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Abstract. A new class of ensemble filters, called the Dif- 1 Introduction
fuse Ensemble Filter (DENnF), is proposed in this paper. The
DEnF assumes that the forecast errors orthogonal to the firq{
guess ensemble are uncorrelated with the latter ensemble a
have infinite variance. The assumption of infinite variance

corresponds to the limit of “complete lack of knowledge” jects the observation'sThe collapse of the ensemble implies

and differs dramatically from the implicit assumption made that the forecast errors are underestimated and that the filter

in most other ensemble_fllters, which is that the foreca_st E_”'weights the first guess too heavily. Eventually, the forecast
rors orthogonal to the first guess ensemble have vanishin

h is ind q ‘ the detailed ) Yecomes so “overconfident” that the filter ignores the obser-
errors. The DEnF is independent of the detailed covarianceg o ng aitogether. Two methods for avoiding filter collapse
assumed in the space orthogonal to the ensemble space, aaa5 covariance inflationApderson and Andersoa999 and
reduces to conventional ensemble square root filters Wheﬂ)calization Hamill et al, 2001 Houtekamer and Mitchell
the number of ensembles exceeds the model dimension. T%O]). Covariance inflation attempts to avoid filter collapse

DEr!F IS well deflned_only in data nc_h regimes and |nyolves by inflating the covariance of the ensemble by an empirical
the inversion of relatively large matrices, although this bar'factor. However, covariance inflation alone cannot prevent

rier.might be circ_umvented by variational m_ethods. Two al- filter collapse if the ensemble size is sufficiently small, as we
gorithms for solving the DEnF, namely the Diffuse Ensemblewi” show. This result may be understood as follows. The full

;(alm?(n lFiIter él':l)EnKIID:I)E'?}Qg the Diffuse Erésemj)l;a Trzns— state space can be splitinto two subspaces: the space spanned
orm Kalman Filter ( ), are proposed and found 10 e ensemble, which we call the ensemble space, and the
give comparable results. These filters generally converge t%omplement to the ensemble space, which we call the null

the traditional EnKF and ETKF, respectively, when the en-g,,.0 * Generally for atmospheric applications, the ensem-
semble size exceeds the model dimension. Numerical eXPefje size is much less than the model dimension, so that the

m;]e.nkt]s demoqstrate th"’t‘)tl thKe ?EanfT“m'r}ateS f'ltlfr Conapbsleensemble does not span the full model space, and hence the
whic %Cursr']n ensenf1 he DaEmlim |_te_r_s|_orsma ensem ?null space is very large. In essence, the ensemble filters, e.g.,
slzes. AlSO, t_ e use of t € DEn to initialize a convenUo_na the ensemble Kalman filter (EnKHEYensen1994 and en-
square root filter dramatically accelerates the spin-up time&;ample square root filterippett et al, 2003, updates only

for convergence. However, in a perfect model scenario, they,qe \ariables in the ensemble space. It follows that vari-
DENF produces larger errors than ensemble square root f'lterébles in the null space are not updated, which is equivalent to

that have covariance localization and inflation. For 'mperfeCtassuming that the forecast covariance of the null space vec-

forecast models, the DEnF produces smaller errors than th?ors vanishes. Thus, no matter how much inflation is applied,
ensemble square root filter with inflation. These experiments

suggest that the DEnF has some advantages relative to the

ensemble square root filters in the regime of small ensemble 1gome papers refer to this phenomenon as filter divergence. For
size, imperfect model, and copious observations. instanceMaybeck(1979 defined the filter divergence as “the filter
underestimates its own errors, and it will not “look hard enough”
at the measurements”. Unfortunately, the term divergence also is
used in the Kalman filter literature to refer to different things. For
instance, the filter divergence refers to modeling errorAitgerson

Correspondenpe tox. Yang and Moorg1979, while it refers to computational errors biaykin
BY (xyang@cola.iges.org) (2001). To avoid confusion, we use the term ensemble collapse.
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is well established that forecast ensembles in ensemble-
sed Kalman filters tend to collapse — that is, the forecast
spread tends to shrink with time until the filter effectively re-
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this inflation only influences the ensemble space, leaving thalefined radial distance. In order to maintain the positive
variances in the null space zero and hence underestimated.definiteness of covariance matrices, the distance-dependent
The above reasoning highlights a very unrealistic propertyfunction used in the Schur product must itself be positive def-
of ensembile filters: they effectively assume that forecast erinite. This procedure can be interpreted as imposing structure
rors in the null space vanish. Consequently, observation®n the error covariance, in which case the ensemble effec-
have no impact on the null space, regardless of how muchively gives information about many more degrees of free-
the ensemble is inflated. This deficiency of ensemble filtersdom than just the ensemble space. Accordingly, covariance
deserves emphasis: if the ensemble size is small but the oldecalization changes the rank of the forecast covariance; in
servations are abundant, the observations nevertheless are rgarticular, it usually eliminates the null space (as we will
used to modify the ensemble outside the space spanned tghow). Thus, there can be no diffuse ensemble filters with lo-
the first guess, no matter how many observations are availealization, because under localization there is no null space
able that would justify such modifications. This deficiency for applying the diffuse assumption. However, localization
follows directly from the assumption that the forecast is “per- alone still allows underestimation of covariances and hence
fect” in the null space, an assumption that is grossly incorrectmost applications of covariance localization also apply co-
for atmospheric and oceanic data assimilation, in which thevariance inflation.
underlying forecast model is imperfect. The question arises The paper is organized as follows. The algorithm of
as to whether a Kalman filter can be formulated in such awayDENFs is presented in Sect. 2, and the experimental setup
as to avoid the assumption of vanishing forecast errors in thés described in Sect 3. Data assimilation experiments with
null space. In an abstract sense, a similar situation occurthe Lorenz 96 model are used to compare the diffuse ensem-
in the initialization of a Kalman filter — the forecast covari- ble filters and the ensemble filters in Sect. 4. Initialization
ance matrix generally is not available at the first time step.using DETKF is presented in Sect.5. The paper ends with
To deal with incompletely specified initial condition&ns- the conclusions and discussions in Sect. 6.
ley and Kohn(1985 proposed a method that is equivalent to
assuming a diffuse prior distribution for the unspecified part
of the initial state. A distribution is said to be diffuse if its 2 Derivation of the Diffuse Ensemble Filters
covariance matrix is arbitrarily largel¢ Jong 1991). The
diffuse assumption often Corresponds to the limit of com- In this section we review traditional ensemble ﬁlters, use a
plete lack of knowledge in Bayesian analysis, from which Simple example to illustrate some differences between dif-
the Kalman filter can be derivedaybeck 1979. Ansley  fuse and traditional filters, and then derive the Diffuse En-
and Kohn(lgga andde Jong(lggj) discuss the extension semble Kalman Filer (DEnKF) and the Diffuse Ensemble
of the Kalman filter to partially diffuse covariance matrices. Transform Kalman Filter (DETKF). We end this section by
The purpose of this paper is to deve|op an extension ijiSCUSSing additional generalizations of the diffuse filter.
ensembile filters to allow for arbitrarily large forecast errors. )
Our fundamental assumption is that the forecast errors or2-1 The Ensemble Transform Kalman Filter (ETKF)

