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Abstract. A new class of ensemble filters, called the Dif-
fuse Ensemble Filter (DEnF), is proposed in this paper. The
DEnF assumes that the forecast errors orthogonal to the first
guess ensemble are uncorrelated with the latter ensemble and
have infinite variance. The assumption of infinite variance
corresponds to the limit of “complete lack of knowledge”
and differs dramatically from the implicit assumption made
in most other ensemble filters, which is that the forecast er-
rors orthogonal to the first guess ensemble have vanishing
errors. The DEnF is independent of the detailed covariances
assumed in the space orthogonal to the ensemble space, and
reduces to conventional ensemble square root filters when
the number of ensembles exceeds the model dimension. The
DEnF is well defined only in data rich regimes and involves
the inversion of relatively large matrices, although this bar-
rier might be circumvented by variational methods. Two al-
gorithms for solving the DEnF, namely the Diffuse Ensemble
Kalman Filter (DEnKF) and the Diffuse Ensemble Trans-
form Kalman Filter (DETKF), are proposed and found to
give comparable results. These filters generally converge to
the traditional EnKF and ETKF, respectively, when the en-
semble size exceeds the model dimension. Numerical exper-
iments demonstrate that the DEnF eliminates filter collapse,
which occurs in ensemble Kalman filters for small ensemble
sizes. Also, the use of the DEnF to initialize a conventional
square root filter dramatically accelerates the spin-up time
for convergence. However, in a perfect model scenario, the
DEnF produces larger errors than ensemble square root filters
that have covariance localization and inflation. For imperfect
forecast models, the DEnF produces smaller errors than the
ensemble square root filter with inflation. These experiments
suggest that the DEnF has some advantages relative to the
ensemble square root filters in the regime of small ensemble
size, imperfect model, and copious observations.
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1 Introduction

It is well established that forecast ensembles in ensemble-
based Kalman filters tend to collapse – that is, the forecast
spread tends to shrink with time until the filter effectively re-
jects the observations.1 The collapse of the ensemble implies
that the forecast errors are underestimated and that the filter
weights the first guess too heavily. Eventually, the forecast
becomes so “overconfident” that the filter ignores the obser-
vations altogether. Two methods for avoiding filter collapse
are covariance inflation (Anderson and Anderson, 1999) and
localization (Hamill et al., 2001; Houtekamer and Mitchell,
2001). Covariance inflation attempts to avoid filter collapse
by inflating the covariance of the ensemble by an empirical
factor. However, covariance inflation alone cannot prevent
filter collapse if the ensemble size is sufficiently small, as we
will show. This result may be understood as follows. The full
state space can be split into two subspaces: the space spanned
by the ensemble, which we call the ensemble space, and the
complement to the ensemble space, which we call the null
space. Generally for atmospheric applications, the ensem-
ble size is much less than the model dimension, so that the
ensemble does not span the full model space, and hence the
null space is very large. In essence, the ensemble filters, e.g.,
the ensemble Kalman filter (EnKF) (Evensen, 1994) and en-
semble square root filters (Tippett et al., 2003), updates only
those variables in the ensemble space. It follows that vari-
ables in the null space are not updated, which is equivalent to
assuming that the forecast covariance of the null space vec-
tors vanishes. Thus, no matter how much inflation is applied,

1Some papers refer to this phenomenon as filter divergence. For
instance,Maybeck(1979) defined the filter divergence as “the filter
underestimates its own errors, and it will not “look hard enough”
at the measurements”. Unfortunately, the term divergence also is
used in the Kalman filter literature to refer to different things. For
instance, the filter divergence refers to modeling errors byAnderson
and Moore(1979), while it refers to computational errors byHaykin
(2001). To avoid confusion, we use the term ensemble collapse.
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this inflation only influences the ensemble space, leaving the
variances in the null space zero and hence underestimated.

The above reasoning highlights a very unrealistic property
of ensemble filters: they effectively assume that forecast er-
rors in the null space vanish. Consequently, observations
have no impact on the null space, regardless of how much
the ensemble is inflated. This deficiency of ensemble filters
deserves emphasis: if the ensemble size is small but the ob-
servations are abundant, the observations nevertheless are not
used to modify the ensemble outside the space spanned by
the first guess, no matter how many observations are avail-
able that would justify such modifications. This deficiency
follows directly from the assumption that the forecast is “per-
fect” in the null space, an assumption that is grossly incorrect
for atmospheric and oceanic data assimilation, in which the
underlying forecast model is imperfect. The question arises
as to whether a Kalman filter can be formulated in such a way
as to avoid the assumption of vanishing forecast errors in the
null space. In an abstract sense, a similar situation occurs
in the initialization of a Kalman filter – the forecast covari-
ance matrix generally is not available at the first time step.
To deal with incompletely specified initial conditions,Ans-
ley and Kohn(1985) proposed a method that is equivalent to
assuming a diffuse prior distribution for the unspecified part
of the initial state. A distribution is said to be diffuse if its
covariance matrix is arbitrarily large (de Jong, 1991). The
diffuse assumption often corresponds to the limit of com-
plete lack of knowledge in Bayesian analysis, from which
the Kalman filter can be derived (Maybeck, 1979). Ansley
and Kohn(1985) andde Jong(1991) discuss the extension
of the Kalman filter to partially diffuse covariance matrices.

The purpose of this paper is to develop an extension of
ensemble filters to allow for arbitrarily large forecast errors.
Our fundamental assumption is that the forecast errors or-
thogonal to the ensemble are uncorrelated with the errors in
the ensemble, and are infinitely large. We call the resulting
filters Diffuse Ensemble Filters(DEnFs). We propose two
specific algorithms called theDiffuse Ensemble Kalman Fil-
ter (DEnKF) and theDiffuse Ensemble Transform Kalman
Filter (DETKF). Our derivation of the DEnFs is essentially
independent ofAnsley and Kohn(1985) andde Jong(1991),
as it is tailored to the special needs of an ensemble Kalman
filter. It should be recognized, however, that the derivation
of a diffuse filter is subtle. For instance, the filtering and
limiting operations are not interchangeable, as noted byAns-
ley and Kohn(1985). Also, early derivations of diffuse fil-
ters were numerically inefficient. In the derivation presented
here, the proof is general, direct, and yields a closed form set
of equations.

