval-
uate the lowest eigenvalues. Suppose we have the
width ¢, then one easily has a hunch that we can
subtract a quantity which is proportional to o,

from the average energy, in order to get the lowest

eigenvalue. In Ref. [37] Zuker obtained that

Ellowcs\:Efo-m . (D

where d; is the dimension of matrix in considera-
tion. He derived this formulas seven years ago.
Unfortunately, this formula does not work well.

Another interesting work is by Papenbrock
and Weidenmuellert. They noticed there exists an
approximate correlation between sigma and the
lowest eigenvalues for random interacting systems.
Namely, |E;| =~ « ¢. The factor « is determined
case by case empirically.

Yoshinaga et al. tried this problem by using
the error function method™. He applied the as-
ymptotic behavior of error function and obtained a
similar result as Zuker’s. Enlightened by this re-
sult, Yoshinaga, Arima and I suggested an empiri-

cal formula as follows
Epr =E;, — ®(d o, » (2)

where

&(d;) =+/alnd, + b,

= J(E— ED?o(E)dE,

is the width of eigenvalues of all spin I states, d; is
the dimension of spin I states, and a and b were

determined empirically to be 0. 99 and 0. 36, re-

spectively. This empirical formula was found to be
well applicable to many different systems which in-
clude fermions in a single-; shell and in many-j
shells, systems of valence protons and neutrons,
and sd-boson systems.

It is also interesting to improve Eq. (2) by
considering the third central moment of eigenener-
gies, which partly compensates the deviation from
Gaussian distribution of eigenvalues. The formula
of Eq. (2) is based on the assumption that the ei-
genvalues follow a Gaussian distribution and thus
odd central moments should be zero. However,
distributions of eigenvalues deviate from Gaussian
in many cases. Here in order to consider the skew-
ness, we assume the distribution width of eigen-
values on the left (right) hand side with respect to
E; has a very small deviation 8 from ¢, (65" =5, — ¢,
oiet =5, +¢8), and that both the left hand side and
the right hand side follow Gaussian distributions

with slight different widths. Eq. (2) becomes

E}nin:EI*@(dl) (0'2*6) ’ (3)

let us define i = | (E—E,)? p(E)dE. We obtain

E?“"E,q{l—ﬁ (‘”)3}62. 4

62 ‘o2
According to our numerical experiments, the devi-
ation of predicted results of ET™ by using Eq. (4)
from exact results obtained by exact diagonaliza-
tions can be reduced ~40% on average, in com-
parison with those obtained by the formula of Eq.
(2).

3 Correlation between Eigenvalues

and Diagonal Matrix Elements

One would be surprised at any correlation be-
tween eigenvalues and diagonal matrix elements.
Indeed, there can not be any correlation between
eigenvalues and diagonal matrix elements when the
dimension is very small, say, 2 or even for 10. Al-
so one sees no correlation if all diagonal matrix ele-

ments are equal.
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Such correlation arises when one goes to more
complicated cases. Here we discuss a many-body
hamiltonian interacting by two-body interactions.
Let us begin with Hamiltonian matrices which con-
serve the angular momentum. In Fig. 1 we present
the correlation between exact eigenvalues of spin
I=0, 2, 3, 4, 5, 6 states of ** Mg and correspond-
ing diagonal matrix elements (sorted from the
smaller to the larger values) by using the USD in-

]

teraction"®. One sees a remarkable linear correla-

tion. Assuming such linearity, one obtains

Ez:AHzi+B ) (5)
where
_ Hz_ﬁz
>, H:/D— H*
B=0—A H (6)

This means that one needs 2°"H;, H, and H? to
i=1

obtain coefficients A and B. Once A and B are
fixed, one needs diagonal matrix elements in evalu-

ation of eigenvalues successively.
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Fig. 1 Correlation between eigenvalues and diagonal matrix
elements for ** Mg. Dimension for these I states are:
D=1 161, D;—, =4 518, D;—3; =4 968, D;—, =
4 734, D;—; =3 843, D;—s = 2 799. We define r=

S(H, — H)(E* = H)

If there exists a

N/Z(Ef*““*ﬁ)z SI(H, — H)*
strong linear correlation between E{ and H; (i=1,
2, »= D), |r| = 1. One sees that 1—r<C10"* here,

suggesting the strong linear correlation.

We note without details that such correlation holds
well for two-body random systems and matrices
with all matrix elements are uniformly distributed

random numbers.

4 Summary

In this paper we present a very brief review of
our recent works on eigenvalues of two-body inter-
acting systems. First, we present an improved for-
mula to evaluate the lowest eigenvalue of given
Hamiltonian. We are able to consider the third
moment without introducing any new parameters.

We also present our recent discovery of strong
correlation between eigenvalues and diagonal ma-
trix elements. Although there are large deviations
for low-lying states obtained by using the linear
correlation, our predicted eigenvalues are very
good for high excited states. Improvement on ei-
genvalues of low-lying states is in progress.

Details of these efforts can be found in Ref.

[7].
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