thogonal to the ensemble are uncorrelated with the errors in .
The Ensemble Transform Kalman Filter (ETKF) was pro-

the ensemble, and are infinitely large. We call the resultin , - :
y arg gposed byBishop et al.(2001) and clarified byTippett et al.

filters Diffuse Ensemble Filter6DEnFs). We propose two ) ; 7 < ’ )
specific algorithms called thiffuse Ensemble Kalman Fil- (2003. We briefly review this filter to establish notation and

ter (DEnKF) and theDiffuse Ensemble Transform Kalman p_rovide a r(_aference for comparison. The standard_ Kalmar_1

Filter (DETKF). Our derivation of the DEnFs is essentially " /I€" équations for the mean update and the analysis covari-

independent oAnsley and Kohr(1985 andde Jong199]), ~ &nce matrix areNlaybeck 1979 p117)

as it is tailored to the special needs of an ensemble Kalman . _1

filter. It should be recognized, however, that the derivation¥® =¥/ + PHT (R + HPHT) (0 - H\iff) (1)

of a diffuse filter is subtle. For instance, the filtering and

limiting operations are not interchangeable, as notedrs¢ P* =P — PHT (R + HPHT)

ley and Kohn(1985. Also, early derivations of diffuse fil-

ters were numerically inefficient. In the derivation presented\yhere ¥ is the mean state vectoR is the observation er-

here, the proof is general, direct, and yields a closed form sefor covariance matrix is the observation operatd?,is the

of equations. forecast covariance matrix, amdis the observation vector.
Another approach to avoiding filter collapse is covariance| et the difference between thieth ensemble member and

localization. Covariance localization attempts to reduce thqhe ensemble mean be denoted by the M-dimensional vector
spurious correlations that inevitably arise from sample basequ_ For ensemble siz#, let

estimates by taking the Schur product between the sample
based estimate and a distance-dependent function that varies 1
from unity at the observation location to zero at some pre-" = /v —1 [a1az ... an]. ®)

1
HP, (2)
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Then an unbiased estimate of the forecast covariance matrithe situation in which only two observations are available.

is Although general observation networks can be considered,
- this extra generality does not lead to substantial insights in
Pr=AA". (4) this 2-D problem. Accordingly, we make the simplifying as-

The ensemble Kalman Filter is obtained by substituting thesumptlons thatf andR are diagonal:

sample covariance matrig for P in (1) and @). By invok- (10 R_("E 0 10
ing the Sherman-Morrison-Woodbury formula, it is straight- "=~ — \0 1 “\0ry/° (10)
forward to show that the resulting analysis covariance matrix h vsi der th . .
can be written as The mean analysis under these assumptions is
TuTr-1ya) L AT ¥4 =G/ 4 pHT (R + HPHT)_l (o— H\i!f) (11)
Pa=A(I+AH R™ HA) AT (5) =
. , arnasT A PE 0 _ g/
An analysis ensemble matr&® such thaP* = A“(A%)" is S -0 N T Or — ¥ (12)
derived by setting 7 0 2] \oy -0/
-1/2 - _
AY = A (l + ATHTR—lHA) , (6) Ol 4 e (oE - \pg)
. . . o (o -9) ) )
where the matrix in parentheses is a square root matrix. The N T pnry N

square root matrix can be derived by computing the €IgeNs 1 re the mean forecast is denotied — @ &), Sim-
vector decomposition E *N

ilarly, the covariance matrix update is

TyTp-1 _ T 1
(1+ATHTR tHA) = DY, D pe_p_pyr (H'PH+R) "HP (14)
whereY is unitary and is a diagonal element with positive P2
. . PE — £ 0
diagonal elements, and then setting = rE+PE ) (15)
_ PN
| £ ATHTR2HA) 2 = yD-1/2yT 8 G
( + ) o ’ ®) Let us first consider the Kalman Filter solution for an en-

semble size of two. In this case, the forecast covariance ma-
trix is rank-1. If pg is identified as the variance of the en-
semble, thempy=0. The mean update in this case is

As noted bySakov and Okg2008, the symmetric form of
the square root defined iB)preserves the ensemble mean.
We draw attention to the following fact. It is evident that

the mean update is pre-multiplied By and that the covari- Gl 4 e (0 _ @f)
ance update is pre- and post-multiplieddgndAT, respec- ¢ = < E PE+’ff E E ) , (16)
tively. It follows that the mean and covariance updates occur Yy

only in the subspace spanned by the first guess ensemblg\,hile the covariance update is
Therefore, the ensemble Kalman Filter does not modify any

variable in the space orthogonal to the ensemble. This result PE— PE

is tantamount to assuming that the forecast covariance matri®” = 6“”5 0
vanishes in the null space, which of course is highly unreal-

istic, and the filter is overconfident in the null space. As we This solution reveals two key characteristics of the ensemble
will see, this characteristic of the ensemble square root filtebased Kalman Filter: the analysis increment (i%e?—¥ /)

(17)

(ESRF) distinguishes it from the diffuse filter. is confined to the ensemble space, and the covariance matrix
. update (i.e.P?—P) is confined to the ensemble space. This
2.2 Asimple example means that the forecast in the null space is not modified; that