Another approach to avoiding filter collapse is covariance
localization. Covariance localization attempts to reduce the
spurious correlations that inevitably arise from sample based
estimates by taking the Schur product between the sample
based estimate and a distance-dependent function that varies
from unity at the observation location to zero at some pre-

defined radial distance. In order to maintain the positive
definiteness of covariance matrices, the distance-dependent
function used in the Schur product must itself be positive def-
inite. This procedure can be interpreted as imposing structure
on the error covariance, in which case the ensemble effec-
tively gives information about many more degrees of free-
dom than just the ensemble space. Accordingly, covariance
localization changes the rank of the forecast covariance; in
particular, it usually eliminates the null space (as we will
show). Thus, there can be no diffuse ensemble filters with lo-
calization, because under localization there is no null space
for applying the diffuse assumption. However, localization
alone still allows underestimation of covariances and hence
most applications of covariance localization also apply co-
variance inflation.

The paper is organized as follows. The algorithm of
DEnFs is presented in Sect. 2, and the experimental setup
is described in Sect 3. Data assimilation experiments with
the Lorenz 96 model are used to compare the diffuse ensem-
ble filters and the ensemble filters in Sect. 4. Initialization
using DETKF is presented in Sect.5. The paper ends with
the conclusions and discussions in Sect. 6.

2 Derivation of the Diffuse Ensemble Filters

In this section we review traditional ensemble filters, use a
simple example to illustrate some differences between dif-
fuse and traditional filters, and then derive the Diffuse En-
semble Kalman Filer (DEnKF) and the Diffuse Ensemble
Transform Kalman Filter (DETKF). We end this section by
discussing additional generalizations of the diffuse filter.

2.1 The Ensemble Transform Kalman Filter (ETKF)

The Ensemble Transform Kalman Filter (ETKF) was pro-
posed byBishop et al.(2001) and clarified byTippett et al.
(2003). We briefly review this filter to establish notation and
provide a reference for comparison. The standard Kalman
Filter equations for the mean update and the analysis covari-
ance matrix are (Maybeck, 1979, p117)

9̄a
=9̄f

+ PHT
(
R + HPHT

)−1 (
o − H9̄f

)
(1)

Pa
=P − PHT

(
R + HPHT

)−1
HP, (2)

where9̄ is the mean state vector,R is the observation er-
ror covariance matrix,H is the observation operator,P is the
forecast covariance matrix, ando is the observation vector.
Let the difference between thej -th ensemble member and
the ensemble mean be denoted by the M-dimensional vector
aj . For ensemble sizeN , let

A =
1

√
N − 1

[a1 a2 . . . aN ] . (3)
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Then an unbiased estimate of the forecast covariance matrix
is

PE = AAT . (4)

The ensemble Kalman Filter is obtained by substituting the
sample covariance matrixPE for P in (1) and (2). By invok-
ing the Sherman-Morrison-Woodbury formula, it is straight-
forward to show that the resulting analysis covariance matrix
can be written as

Pa
= A

(
I + ATHTR−1HA

)−1
AT . (5)

An analysis ensemble matrixAa such thatPa
= Aa(Aa)T is

derived by setting

Aa
= A

(
I + ATHTR−1HA

)−1/2
, (6)

where the matrix in parentheses is a square root matrix. The
square root matrix can be derived by computing the eigen-
vector decomposition(
I + ATHTR−1HA

)
= YDYT , (7)

whereY is unitary andD is a diagonal element with positive
diagonal elements, and then setting(
I + ATHTR−1HA

)−1/2
= YD−1/2YT . (8)

As noted bySakov and Oke(2008), the symmetric form of
the square root defined in (8) preserves the ensemble mean.

We draw attention to the following fact. It is evident that
the mean update is pre-multiplied byA, and that the covari-
ance update is pre- and post-multiplied byA andAT , respec-
tively. It follows that the mean and covariance updates occur
only in the subspace spanned by the first guess ensemble.
Therefore, the ensemble Kalman Filter does not modify any
variable in the space orthogonal to the ensemble. This result
is tantamount to assuming that the forecast covariance matrix
vanishes in the null space, which of course is highly unreal-
istic, and the filter is overconfident in the null space. As we
will see, this characteristic of the ensemble square root filter
(ESRF) distinguishes it from the diffuse filter.

2.2 A simple example

In this section, we present a simple 2-dimensional example
to illustrate some key properties of various filters. Without
loss of generality we use a basis set in which the forecast
covariance matrix is diagonal:

P =

(
pE 0
0 pN

)
. (9)

Shortly, we will interpretpE as the variance in ensemble
space andpN as the variance in the null space. Consider

the situation in which only two observations are available.
Although general observation networks can be considered,
this extra generality does not lead to substantial insights in
this 2-D problem. Accordingly, we make the simplifying as-
sumptions thatH andR are diagonal:

H =

(
1 0
0 1

)
R =

(
rE 0
0 rN

)
. (10)

The mean analysis under these assumptions is

9̄a
=9̄f

+ PHT
(
R + HPHT

)−1 (
o − H9̄f

)
(11)

=

(
9̄

f
E

9̄
f
N

)
+

(
pE

pE+rE
0

0 pN

pN+rN

)(
oE − 9̄

f
E

oN − 9̄
f
N

)
(12)

=

 9̄
f
E +

pE

pE+rE

(
oE − 9̄

f
E

)
9̄

f
N +

pN

pN+rN

(
oN − 9̄

f
N

) , (13)

where the mean forecast is denoted9̄f
= (9̄

f
E 9̄

f
N

)T . Sim-
ilarly, the covariance matrix update is

Pa
=P − PHT

(
HT PH + R

)−1
HP (14)

=

pE −
p2

E

rE+pE
0

0 pN −
p2

N

rN+pN

 . (15)

Let us first consider the Kalman Filter solution for an en-
semble size of two. In this case, the forecast covariance ma-
trix is rank-1. If pE is identified as the variance of the en-
semble, thenpN=0. The mean update in this case is

9̄a
=

(
9̄

f
E +

pE

pE+rE

(
oE − 9̄

f
E

)
9̄

f
N

)
, (16)

while the covariance update is

Pa
=

(
pE −

p2
E

rE+pE
0

0 0

)
(17)

This solution reveals two key characteristics of the ensemble
based Kalman Filter: the analysis increment (i.e.,9̄a

−9̄f )
is confined to the ensemble space, and the covariance matrix
update (i.e.,Pa

−P) is confined to the ensemble space. This
means that the forecast in the null space is not modified; that
is, 9̄a

N=9̄
f
N . The limit pN→0 implies that the forecast in

the null space has zero uncertainty, or equivalently that the
forecast is “perfect.” This assumption is obviously unrealis-
tic in genuine data assimilation problems in which nature is
unknown.

Let us now consider the diffuse limit, which corresponds
to the limitpN→∞. This limit is easily evaluated as

9̄a
=

(
9̄

f
E +

pE

pE+rE

(
oE − 9̄

f
E

)
oN

)
. (18)
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and

Pa
=

( 1
1

rE
+

1
pE

0

0 rN

)
. (19)

The solution shows that the update in ensemble space is ex-
actly the standard KF solution, while the update in the null
space is replaced by the appropriate observation. This result
is sensible, since the diffuse limit implies that the forecast
is completely uncertain and so the analysis should reduce to
the observation. In contrast to the ensemble based Kalman
Filter, the update occurs in both the ensemble space and the
null space.

2.3 The Diffuse Ensemble Filter

The basic assumption in the DEnFs is that the forecast errors
orthogonal to the first guess ensemble are uncorrelated with
the ensemble and have infinite covariance matrix. With this
assumption, we will derive the algorithm to update the en-
semble using the Kalman Filter. Let the SVD of theM×N

matrixA be

A = USVT , (20)

whereS is anM×N diagonal matrix, whose diagonal ele-
ments specify the non-negative singular values, ordered from
the largest to smallest, andU andV are unitary (but having
respective dimensionsM×M andN×N ). At most,N − 1
diagonal elements ofSST are nonzero, since the ensemble
mean has been subtracted from each member. Assume that
exactlyN − 1 singular values are nonzero. Furthermore, let
the singular vectors be ordered such that the firstN − 1 vec-
tors are those with non-zero singular values. This ordering
allows us to partition the singular vector matrixU as

U =
[
UE UN

]
, (21)

whereUE denotes theM×(N − 1) matrix whoseN − 1 col-
umn vectors are the singular vectors associated with non-zero
singular values, andUN denotes the matrix containing the re-
maining singular vectors that span the null space. The fore-
cast ensemble covariance matrix can then be written as

PE = UESSTUT
E = UES2

EUT
E (22)

whereSE is anN − 1 dimensional, square, diagonal matrix
whose diagonal elements equal the non-zero singular values
of A.

To derive the diffuse ensemble filter, we start with the “in-
verse” form of the Kalman filter equations (Maybeck, 1979,
Sect. 5.7), also known as the information filter, which are

9̄a
=9̄f

+

(
HTR−1H+P−1

)−1
HT R−1

(
o−H9̄f

)
(23)

Pa
=

(
HT R−1H + P−1

)−1
. (24)

SincePE is not invertible, we cannot simply substituteP=PE
in these equations as we did for the standard form of the
Kalman filter equations. Accordingly, we invoke a fictitious
ensemble whose covariance matrix isPN such that total fore-
cast covariance

P = PE + PN (25)

is nonsingular. The first assumption of the diffuse filter is
that PE andPN are orthogonal; i.e.,PEPN = PNPE = 0.
This implies thatPN is of the form

PN = UN6UT
N (26)

where6 is a nonsingular matrix specifying the covariance
matrix in the null space. Under this assumption the inverse
forecast covariance matrix becomes

P−1
= U

(
S−2

E 0
0 6−1

)
UT . (27)

The second assumption of the DEnFs is that6−1
→0. One

way to interpret this limit is to definePN=αUN6′UT
N , where

6′ is a constant, nonsingular matrix, and then take the limit
α→∞. In this case,6−1

→0 regardless of the detailed struc-
ture of6′; that is, the limit is independent of the details of
the forecast covariance in the null space. The diffuse limit is
therefore

P−1
dif = U

(
S−2

E 0
0 0

)
UT

= UES−2
E UE. (28)

The substitutionP−1
→P−1

dif in (23) and (24) may present
problems because the matrixHTR−1H + P−1 may be singu-
lar and therefore has no inverse. We show in the appendix
that a necessary and sufficient condition forPa to be nonsin-
gular is that the auxiliary matrix

W = UT
NHTR−1HUN (29)

should be nonsingular. The restriction thatW be invertible
can be interpreted as requiring that the observations project
onto every degree of freedom in the null space. Loosely
speaking, ifW is singular, then there exists a vector in the
null subspace that is unobserved. This restriction is sensible
in light of the fact that the null space has no model infor-
mation under the diffuse assumption, so the only other in-
formation available for updating the null space must come
from observations. SincePa is nonsingular in this case, it
is full rank, indicating that the mean and covariance updates
are not confined to the ensemble subspace. This represents a
fundamental difference with other ensemble Kalman Filters.

To summarize, the mean update equation for the DEnF is

9̄a
dif=9̄f

+

(
HTR

−1
H+P−1

dif

)−1
HT R−1

(
o−H9̄f

)
, (30)
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and the covariance update, derived by substituting (28) into
(24), is

Pa
=

(
HTR−1H + UES−2

E UT
E

)−1
. (31)

The fact thatPa is full rank whenW is full rank raises the
question as to how to define an analysis ensemble. This ques-
tion does not arise in traditional EnKFs because the analysis
and forecast span exactly the same space and hence can be
represented by the same number of basis vectors. In con-
trast, the DEnF may start with a small ensemble but leads
to a full rank analysis covariance matrix that cannot be rep-
resented by an ensemble size smaller than or equal to the
model dimension. Of the many approaches to deriving an
ensemble filter that can be conceived, we present two: one
based on perturbed observations, and one based on project-
ing the analysis into the ensemble space. At the end of this
section we discuss alternative solution methods, including a
method that relaxes the requirement thatW be nonsingular.