In this section, we present a simple 2-dimensional exampl s, \IJX’:@]C' The limit py—0 implies that the forecast in
. ' P >Imp . ) ‘AMP'&he null space has zero uncertainty, or equivalently that the
to illustrate some key properties of various filters. Without L N o . .
orecast is “perfect.” This assumption is obviously unrealis

loss of generality we use a basis set in which the forecas{. . . S . ) .
. 2 ) ic in genuine data assimilation problems in which nature is
covariance matrix is diagonal:

unknown.
pE O Let us now consider the diffuse limit, which corresponds
P= . 9) he limi his limit i il I
0 pw to the limit py —oo. This limit is easily evaluated as
Shortly, we will interpre’FpE as the variance in ensemple Je — ‘I/'E}: + PEPfrE (oE - \IJé) . (18)
space antpy as the variance in the null space. Consider ON
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and SincePg is not invertible, we cannot simply substitiRe-Pg
1 in these equations as we did for the standard form of the
[T 0 Kalman filter equations. Accordingly, we invoke a fictitious
Pa = rE PE . (19) . P
0 ry ensemble whose covariance matri®jg such that total fore-

cast covariance
The solution shows that the update in ensemble space is ex-
actly the standard KF solution, while the update in the nullP = Pg + Py (25)
space is replaced by the appropriate observation. This result
is sensible, since the diffuse limit implies that the forecastis nonsingular. The first assumption of the diffuse filter is
is completely uncertain and so the analysis should reduce tthat Pe andPy are orthogonal; i.e PePn = PyPe = 0.
the observation. In contrast to the ensemble based Kalmaihhis implies thaPy is of the form
Filter, the update occurs in both the ensemble space and the
null space. Pn = UNZUY (26)

2.3 The Diffuse Ensemble Filter where ¥ is a nonsingular matrix specifying the covariance

matrix in the null space. Under this assumption the inverse
The basic assumption in the DEnFs is that the forecast errorforecast covariance matrix becomes

orthogonal to the first guess ensemble are uncorrelated with

the ensemble and have infinite covariance matrix. With thisp-1 _ <SEZ 0 ) uT

assumption, we will derive the algorithm to update the en- 0 »1! ’

semble using the Kalman Filter. Let the SVD of thex N

matrix A be The second assumption of the DEnFs is that—0. One
way to interpret this limit is to definBy=aUy X’UL , where

A =UsV", (20) ¥’ is a constant, nonsingular matrix, and then take the limit

hereS i MxN di | matri h di | elo. 40 In this casey ~1— 0 regardless of the detailed struc-
WREres 15 an M>cV diagonal matrix, Whose clagonal €1€- o o5 that is, the limit is independent of the details of

ments specify the non-negative singular \{alues, ordergd frorr3he forecast covariance in the null space. The diffuse limit is
the largest to smallest, atdlandV are unitary (but having

respective dimension® x M and N xN). At most,N — 1
diagonal elements 08S’ are nonzero, since the ensemble 4 SEZ o\, T 5
mean has been subtracted from each member. Assume th&tir = Y < 0 0) U" =UeS"Ue.
exactly N — 1 singular values are nonzero. Furthermore, let

the singular vectors be ordered such that the Airst 1 vec-
tors are those with non-zero singular values. This orderin
allows us to partition the singular vector mattixas

(27)

therefore

(28)

The substitutiorP~1— Pgifl in (23) and @4) may present

Yrroblems because the matk¥ R-1H + P~ may be singu-
lar and therefore has no inverse. We show in the appendix
U=[Ur Uy], (21)  thatanecessary and sufficient conditionf6rto be nonsin-
gular is that the auxiliary matrix

whereUg denotes thé/ x (N — 1) matrix whoseN — 1 col-
umn vectors are the singular vectors associated with non-zerd/ = UJHTR™HUy (29)
singular values, andy denotes the matrix containing the re-
maining Singu]ar vectors that span the null space. The foreShOUId be nonSingUIar. The restriction thatbe invertible

cast ensemble covariance matrix can then be written as ~ €an be interpreted as requiring that the observations project
onto every degree of freedom in the null space. Loosely

Pe = UgSS' UL = UgS2UL (22)  speaking, ifW is singular, then there exists a vector in the
null subspace that is unobserved. This restriction is sensible

whereSe is anN — 1 dimensional, square, diagonal matrix in fight of the fact that the null space has no model infor-

whose diagonal elements equal the non-zero singular valuegation under the diffuse assumption, so the only other in-

of A. ) ) ) ) ~ formation available for updating the null space must come
To derive the diffuse ensemble f|lter, we start with the “in- from observations. SinckB? is nonsingu'ar in this case, it

verse” form of the Kalman filter equationBlaybeck 1979 s fy|| rank, indicating that the mean and covariance updates
Sect. 5.7), also known as the information filter, which are  are not confined to the ensemble subspace. This represents a
. 1 . fundamental difference with other ensemble Kalman Filters.
=0/ (HTR_lHJrP_l) HTR™ <O—H‘if/) (23) To summarize, the mean update equation for the DEnF is
1

P =(HTR™H +P) . @4 ga_gry (HTR’1H+P(;})_1HTR*1 (o-H¥7). (30)
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and the covariance update, derived by substitut#®) into inverse is taken. Furthermore, this extra term has the effect

(29, is of inflating the analysis ensemble (i.€;; — P* is positive
1 semi-definite). This inflation reflects the fact that the DETKF
p2 = (HTR—lH + UESEZUE> . (31) accounts for uncertainty in the null space, whereas the ETKF

effectively assumes the forecast in the null space is perfect.