2.3.1 The Diffuse Ensemble Kalman Filter (DEnKF)

Houtekamer and Mitchell(1998) andBurgers et al.(1998)
proposed what is now called the Ensemble Kalman Filter
(EnKF), which is characterized by randomly perturbed ob-
servations. By analogy, we propose the Diffuse Ensemble
Kalman Filter (DEnKF), in which the ensemble update for
thei-th ensemble member is defined as

9a
i =9

f
i +

(
HTR

−1
H+UES−2

E UT
E

)−1
HT R−1

(
oi−H9

f
i

)
, (32)

where i = 1, . . . , N , oi = o + r i , r i ∼ N(0, R), and
N(µ, σ 2) denotes a Gaussian distribution of meanµ and
varianceσ 2. If the forecast covariance matrix based on the
ensemble is full rank,UN equals0, and the DEnKF reduces
to the EnKF. Note that the analysis increment9

f
i −9

f
a of the

DEnKF is not restricted to the ensemble space, in contrast to
the EnKF.

2.3.2 The Diffuse Ensemble Transform Kalman Filter
(DETKF)

A deterministic diffuse filter can be derived by analogy with
the ETKF (see Sect.2.1). In this case, the mean update is
given by the same equation as in the ETKF, namely (30).
However, instead of using the full analysis covariance (31),
we projectPa onto the ensemble space. This projection im-
plies that the ensemble is updated only in the space spanned
by the first guess ensemble, just as in the ETKF. We show in
the appendix that the final analysis update equation for the
DETKF is

Pa
dif=A

[
I+ATHT

(
R−1

−R−1HUNW−1UT
NHTR−1

)
HA

]−1
AT . (33)

Comparison of this equation with (5) reveals that the DETKF
differs from the ETKF by an extra term in the matrix whose

inverse is taken. Furthermore, this extra term has the effect
of inflating the analysis ensemble (i.e.,Pa

dif − Pa is positive
semi-definite). This inflation reflects the fact that the DETKF
accounts for uncertainty in the null space, whereas the ETKF
effectively assumes the forecast in the null space is perfect.
The DETKF and ETKF become identical if

UT
EHT R−1HUN = 0, (34)

because in this case the “extra” term in (33) vanishes. It is
sensible that the DETKF and ETKF have the same ensem-
ble spread when (34) is satisfied, because the observations in
the ensemble space and null space are uncorrelated, in which
case observations in the null space provide no information
for updating the ensemble space.

The square root form of the DETKF is obtained by solving
the eigenvalue decomposition

I+ATHT
(
R−1

−R−1HUNW−1UT
NHTR−1

)
HA=YDYT, (35)

whereY is unitary andD is a diagonal matrix with positive
diagonal elements, and then defining

Aa
dif = AYD−

1
2 YT , (36)

which givesPa
dif = Aa

dif(A
a
dif)

T . If ensemble covariance is
full rank, UN equals0, and the DETKF reduces to the En-
semble Transform Kalman Filter (ETKF). Thus, the DETKF
does not converge to the ensemble square root filter (ESRF)
of Whitaker and Hamill(2002) as ensemble covariance goes
to full rank, since the latter filter differs from the ETKF.

2.4 Alternative diffuse filters

We emphasize that the DEnKF and DETKF require invert-
ing matrices of the order of the model dimension. For atmo-
spheric and oceanic models, this dimension can easily exceed
100 000, which is clearly impractical. However, the DEnKF
might be solvable using an equivalent variational method,
just as large scale data assimilation problems are solved us-
ing variational methods at operational centers (Klinker et al.,
2000). As is well known (Maybeck, 1979, p. 234), the mean
update of the Kalman Filter equations minimizes the cost
function

L =
(
o−H9̄

)T
R−1 (o−H9̄

)
+

(
9̄−9̄ f

)T
P−1

(
9̄−9̄ f

)
. (37)

The first term can be interpreted as a “goodness of fit”, since
it measures how close the state is to the observations, while
the second term is a penalty function, since it increases with
the distance between the state and first guess. Under the dif-
fuse assumption, this cost function becomes

L=
(
o−H9̄

)T
R−1 (o−H9̄

)
+

(
UT

E

(
9̄−9̄ f

))T
S−2

E

(
UT

E

(
9̄−9̄ f

))
. (38)

The latter cost function differs from the former in that the
penalty function is evaluated only in the ensemble space. The
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advantage of minimizing this cost function is that it can be
solved with standard conjugate gradient methods without ex-
plicitly inverting the matrixW. Unfortunately, the resulting
solution gives only the mean update; how one can use (37)
and (38) to generate an ensemble filter is unclear.

Another question is whether the restriction thatW be non-
singular can be relaxed. One theoretical barrier to defining a
diffuse limit whenW is singular is that it leads to a contra-
dictory situation. Specifically, singularW implies that nei-
ther the forecast ensemble nor the observations constrain a
certain space. Indeed, it is possible to show thatL is in-
dependent of the null vectors ofW, indicating thatL does
not constrain these vectors. Now, if neither the forecast nor
the observations constrains part of the null subspace, then on
what basis can one update this space? The solution to this
problem is to apply the diffuse assumption only to the part
of the null space that is constrained by observations. This
can be accomplished by splitting the null space itself into
two parts, one constrained by observations (identified by the
range ofW), and one unconstrained by observations (identi-
fied by the null space ofW). Then, the diffuse assumption
can be applied to the subspace that is constrained by observa-
tions, while the “perfect model” assumption can be applied
to the subspace that is unconstrained by observations. This
alternative diffuse filter will not be discussed further in this
paper.