The fact thaP“ is full rank whenW is full rank raises the =~ The DETKF and ETKF become identical if
question as to how to define an analysis ensemble. This ques-, ,
tion does not arise in traditional EnKFs because the analysi§J eH R™HUN =0, (34)

and forecast span exactly the same space and hence can Bgcause in this case the “extra” term B8) vanishes. It is

represented by the same nqmber of basis vectors. In COMensible that the DETKF and ETKF have the same ensem-
trast, the DEnF may start V.V'th a sma!l ensemble but Iead%)le spread when (34) is satisfied, because the observations in
to a full rank analysis covariance matrix that cannot be ®Pthe ensemble space and null space are uncorrelated, in which
resenteo! by an ensemble size smaller than or qua} to thc‘?ase observations in the null space provide no information
model dimension. Of the many approaches to deriving an., updating the ensemble space

ensemble filter that can be conceived, we present two: one The square root form of the DETKF is obtained by solving
based on perturbed observations, and one based on proje%—e eigenvalue decomposition

ing the analysis into the ensemble space. At the end of this

section we discuss alternative solution methods, including 84 ATHT (R*lfRleuNW*luLHTRfl) HA=YDYT. (35)
method that relaxes the requirement thabe nonsingular.

whereY is unitary andD is a diagonal matrix with positive
2.3.1 The Diffuse Ensemble Kalman Filter (DEnKF) diagonal elements, and then defining

Houtekamer and Mitchel{1998 and Burgers et al(1998 a _ -iyT
proposed what is now called the Ensemble Kalman FiIterAd'f =AYDEY (36)
(EnKF), which is characterized by randomly perturbed ob-which givesPg; = Agif(Agif)T_ If ensemble covariance is
servations. By analogy, we propose the Diffuse Ensembleull rank, Uy equalsO, and the DETKF reduces to the En-
Kalman Filter (DENKF), in which the ensemble update for semble Transform Kalman Filter (ETKF). Thus, the DETKF
thei-th ensemble member is defined as does not converge to the ensemble square root filter (ESRF)
. 1 of Whitaker and Hamil(2002 as ensemble covariance goes
wi=w/+ (HTR H+UESE2UE) HTR™! (01'—""1’,/[)7 (32) o full rank, since the latter filter differs from the ETKF.

wherei = 1,...,N, 0, = o+r;, r; ~ NO,R), and 24 Alternative diffuse filters

N(u, o) denotes a Gaussian distribution of mearand

variances 2. If the forecast covariance matrix based on the We emphasize that the DEnKF and DETKF require invert-
ensemble is full rankJy equals0, and the DEnKF reduces ing matrices of the order of the model dimension. For atmo-
to the EnKF. Note that the analysis increm@l;ft—\lf,{ ofthe spheric and oceanic models, this dimension can easily exceed
DENKF is not restricted to the ensemble space, in contrast td00 000, which is clearly impractical. However, the DEnKF

the EnKE. might be solvable using an equivalent variational method,
just as large scale data assimilation problems are solved us-
2.3.2 The Diffuse Ensemble Transform Kalman Filter ing variational methods at operational centétnker et al,
(DETKF) 2000. As is well known Maybeck 1979 p. 234), the mean

update of the Kalman Filter equations minimizes the cost
A deterministic diffuse filter can be derived by analogy with fynction

the ETKF (see SecR.1). In this case, the mean update is T

given by the same equation as in the ETKF, nam8@).( L = (o-HW¥)' R (o—HW¥) + (\if—\ilf) p-t (\iﬂ—\ilf). (37)
However, instead of using the full analysis covariarg®,(

we project P onto the ensemble space. This projection im- The first term can be interpreted as a “goodness of fit", since
plies that the ensemble is updated only in the space spanngtimeasures how close the state is to the observations, while
by the first guess ensemble, just as in the ETKF. We show irthe second term is a penalty function, since it increases with
the appendix that the final analysis update equation for thehe distance between the state and first guess. Under the dif-
DETKF is fuse assumption, this cost function becomes

Pgif:A[|+ATHT(Rfl—RleuNW*luLHTR*)HATlAT. (33) L:(o—H\il)TR‘l(o—H\fl)—o—(UE(\fl—\iﬂf))TSEZ(UE(\il—\ilf)>. (38)

Comparison of this equation with)reveals that the DETKF  The latter cost function differs from the former in that the
differs from the ETKF by an extra term in the matrix whose penalty function is evaluated only in the ensemble space. The
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advantage of minimizing this cost function is that it can be The ensemble filters used here are the EnKIEwénsen
solved with standard conjugate gradient methods without ex{1994 and the ESRF o¥Vhitaker and Hamill2002. The
plicitly inverting the matrixW. Unfortunately, the resulting initial ensemble members for the first data assimilation ex-
solution gives only the mean update; how one can 83g ( periment are generated by adding independent, zero mean,
and @38) to generate an ensemble filter is unclear. normally distributed random numbers of variance 1.0 to the
Another question is whether the restriction tilatbe non-  climatology of the long run with 30 000 time steps. The co-
singular can be relaxed. One theoretical barrier to defining avariance inflation for all experiments in this study, when ap-
diffuse limit whenW is singular is that it leads to a contra- plied, is the adaptive covariance inflation algorithm proposed
dictory situation. Specifically, singula implies that nei- by Anderson(2007) or constant inflation4Anderson and An-
ther the forecast ensemble nor the observations constrain @erson 1999. The localization applied here is the fifth or-
certain space. Indeed, it is possible to show thas in- der polynomial function ofGaspari and Cohii1999 with
dependent of the null vectors &Y, indicating thatL does  half-width c. Localization half widthke is 10 relative to the
not constrain these vectors. Now, if neither the forecast nomodel domain size 40. If the distance between the observa-
the observations constrains part of the null subspace, then ation and the state variable is greater thantBen the localiza-
what basis can one update this space? The solution to thigon function is zero, which implies that the observation has
problem is to apply the diffuse assumption only to the partno impact on the state variable; otherwise, it approximates a
of the null space that is constrained by observations. ThisGaussian. The root mean square error (RMSE) is computed
can be accomplished by splitting the null space itself intoas the root mean square of the difference between the analy-
two parts, one constrained by observations (identified by thesis and the truth over the 40 grid points and from model time
range ofW), and one unconstrained by observations (identi-steps 3000 to 6000.
fied by the null space dfV). Then, the diffuse assumption To test the consistency between observations and filter out-
can be applied to the subspace that is constrained by observaut, we use the fact, as noted tWdybeck 1979 p229), that
tions, while the “perfect model” assumption can be appliedthe Kalman filter predicts that the innovation vector
to the subspace that is unconstrained by observations. This

alternative diffuse filter will not be discussed further in this Z=0— H¥/ (43)
Paper. is a white Gaussian sequence with zero mean and covariance
matrix
3 Experimental setup
C=HPH” +R. (44)
The model used here is the Lorenz-96 modeairénz and
Emanuel 1998, which is governed by the equation This fact allows us to construct @nnovation consistency
dx function (ICF). Specifically, if this assumption is correct,
d_tl = (Xip1 — Xi—2) Xi—1 — xi + fo. (39)  thenthe quadratic form
wherei = 1...J with cyclic indices. Here, Jis 40 any  ICF=2"C™'z (45)

is 8.0. The consecutive model states are obtained by inte- ] o .

grating the model forward with the time interval 0.05, and Should have a chi-square ld|str|but|on with degrees of free-
a fourth-order Runge-Kutta numerical method is applied atdom equal to the rank &= (Johnson and Wicheyi2002
each model time step. The truth is one single integration ofR€Sult 4.7). The above quadratic form is essentially the log-

the model. The observational data set was constructed by;kelihood function, aside from irrelevant constant and multi-
adding Gaussian white noise with zero mean and unit variPlicative termsaybeck 1979 p234). The 2.5% and 97.5%

ance to the truth at each of the 40grid points, thereby pro_thres:holds for a chi-squared distribution with 40 degrees of
ducing 40 observations at each time step. freedom are 24.4 and 59.3, respectively. Accordingly, the in-

In realistic data assimilation, the model is imperfect due tonovation vector is deemed inconsistent with the filter if ICF

model errors, e.g., uncertain model parameters. In this study@lls outside the interval (24.4,59.3) more than 5% of the
we will conduct some data assimilation experiments with antime- In the case of the DESRF, the evaluation of ICF is not

imperfect model, defined as straightforward sincé:_bec_:omes un_bounded. The_z evaluation
J of ICF for the DESRF is discussed in the appendix and shown
Xi Xi to have a chi-squared distribution with 9 degrees of freedom
— =it1—Xxi—2)xi-1— —— + fo+ fi, 40 ‘ !
dt o ' ' 1.0+ 4; fot Ji (40) (i.e., 40 - (30 + 1)= 9) for ensemble size 10. The 2.5% and
where the dissipation parametetsand forcing parameters 97-5% thresholds for a chi-squared distribution with 9 de-
f; are randomly specified according to grees of freedom are 2.7'ar'1d 19, respectively. If the innova-
. tion vector falls outside this interval more the 5% of the time,
fi ~NO.4.i=1...J, (41)  then we conclude that the innovations are inconsistent with
d; ~# N@0505),i=1...J. (42) the filter.
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4 Numerical results forecast covariance matrix for 10 ensemble members with
and without covariance localization. Without localization,
Figure 1a—d shows a typical result for the truth, observationthe covariance matrix has 9 nonzero eigenvalues and 31 zero
forecast, and analysis by the ensemble square root filter atigenvalues, which corresponds to the size of the ensem-
one grid point in the Lorenz-96 model. Note that the blue ble space and null space respectively. All eigenvalues are
and green curves are superposed and undistinguishable. Th@nzero when the covariance localization is applied, which
innovation consistency function (ICF) is shown in Fig. 1e-h implies that the localized covariance matrix is full rank and
(for a longer time period). Note that the two ICF thresh- hence the null space is zero. The eigenvalue spectrum slope
olds in panels e, f, and g are undistinguishable since ICFs args deeper when the localization half width is larger. Note
much larger than the two thresholds. Inspection of Fig. 1e—tthat covariance localization also intends to reduce sampling
shows that the innovations are consistent with the filter onlyerrors.
if both covariance inflation and localization are applied (i.e., To investigate the sensitivity of the results to ensemble
the ICF lies between the two dashed lines only in Fig. 1h).size, we show in Fig. 4a the performance of the ESRF and the
In other cases, the innovations are inconsistent with the fi-DETKF, with inflation, as a function of ensemble size. For
ter. More importantly, the ensemble collapses in the caseshe ensemble size 41, there is no null space, so the DETKF
illustrated in Fig. 1a—c — the analysis is weighted too heavilyis identical to the ETKF, and the values of RMSE for the two
toward the model forecast, allowing the analysis to divergefilters are almost the same (the small difference arises from
from the observations. Interestingly, the ensemble squarehe fact that the ESRF afhitaker and Hamil(2002) differs
root filter with just localization still diverges (Fig. 1c and g) from the ETKF). We see that the RMSE for the ESRF de-
even though there is no null space. This may be due to thereases dramatically and eventually the filter converges after
model non-linearity and underestimation of covariances by15 ensemble members. This implies that inflation alone can
the sample ensemble. allow the filter to converge if the ensemble size is sufficiently
The results for the DETKF are shown in Fig. 2a and c. large. Equivalently, if the ensemble size is too small, then
The figures show that the amplitudes of the innovation vec-inflation alone is not enough to prevent filter collapse. Thus,
tors produced by the DETKF are too large relative to thatfor small ensemble sizes relative to the model dimension, the
assumed internally by the filter. However, in this case, thereDETKF may be an attractive alternative to the ETKF.
is no ensemble collapse. Instead, the analysis is weighted One can argue that the above test is not completely fair
too heavily to the observations. Consequently, the analysibecause the dynamical model is perfect in the sense that it
reveals much more high frequency noise than the truth, owis identical to the model that generates the truth. Conse-
ing to the white noise in the observations. Just as with thequently, the first guess of the dynamical model is very good,
ensemble filters, the DETKF might be improved with covari- and therefore a filter that reduces to the first guess in the null
ance inflation. Accordingly, we apply covariance inflation to space may perform preferentially better than a filter that does
the forecast ensemble (we do not inflate the null space conot. Accordingly, we consider a new test by using the imper-
variances, since they are already inflated by the diffuse limitfect model ¢0) to generate forecasts, but use the same set
assumption). The ICF when covariance inflation is applied toof observations generated by the original mo@$)( Note
the DETKF is shown in Fig. 2d, which reveals that inflation that the adaptive covariance inflation tends to be larger in the
does indeed improve the consistency. It turns out that inflaimperfect model case to account for model errdkader-
tion also improves the RMSE of the analysis (not shown). son 2007. The resulting average RMSE as a function of
In order to avoid ensemble collapse due to the finite en-ensemble size is shown in Fig. 4b. Compared to the perfect
semble size and model non-linearities, two common meth-model scenario, the performance of the ESRF is dramatically
ods, covariance inflationAfhderson and Andersori999 degraded, especially for small ensemble sizes, while the per-
and localization Klamill et al, 2001 Houtekamer and formance of DETKF does not change much. This implies
Mitchell, 2007), are usually applied. The diffuse limit can that DETKF outperforms the ESRF without localization for
be interpreted as an extreme example of inflation for the nullthe imperfect model scenario.
space. Yet, even with infinite covariances in the null space, Figure 5a shows the RMSE of the DEnKF and the EnKF
the diffuse filter still diverged. Similarly, in the ESRF with with inflation as a function of ensemble size. For the ensem-
localization, there is no null space, yet the filter still diverges. ble size 41, there is no null space, so the DEnKF is identical
Thus, an interesting conclusion from the above results is thato the EnKF. The RMSE for the EnKF decreases dramatically
the filter converges only when the covariance of both the en-and eventually the filter converges after 20 ensemble mem-
semble space and the null space are inflated — inflating jusbers. When the ensembile size is smaller than 16, DEnKF per-
one subspace is not enough to avoid filter collapse. forms better than EnKF. This implies that the diffuse EnKF
Covariance localization can not be implemented in the dif-outperforms EnKF in the regime of small ensemble sizes.
fuse ensemble filters because it usually eliminates the nullThe RMSE of EnKF is larger than that of ESRF (Figs. 4a and
space by rendering the forecast covariance matrix full rank5a), and the RMSE of DEnKF is also larger that of DETKF
Figure 3 shows the minimum spectrum of eigenvalues of thg[Fig. 5b). This indicates that sampling errors from perturbed
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Fig. 1. Time series based on the Lorenz 96 model of the truth (red), the model forecast (green), the analysis (blue) and the observation (plus)
at one grid point foa) ESRF without inflation and localization, b) ESRF with inflation only, c) ESRF with localization only, and d) ESRF