3 Experimental setup

The model used here is the Lorenz-96 model (Lorenz and
Emanuel, 1998), which is governed by the equation

dxi

dt
= (xi+1 − xi−2) xi−1 − xi + f0, (39)

wherei = 1 . . . J with cyclic indices. Here, J is 40 andf0
is 8.0. The consecutive model states are obtained by inte-
grating the model forward with the time interval 0.05, and
a fourth-order Runge-Kutta numerical method is applied at
each model time step. The truth is one single integration of
the model. The observational data set was constructed by
adding Gaussian white noise with zero mean and unit vari-
ance to the truth at each of the 40 grid points, thereby pro-
ducing 40 observations at each time step.

In realistic data assimilation, the model is imperfect due to
model errors, e.g., uncertain model parameters. In this study,
we will conduct some data assimilation experiments with an
imperfect model, defined as

dxi

dt
= (xi+1 − xi−2) xi−1 −

xi

1.0 + di

+ f0 + fi, (40)

where the dissipation parametersdi and forcing parameters
fi are randomly specified according to

fi ≈ N(0, 4), i = 1 . . . J, (41)

di ≈ N(0.5, 0.5), i = 1 . . . J. (42)

The ensemble filters used here are the EnKF ofEvensen
(1994) and the ESRF ofWhitaker and Hamill(2002). The
initial ensemble members for the first data assimilation ex-
periment are generated by adding independent, zero mean,
normally distributed random numbers of variance 1.0 to the
climatology of the long run with 30 000 time steps. The co-
variance inflation for all experiments in this study, when ap-
plied, is the adaptive covariance inflation algorithm proposed
by Anderson(2007) or constant inflation (Anderson and An-
derson, 1999). The localization applied here is the fifth or-
der polynomial function ofGaspari and Cohn(1999) with
half-width c. Localization half widthc is 10 relative to the
model domain size 40. If the distance between the observa-
tion and the state variable is greater than 2c, then the localiza-
tion function is zero, which implies that the observation has
no impact on the state variable; otherwise, it approximates a
Gaussian. The root mean square error (RMSE) is computed
as the root mean square of the difference between the analy-
sis and the truth over the 40 grid points and from model time
steps 3000 to 6000.

To test the consistency between observations and filter out-
put, we use the fact, as noted by (Maybeck, 1979, p229), that
the Kalman filter predicts that the innovation vector

z = o − H9̄f (43)

is a white Gaussian sequence with zero mean and covariance
matrix

C = HPHT
+ R. (44)

This fact allows us to construct aninnovation consistency
function (ICF). Specifically, if this assumption is correct,
then the quadratic form

ICF = zT C−1z (45)

should have a chi-square distribution with degrees of free-
dom equal to the rank ofC−1 (Johnson and Wichern, 2002,
Result 4.7). The above quadratic form is essentially the log-
likelihood function, aside from irrelevant constant and multi-
plicative terms (Maybeck, 1979, p234). The 2.5% and 97.5%
thresholds for a chi-squared distribution with 40 degrees of
freedom are 24.4 and 59.3, respectively. Accordingly, the in-
novation vector is deemed inconsistent with the filter if ICF
falls outside the interval (24.4,59.3) more than 5% of the
time. In the case of the DESRF, the evaluation of ICF is not
straightforward sinceC becomes unbounded. The evaluation
of ICF for the DESRF is discussed in the appendix and shown
to have a chi-squared distribution with 9 degrees of freedom
(i.e., 40 - (30 + 1)= 9) for ensemble size 10. The 2.5% and
97.5% thresholds for a chi-squared distribution with 9 de-
grees of freedom are 2.7 and 19, respectively. If the innova-
tion vector falls outside this interval more the 5% of the time,
then we conclude that the innovations are inconsistent with
the filter.
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4 Numerical results

Figure 1a–d shows a typical result for the truth, observation,
forecast, and analysis by the ensemble square root filter at
one grid point in the Lorenz-96 model. Note that the blue
and green curves are superposed and undistinguishable. The
innovation consistency function (ICF) is shown in Fig. 1e–h
(for a longer time period). Note that the two ICF thresh-
olds in panels e, f, and g are undistinguishable since ICFs are
much larger than the two thresholds. Inspection of Fig. 1e–h
shows that the innovations are consistent with the filter only
if both covariance inflation and localization are applied (i.e.,
the ICF lies between the two dashed lines only in Fig. 1h).
In other cases, the innovations are inconsistent with the fil-
ter. More importantly, the ensemble collapses in the cases
illustrated in Fig. 1a–c – the analysis is weighted too heavily
toward the model forecast, allowing the analysis to diverge
from the observations. Interestingly, the ensemble square
root filter with just localization still diverges (Fig. 1c and g)
even though there is no null space. This may be due to the
model non-linearity and underestimation of covariances by
the sample ensemble.

The results for the DETKF are shown in Fig. 2a and c.
The figures show that the amplitudes of the innovation vec-
tors produced by the DETKF are too large relative to that
assumed internally by the filter. However, in this case, there
is no ensemble collapse. Instead, the analysis is weighted
too heavily to the observations. Consequently, the analysis
reveals much more high frequency noise than the truth, ow-
ing to the white noise in the observations. Just as with the
ensemble filters, the DETKF might be improved with covari-
ance inflation. Accordingly, we apply covariance inflation to
the forecast ensemble (we do not inflate the null space co-
variances, since they are already inflated by the diffuse limit
assumption). The ICF when covariance inflation is applied to
the DETKF is shown in Fig. 2d, which reveals that inflation
does indeed improve the consistency. It turns out that infla-
tion also improves the RMSE of the analysis (not shown).

In order to avoid ensemble collapse due to the finite en-
semble size and model non-linearities, two common meth-
ods, covariance inflation (Anderson and Anderson, 1999)
and localization (Hamill et al., 2001; Houtekamer and
Mitchell, 2001), are usually applied. The diffuse limit can
be interpreted as an extreme example of inflation for the null
space. Yet, even with infinite covariances in the null space,
the diffuse filter still diverged. Similarly, in the ESRF with
localization, there is no null space, yet the filter still diverges.
Thus, an interesting conclusion from the above results is that
the filter converges only when the covariance of both the en-
semble space and the null space are inflated – inflating just
one subspace is not enough to avoid filter collapse.