with localization and inflation. Time series of the innovation consistency function (ICF) for e) ESRF without inflation and localization, f)
ESRF with inflation only, g) ESRF with localization only, h) ESRF with localization and inflation. Ensemble size is 10 for all experiments.
Localization half widthc is 10 relative to the model domain size 40. Red dashed line indicating the threshold value of ICF.
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Fig. 2. Time series based on Lorenz 96 model of the truth (red), the model forecast (green), the analysis (blue) and the observation (plus) at
one grid point for(a) DETKF without inflation,(b) DETKF with inflation. Time series of the innovation consistency function (ICF)dpr

DETKF without inflation,(d) DETKF with inflation. Ensemble size is 10 for all experiments. Red dashed line indicating the threshold value

of ICF.
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Fig. 3. Minimum of the ordered eigenvalues of the forecast covari- Ensemble Size

ance matrix for 10 ensemble members with and without covariance
localization. The minimum is obtained from assimilation time steps

A . _ Fig. 4. The root mean square error (RMSE) as a function of en-
3000 to 6000, and localization was applied é110 andc=20, as . - .
indicated in the figure. Note that all 31 zero eigenvalues for 10 en-Semble size for the ESRF with inflation (dashed) and the DETKF

semble members without localization are set to 4for plotting with inflation (solid) using thea) perfect andb) imperfect mod-
purpose els. Results are averaged over the 3000 to 6000 assimilation time

step.

observations in both EnKF and DEnKF degrade the perfor-
mance of filters. This is the reason that in this study we focus
on the performance of DETKF, rather than DEnKF. 2r

T T
EnKF
= = =DEnKF |]

~ <

5 Initialization using DESRF 5 10 15 20 25 30 35 40

:
DETKF
- - = DENKF | {

Originally, the diffuse Kalman filter was designed to initial- i ®)

ize the Kalman filterde Jong1991; Koopman 1997). Anal- S I S
ogously, DETKF can be applied to initialize the ESRF. Here, 05-
we first run the DETKF for one time step to get the analyzed ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
ensemble mean and perturbations, and then these optimal en- s 10 15 20 25 30 35 40
semble members are used to initialize the ESRF. Note that in

this section the root mean square error (RMSE) is defined as.

Elg. 5. The root mean square error (RMSE) as a function of en-

the root mean square of the difference between the analys'gemble size fofa) the EnKF with inflation (solid) and the DEnKF

and the truth over the 40grid points. Figure 6a shows the i inflation (dashed)(b) the EnKF with inflation (dashed) and
RMSE as a function of assimilation time for the ESRF with he pETKF with inflation (solid) using the perfect model. Results

and without using DETKEF initialization with 20 ensemble are averaged over the 3000 to 6000 assimilation time step.
members. The ESRF with standard initial ensembles of ran-

dom Gaussian noise perturbations converges slowly to the

optimal level of RMSE at around 500 assimilation time steps,uncorrelated with the latter ensemble, and are infinite, corre-
while the ESRF, initialized with DETKF, converges rather sponding to complete lack of information. Thus, in terms of
quickly to the optimal level of RMSE at round 50 assimila- the forecast covariance matrix in the null spRgg ensemble
tion time step. After 500 assimilation time step, the RMSEsfilters assum&y—0, while diffuse filters assumigy — co.

of these two different ensemble initializations are indistin- The limiting form of the DEnF can be derived in close form
guishable. The same experiment with 10 ensemble member@nd does not depend on the detailed covariance in the null
plus localization reveals the similar results (Fig. 6b). This space. Importantly, the ensemble update in the DENF is not

implies that initialization using DETKF accelerates the ini- confined to the space spanned by the first guess ensemble, in
tial spin-up time for the ESRF. contrast to ETKF or the EnKFEevensen1994 Burgers et al.

1998 Bishop et al. 2001 Tippett et al, 2003. Two diffuse

filters are derived in this paper: one based on perturbed ob-
6 Summary and discussion servations called the DEnKF, and one based on a determinis-

tic square root filter called the DETKF. The DEnKF and the
This paper proposed a new type of filter called the Diffuse DETKF generally reduce to the EnKF and the ETKF respec-
Ensemble Filter (DEnF). The DEnF assumes that the forecagively, when the ensemble size exceeds the dimension of the
errors in the space orthogonal to the first guess ensemble araodel, because in this case there is no null space in which

- -
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20 members without localization The DETKF also was found to dramatically accelerate the
o ESRF (DETKF initialization) spin-up time of the ESRF. This result is consistent with the
------ ESRF I study of Zupanski et al(2006, who found that the com-

- -~ DETKF monly used initial ensemble of uncorrelated random pertur-
bations for the ESRF converged slowly, while initial per-

R turbations that had horizontally correlated errors converged
1mﬁ«w,:'n,d‘,!-*,.,&-'\_ft,n."n',rlv‘,:»\m'\’r = faster. Kalnay and Yang(2009 also found that the spin-
0 e T e e ahis up time of EnKF is longer than the corresponding spin-up
0 200 400 600 800 . . ..