Covariance localization can not be implemented in the dif-
fuse ensemble filters because it usually eliminates the null
space by rendering the forecast covariance matrix full rank.
Figure 3 shows the minimum spectrum of eigenvalues of the

forecast covariance matrix for 10 ensemble members with
and without covariance localization. Without localization,
the covariance matrix has 9 nonzero eigenvalues and 31 zero
eigenvalues, which corresponds to the size of the ensem-
ble space and null space respectively. All eigenvalues are
nonzero when the covariance localization is applied, which
implies that the localized covariance matrix is full rank and
hence the null space is zero. The eigenvalue spectrum slope
is deeper when the localization half width is larger. Note
that covariance localization also intends to reduce sampling
errors.

To investigate the sensitivity of the results to ensemble
size, we show in Fig. 4a the performance of the ESRF and the
DETKF, with inflation, as a function of ensemble size. For
the ensemble size 41, there is no null space, so the DETKF
is identical to the ETKF, and the values of RMSE for the two
filters are almost the same (the small difference arises from
the fact that the ESRF ofWhitaker and Hamill(2002) differs
from the ETKF). We see that the RMSE for the ESRF de-
creases dramatically and eventually the filter converges after
15 ensemble members. This implies that inflation alone can
allow the filter to converge if the ensemble size is sufficiently
large. Equivalently, if the ensemble size is too small, then
inflation alone is not enough to prevent filter collapse. Thus,
for small ensemble sizes relative to the model dimension, the
DETKF may be an attractive alternative to the ETKF.

One can argue that the above test is not completely fair
because the dynamical model is perfect in the sense that it
is identical to the model that generates the truth. Conse-
quently, the first guess of the dynamical model is very good,
and therefore a filter that reduces to the first guess in the null
space may perform preferentially better than a filter that does
not. Accordingly, we consider a new test by using the imper-
fect model (40) to generate forecasts, but use the same set
of observations generated by the original model (39). Note
that the adaptive covariance inflation tends to be larger in the
imperfect model case to account for model errors (Ander-
son, 2007). The resulting average RMSE as a function of
ensemble size is shown in Fig. 4b. Compared to the perfect
model scenario, the performance of the ESRF is dramatically
degraded, especially for small ensemble sizes, while the per-
formance of DETKF does not change much. This implies
that DETKF outperforms the ESRF without localization for
the imperfect model scenario.

Figure 5a shows the RMSE of the DEnKF and the EnKF
with inflation as a function of ensemble size. For the ensem-
ble size 41, there is no null space, so the DEnKF is identical
to the EnKF. The RMSE for the EnKF decreases dramatically
and eventually the filter converges after 20 ensemble mem-
bers. When the ensemble size is smaller than 16, DEnKF per-
forms better than EnKF. This implies that the diffuse EnKF
outperforms EnKF in the regime of small ensemble sizes.
The RMSE of EnKF is larger than that of ESRF (Figs. 4a and
5a), and the RMSE of DEnKF is also larger that of DETKF
(Fig. 5b). This indicates that sampling errors from perturbed
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Fig. 1. Time series based on the Lorenz 96 model of the truth (red), the model forecast (green), the analysis (blue) and the observation (plus)
at one grid point for(a) ESRF without inflation and localization, b) ESRF with inflation only, c) ESRF with localization only, and d) ESRF
with localization and inflation. Time series of the innovation consistency function (ICF) for e) ESRF without inflation and localization, f)
ESRF with inflation only, g) ESRF with localization only, h) ESRF with localization and inflation. Ensemble size is 10 for all experiments.
Localization half widthc is 10 relative to the model domain size 40. Red dashed line indicating the threshold value of ICF.
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Fig. 2. Time series based on Lorenz 96 model of the truth (red), the model forecast (green), the analysis (blue) and the observation (plus) at
one grid point for(a) DETKF without inflation,(b) DETKF with inflation. Time series of the innovation consistency function (ICF) for(c)
DETKF without inflation,(d) DETKF with inflation. Ensemble size is 10 for all experiments. Red dashed line indicating the threshold value
of ICF.
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Fig. 3. Minimum of the ordered eigenvalues of the forecast covari-
ance matrix for 10 ensemble members with and without covariance
localization. The minimum is obtained from assimilation time steps
3000 to 6000, and localization was applied forc=10 andc=20, as
indicated in the figure. Note that all 31 zero eigenvalues for 10 en-
semble members without localization are set to 10−10 for plotting
purpose.

observations in both EnKF and DEnKF degrade the perfor-
mance of filters. This is the reason that in this study we focus
on the performance of DETKF, rather than DEnKF.

5 Initialization using DESRF

Originally, the diffuse Kalman filter was designed to initial-
ize the Kalman filter (de Jong, 1991; Koopman, 1997). Anal-
ogously, DETKF can be applied to initialize the ESRF. Here,
we first run the DETKF for one time step to get the analyzed
ensemble mean and perturbations, and then these optimal en-
semble members are used to initialize the ESRF. Note that in
this section the root mean square error (RMSE) is defined as
the root mean square of the difference between the analysis
and the truth over the 40 grid points. Figure 6a shows the
RMSE as a function of assimilation time for the ESRF with
and without using DETKF initialization with 20 ensemble
members. The ESRF with standard initial ensembles of ran-
dom Gaussian noise perturbations converges slowly to the
optimal level of RMSE at around 500 assimilation time steps,
while the ESRF, initialized with DETKF, converges rather
quickly to the optimal level of RMSE at round 50 assimila-
tion time step. After 500 assimilation time step, the RMSEs
of these two different ensemble initializations are indistin-
guishable. The same experiment with 10 ensemble members
plus localization reveals the similar results (Fig. 6b). This
implies that initialization using DETKF accelerates the ini-
tial spin-up time for the ESRF.