10 members with localization time in varlat|onal'methods, and they proposed a scheme to
— ‘ ‘ accelerate the spin-up of EnKF applying a no-cost Ensem-
ble Kalman Smoother, and using the observations more than
once in each assimilation window in order to maximize the
initial extraction of information. We note that the DETKF
e o still requires a guess for the initial condition and error co-
M .,”,,\,\,,.h\,”“,;‘\r;.\,,i;*.‘:_.,},v\‘.,,\\‘, variances, unlike the diffuse Kalman filtedlg Jong 199%;
Koopman 1997).

0 200 400 600 800 A fundamental limitation of the DEnFs, as formulated
Assimiation time here, is that it requires a relatively large number of obser-

Fig. 6. The root mean square error (RMSE) between analysis ana/atlons. The preC|se' cond.ltlon is that .the matfkdefined i
truth as a function of assimilation time for the ESRF with DE- IN (29) needs to be invertible. For this operator to be in-
TKF initialization (solid) and with random initial conditions (dot- Vertible, the observations must be sufficiently numerous as

ted) using(a) 20 ensemble members plus constant inflation andto constraint the analysis in the null space. This constraint is
(b) 10 ensemble members plus constant inflation and localizationa natural consequence of the diffuse assumption — since the
RMSE of DETKF (dashed) is plotted for reference. The inflation forecast is completely uncertain in the null space, the only
factor is 1.08 for (a), and 1.05 for (b). other information available for specifying the assimilation is
the observations. That is, if neither the forecast nor observa-
to apply the diffuse assumption. The diffuse limit is well de- tions are available in the null space, then there is no basis for
fined only in observation rich regimes (more precisely, theestimating the corresponding state. With the emergence of
matrix W defined in R9) is invertible). In the null space, copious data from satellites, this constraint might be satisfied
the analysis produced by the DESRF is strongly coupled tdor realistic atmospheric data assimilation. It is possible to
the observations, consistent with assuming infinite forecasteneralize the DEnFs to situations in whigh is singular,
covariance in this space, whereas the analysis produced byut this approach was only outlined in this paper.
traditional filters is strongly coupled to the first guess. The limitation thatW be invertible is not only a theoreti-
Numerical experiments presented in this paper demon<al limitation of diffuse filters, but also a practical limitation,
strate that the DETKF and DEnKF successfully prevent filterbecause the dimension of this matrix is approximately equal
collapse for small ensemble sizes. Unfortunately, the amplito the model dimension minus the ensemble size. For atmo-
tude of the innovation vectors produced by these filters arespheric or oceanic models, this dimension can easily exceed
too large relative to that assumed internally in the filters. In100 000, which is clearly impractical at the present time. We
addition, the analyses produced by the diffuse filters havebriefly described a variational solution for the DETKF that
significantly larger error than those produced by the ESRFavoids inversion oW.
with inflation and localization. Inflating the ensemble fore- A question relevant to all ensemble filters is whether the
cast covariance in the DETKF reduces the analysis errorsgrrors are treated appropriately across update steps. For in-
but does not reduce them as much as the ESRF with inflatiostance, a vector may project in the ensemble space at one
and localization. To investigate the impact of using an imper-time and project in the null space at the next time. It seems
fect forecast model, we conducted assimilation experimentsinrealistic to treat the vector as completely unknown at the
using a forecast model in which the forcing and dissipationsecond step even though it formerly had finite variance at the
parameters were perturbed relative to the model that geneffirst step. An equally compelling question arises with respect
ated the truth. We found that the performance of the ESRRo ensemble filters — the vector that projects in the ensemble
was significantly degraded by the presence of model errorsspace first and then in the null space second is assumed to
whereas the DETKF was not since it is less dependent orhave finite uncertainty at the first step and vanishing uncer-
the first guess. These results suggest that the DETKF catainty at the second step. In either case, filter performance
outperform ESRF without localization in the more realistic might be enhanced by accounting for time correlation in the
case of small ensemble size and imperfect model, providedorecast errors, perhaps through an appropriate prior distri-
enough observations are available to render a well definedution.
diffuse limit.

RMSE

RMSE
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The fact that diffuse filters do not perform as well as the It turns out thatW also is a necessary condition By to
ESRF with inflation and localization is instructive. In the exist; that isP, is nonsingular only ifW is nonsingular. To
DETKF, the covariances in the null space are inflated whileshow this latter fact, we invoke standard theorems about the
the covariances in the ensemble space are not. Conversely, determinants (especially of partitioned matridebnson and
the ESRF with inflation only, the covariances in the ensem-Wichern 2002 p. 204) to obtain
ble space are inflated while the covariances in the null space

. . _ 5T 2 157> 5T T 2\ 5,75 -1
are not. Neither case produces as good an analysis as te:! = 12e2e+Sp 1 7 1ZyIn =2y 2k (zFze+s®) ziza ™ (AS)

ESRE with both. infl_ation a.nd localization. Presumably, the  _ 717, 52171 (| 7y (ZEZEJFSEz) ZZ-) Zy™t  (A6)
benefits of localization derive from the fact that the forecast o
errors of the system actually do have spatially local corre- = [ZLZz+S;27Y1z% (|+ZES%Z§) Zyl™t (A7)

lations. In other words, the first guess ensemble really does
contain information about the null space, even though itis or-SinceZ%Z ¢ + SEZ is positive definite, it is invertible and the
thogonal to it. It would be interesting and more consistent tofirst determinant on the right side exists. Turning now to the
develop a filtering scheme that imposes this structure in thesecond determinant, the mattix- Z ;S22 % is positive defi-
prior distribution of the forecast errors, rather than impose itnite and so its inverse, calli, exists and also is positive def-
empirically after the fact through the Schur product. Perhapsnite. It remains, then, to show thaf,BZ y is nonsingular to
a better diffuse assumption is that the covariances approachestablish thalP, exists. The quadratic formTZ{,BZNx >0
finite “climatological” value in the null space, with the details if and and only ifZyx # 0, becausé is positive definite.
of the spatial correlations being estimated through bootstrapBut if Zyx # 0, thenxTZ]TvZNx # 0. We see then that if
ping, sub-sampling, or cross validation techniques. 21z is positive definite, then so &L BZ y; conversely, if
ZITVZN is positive semi-definite, then soZgTv BZy. This re-
sult establishes that the second determinant on the right side
exists if and only ifW is nonsingular. We conclude, then,
Covariance Update of the DETKF thatP, e>_<ists if and only ifW is invertible.. .