6 Summary and discussion

This paper proposed a new type of filter called the Diffuse
Ensemble Filter (DEnF). The DEnF assumes that the forecast
errors in the space orthogonal to the first guess ensemble are
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Fig. 4. The root mean square error (RMSE) as a function of en-
semble size for the ESRF with inflation (dashed) and the DETKF
with inflation (solid) using the(a) perfect and(b) imperfect mod-
els. Results are averaged over the 3000 to 6000 assimilation time
step.
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Fig. 5. The root mean square error (RMSE) as a function of en-
semble size for(a) the EnKF with inflation (solid) and the DEnKF
with inflation (dashed),(b) the EnKF with inflation (dashed) and
the DETKF with inflation (solid) using the perfect model. Results
are averaged over the 3000 to 6000 assimilation time step.

uncorrelated with the latter ensemble, and are infinite, corre-
sponding to complete lack of information. Thus, in terms of
the forecast covariance matrix in the null spacePN , ensemble
filters assumePN→0, while diffuse filters assumePN→∞.
The limiting form of the DEnF can be derived in close form
and does not depend on the detailed covariance in the null
space. Importantly, the ensemble update in the DEnF is not
confined to the space spanned by the first guess ensemble, in
contrast to ETKF or the EnKF (Evensen, 1994; Burgers et al.,
1998; Bishop et al., 2001; Tippett et al., 2003). Two diffuse
filters are derived in this paper: one based on perturbed ob-
servations called the DEnKF, and one based on a determinis-
tic square root filter called the DETKF. The DEnKF and the
DETKF generally reduce to the EnKF and the ETKF respec-
tively, when the ensemble size exceeds the dimension of the
model, because in this case there is no null space in which
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Fig. 6. The root mean square error (RMSE) between analysis and
truth as a function of assimilation time for the ESRF with DE-
TKF initialization (solid) and with random initial conditions (dot-
ted) using(a) 20 ensemble members plus constant inflation and
(b) 10 ensemble members plus constant inflation and localization.
RMSE of DETKF (dashed) is plotted for reference. The inflation
factor is 1.08 for (a), and 1.05 for (b).

to apply the diffuse assumption. The diffuse limit is well de-
fined only in observation rich regimes (more precisely, the
matrix W defined in (29) is invertible). In the null space,
the analysis produced by the DESRF is strongly coupled to
the observations, consistent with assuming infinite forecast
covariance in this space, whereas the analysis produced by
traditional filters is strongly coupled to the first guess.

Numerical experiments presented in this paper demon-
strate that the DETKF and DEnKF successfully prevent filter
collapse for small ensemble sizes. Unfortunately, the ampli-
tude of the innovation vectors produced by these filters are
too large relative to that assumed internally in the filters. In
addition, the analyses produced by the diffuse filters have
significantly larger error than those produced by the ESRF
with inflation and localization. Inflating the ensemble fore-
cast covariance in the DETKF reduces the analysis errors,
but does not reduce them as much as the ESRF with inflation
and localization. To investigate the impact of using an imper-
fect forecast model, we conducted assimilation experiments
using a forecast model in which the forcing and dissipation
parameters were perturbed relative to the model that gener-
ated the truth. We found that the performance of the ESRF
was significantly degraded by the presence of model errors,
whereas the DETKF was not since it is less dependent on
the first guess. These results suggest that the DETKF can
outperform ESRF without localization in the more realistic
case of small ensemble size and imperfect model, provided
enough observations are available to render a well defined
diffuse limit.

The DETKF also was found to dramatically accelerate the
spin-up time of the ESRF. This result is consistent with the
study of Zupanski et al.(2006), who found that the com-
monly used initial ensemble of uncorrelated random pertur-
bations for the ESRF converged slowly, while initial per-
turbations that had horizontally correlated errors converged
faster. Kalnay and Yang(2009) also found that the spin-
up time of EnKF is longer than the corresponding spin-up
time in variational methods, and they proposed a scheme to
accelerate the spin-up of EnKF applying a no-cost Ensem-
ble Kalman Smoother, and using the observations more than
once in each assimilation window in order to maximize the
initial extraction of information. We note that the DETKF
still requires a guess for the initial condition and error co-
variances, unlike the diffuse Kalman filter (de Jong, 1991;
Koopman, 1997).

A fundamental limitation of the DEnFs, as formulated
here, is that it requires a relatively large number of obser-
vations. The precise condition is that the matrixW defined
in (29) needs to be invertible. For this operator to be in-
vertible, the observations must be sufficiently numerous as
to constraint the analysis in the null space. This constraint is
a natural consequence of the diffuse assumption – since the
forecast is completely uncertain in the null space, the only
other information available for specifying the assimilation is
the observations. That is, if neither the forecast nor observa-
tions are available in the null space, then there is no basis for
estimating the corresponding state. With the emergence of
copious data from satellites, this constraint might be satisfied
for realistic atmospheric data assimilation. It is possible to
generalize the DEnFs to situations in whichW is singular,
but this approach was only outlined in this paper.

The limitation thatW be invertible is not only a theoreti-
cal limitation of diffuse filters, but also a practical limitation,
because the dimension of this matrix is approximately equal
to the model dimension minus the ensemble size. For atmo-
spheric or oceanic models, this dimension can easily exceed
100 000, which is clearly impractical at the present time. We
briefly described a variational solution for the DETKF that
avoids inversion ofW.

A question relevant to all ensemble filters is whether the
errors are treated appropriately across update steps. For in-
stance, a vector may project in the ensemble space at one
time and project in the null space at the next time. It seems
unrealistic to treat the vector as completely unknown at the
second step even though it formerly had finite variance at the
first step. An equally compelling question arises with respect
to ensemble filters – the vector that projects in the ensemble
space first and then in the null space second is assumed to
have finite uncertainty at the first step and vanishing uncer-
tainty at the second step. In either case, filter performance
might be enhanced by accounting for time correlation in the
forecast errors, perhaps through an appropriate prior distri-
bution.
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The fact that diffuse filters do not perform as well as the
ESRF with inflation and localization is instructive. In the
DETKF, the covariances in the null space are inflated while
the covariances in the ensemble space are not. Conversely, in
the ESRF with inflation only, the covariances in the ensem-
ble space are inflated while the covariances in the null space
are not. Neither case produces as good an analysis as the
ESRF with both inflation and localization. Presumably, the
benefits of localization derive from the fact that the forecast
errors of the system actually do have spatially local corre-
lations. In other words, the first guess ensemble really does
contain information about the null space, even though it is or-
thogonal to it. It would be interesting and more consistent to
develop a filtering scheme that imposes this structure in the
prior distribution of the forecast errors, rather than impose it
empirically after the fact through the Schur product. Perhaps
a better diffuse assumption is that the covariances approach a
finite “climatological” value in the null space, with the details
of the spatial correlations being estimated through bootstrap-
ping, sub-sampling, or cross validation techniques.