To derive the square root form of the filter, we project the
In this appendix we derive the analysis covariance matrix forcovariance A3) onto the ensemble space. This is done by
the DETKF. First, we substitute the diffuse inverse covari- Pre- and post-multiplying” by the projection matri}) s Uy,
ance 8) into the “inverse” form of the analysis covariance 9Ving

Appendix A

(24): _
-1 P — UzUTU 22+ 8" ZEZy 1UTU uL. (A8)
Tr-1 20T = .
Paz(H R™H + UgS: UE) (A1) eV 217, 717y eV
-2 0 -1
—uU <UTHTR—1HUT + (Sg 0)) u'. (A2)  SinceULU = [10], we need only théN — 1)x(N — 1)
upper block diagonal of the above inverse matrix. This block
To examine when this inverse exists, let us define is readily computed from standard linear algebra formulas
Ze=RY2HUg andZy = R-Y2HUy. Then (Horn and Johnsqri985 p. 18) as
217p + 52257y \ " : S S S T TS
P2 _ ( ELE+ S Z; N) Ut a3y P (se? +2lze - z[zn (Z]Zn) ' 2fZe) U} (A9)
ZyZe  ZQZxn = Ussy (148525 (1-2x (252n) " 25) Z6Se)  SeUL

From standard theorems regarding the inverse of partitioned
matrices Horn and Johnsqri985 p. 18), the above inverse Inserting the identity matrix=V 'V just before and after the
exists if the following two matrices are invertible: term in parentheses and invoking the definitionZgf Z,

and Q0) gives
w=z1zy (A4) €9

F=s2+21 <| —Zn (z{lzN) lz{,) Z.
However,F is always invertible iflW is invertible. This can ;Ir']h(lzlc—;fquatlon 's the covariance matrix for the DETKF given
be seen by noting tha y (Z]T,ZN)AZ[T\, is positive semi-
definite, in which cas& can be seen to be the sum of a pos-
itive definite and positive semi-definite matrices, and hence
must itself be positive definite, and thus invertible. This ar-
gument establishes that invertibility @f is a sufficient con-
dition for P, to exist.

- -1 -1
Pr=A <I+ATHT (R’l—R’lHUN (URHTRHUN) ULHTR’1> HA) AT (A10)
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Appendix B Bishop, C. H., Etherton, B., and Majumdar, S. J.: Adaptive Sam-
pling with the Ensemble Transform Kalman Filter. Part I: Theo-

The innovation consistency function for diffusive retical Aspects, Mon. Weather Rev., 129, 420-436, 2001.

covariances Burgers, G., van Leeuwen, P. J., and Evensen, G.: On the Analysis

Scheme in the Ensemble Kalman Filter, Mon. Weather Rev., 126,
The innovation consistency function for the innovation vec- 1719-1724, 1998.

tor is de Jong, P.: The diffuse Kalman Filter, Ann. Stat., 19, 1073-1083,
1991.

T T Evensen, G.: Sequential data assimilation with a nonlinear quasi-

ICF(V) =2 (HPH + R) o (B1) geostrophic model using Monte Carlo methods to forecast error

statistics, J. Geophys. Res., 99, 1043-1062, 1994.

Substituting 25) and @€) and @2) gives Gaspari, G. and Cohn, S. E.: Construction of Correlation Functions

T > - - -1 in Two and Three Dimensions, Q. J. Roy. Meteor. Soc., 125, 723—

ICF(N) = 2" (HUgSZUEHT + HUNSUWHT +R) 2 (B2) 757. 1999,
) ) ) Hamill, T. M., Whitaker, J. S., and Snyder, C.: Distance-Dependent
Applying the Sherman-Morrison-Woodbury formula gives Filtering of Background Error Covariance Estimates in an En-
1 semble Kalman Filter, Mon. Weather Rev., 129, 2776-2790,

ICF(N) =2 (c-l—c-lHuN (2-1+U{,HTC-1HUN) ULHTC-1> z (B3) 2001.
Haykin, S.: Kalman Filtering and Neural Networks, in: Kalman

Taking the diffusive limits—1-0 gives gg%rls edited by: Haykin, S., chap. 1, p. 284, John Wiley & Sons,

ICF(N) = 27 (C’l _ MUy (ULHTC*lHUN)_luﬁHTc*) 2 (B4) Horn, R A. and Johnson, C. R.: Matrix Analysis, Cambridge Uni-
versity Press, New York, 561 pp., 1985.
Houtekamer, P. L. and Mitchell, H. L.: Data Assimilation Using

Factoring this equation into square root form gives an Ensemble Kalman Filter Technique, Mon. Weather Rev., 126,

ICF(N) = z'C Y2 (I — CcY2Huy (ULHTc—lHuN)_luLHTc-“Z) c v, (B5) 796-811, 1998.
Houtekamer, P. L. and Mitchell, H. L.: A Sequential En-
=Z'c¥?(1-6(6'6)6")c V%, (B6) semble Kalman Filter for Atmospheric Data Assimilation,

Mon. Weather Rev., 129, 123-137, 2001.
whereG=C~Y2HUy. The term in parentheses is idempo- Johnson, R. A. and Wichern, D. W.: Applied Multivariate Statistical
tent, and therefore its rank is given by its trace, which is Analysis, Pearson Education Asia, 2002.

M—N-1 (recallG is anM x (M—(N+1)) matrix). Since  Kalnay, E. and Yang, S.-C.. Accelerating the spin-up of ensemble
C is full rank, the rank of the total matrix in the ICF is  Kalman filtering, Q. J. Roy. Meteorol. Soc., submitted, 2009.
M—N-1. Therefore’ the function |QW) has a Chi_squared Klinker, E., Rapier, F., Kelly, G., and Mahfouf, J'F The ECMWF
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