Appendix A

Covariance Update of the DETKF

In this appendix we derive the analysis covariance matrix for
the DETKF. First, we substitute the diffuse inverse covari-
ance (28) into the “inverse” form of the analysis covariance
(24):

Pa
=

(
HTR−1H + UES−2

E UT
E

)−1
(A1)

=U
(

UTHTR−1HUT
+

(
S−2

E 0
0 0

))−1

UT . (A2)

To examine when this inverse exists, let us define
ZE=R−1/2HUE andZN = R−1/2HUN. Then

Pa
= U

(
ZT

EZE + S−2
E ZT

EZN

ZT
NZE ZT

NZN

)−1

UT . (A3)

From standard theorems regarding the inverse of partitioned
matrices (Horn and Johnson, 1985, p. 18), the above inverse
exists if the following two matrices are invertible:

W =ZT
NZN (A4)

F =S−2
E + ZT

E

(
I − ZN

(
ZT

NZN

)−1
ZT

N

)
ZE.

However,F is always invertible ifW is invertible. This can

be seen by noting thatZN

(
ZT

NZN

)−1
ZT

N is positive semi-
definite, in which caseF can be seen to be the sum of a pos-
itive definite and positive semi-definite matrices, and hence
must itself be positive definite, and thus invertible. This ar-
gument establishes that invertibility ofW is a sufficient con-
dition for Pa to exist.

It turns out thatW also is a necessary condition forPa to
exist; that is,Pa is nonsingular only ifW is nonsingular. To
show this latter fact, we invoke standard theorems about the
determinants (especially of partitioned matricesJohnson and
Wichern, 2002, p. 204) to obtain

|Pa| = |ZT
EZE+S−2

E |
−1

|ZT
NZN−ZT

NZE

(
ZT

EZE+S−2
E

)
ZT

EZN |
−1 (A5)

= |ZT
EZE+S−2

E |
−1

|ZT
N

(
I−ZE

(
ZT

EZE+S−2
E

)
ZT

E

)
ZN |

−1 (A6)

= |ZT
EZE+S−2

E |
−1

|ZT
N

(
I+ZES2

EZT
E

)−1
ZN |

−1. (A7)

SinceZT
EZE +S−2

E is positive definite, it is invertible and the
first determinant on the right side exists. Turning now to the
second determinant, the matrixI + ZES2

EZT
E is positive defi-

nite and so its inverse, call itB, exists and also is positive def-
inite. It remains, then, to show thatZT

NBZN is nonsingular to
establish thatPa exists. The quadratic formxT ZT

NBZNx > 0
if and and only ifZNx 6= 0, becauseB is positive definite.
But if ZNx 6= 0, thenxT ZT

NZNx 6= 0. We see then that if
ZT

NZN is positive definite, then so isZT
NBZN ; conversely, if

ZT
NZN is positive semi-definite, then so isZT

NBZN . This re-
sult establishes that the second determinant on the right side
exists if and only ifW is nonsingular. We conclude, then,
thatPa exists if and only ifW is invertible.

To derive the square root form of the filter, we project the
covariance (A3) onto the ensemble space. This is done by
pre- and post-multiplyingPa by the projection matrixUEUT

E

giving

P̃a
= UEUT

EU

(
ZT

EZE + S−2
E ZT

EZN

ZT
NZE ZT

NZN

)−1

UT UEUT
E . (A8)

SinceUT
EU = [I 0], we need only the(N − 1)×(N − 1)

upper block diagonal of the above inverse matrix. This block
is readily computed from standard linear algebra formulas
(Horn and Johnson, 1985, p. 18) as

P̃a
= UE

(
S−2

E + ZT
EZE − ZT

EZN
(
ZT

NZN
)−1

ZT
NZE

)−1
UT

E

= UESE

(
I+SEZT

E

(
I−ZN

(
ZT

NZN

)−1
ZT

N

)
ZESE

)−1
SEUT

E .

(A9)

Inserting the identity matrixI=VTV just before and after the
term in parentheses and invoking the definitions ofZE , ZN ,
and (20) gives

P̃a
=A

(
I+ATHT

(
R−1

−R−1HUN

(
UT

NHTR−1HUN

)−1
UT

NHTR−1
)

HA
)−1

AT . (A10)

This equation is the covariance matrix for the DETKF given
in (31).

www.nonlin-processes-geophys.net/16/475/2009/ Nonlin. Processes Geophys., 16, 475–486, 2009



486 X. Yang and T. DelSole: The diffuse ensemble filter

Appendix B

The innovation consistency function for diffusive
covariances

The innovation consistency function for the innovation vec-
tor is

ICF(N) = zT
(
HPHT

+ R
)−1

z. (B1)

Substituting (25) and (26) and (22) gives

ICF(N) = zT
(
HUES2

EUEHT
+ HUN6UNHT

+ R
)−1

z. (B2)

Applying the Sherman-Morrison-Woodbury formula gives

ICF(N) = zT
(

C−1
− C−1HUN

(
6−1

+ UT
NHTC−1HUN

)−1
UT

NHTC−1
)

z. (B3)

Taking the diffusive limit6−1
→0 gives

ICF(N) = zT
(

C−1
− C−1HUN

(
UT

NHTC−1HUN

)−1
UT

NHTC−1
)

z. (B4)

Factoring this equation into square root form gives

ICF(N) = zTC−1/2
(

I − C−1/2HUN

(
UT

NHTC−1HUN

)−1
UT

NHTC−1/2
)

C−1/2z (B5)

= zT C−1/2
(
I−G

(
GT G

)
GT
)

C−1/2z, (B6)

whereG=C−1/2HUN . The term in parentheses is idempo-
tent, and therefore its rank is given by its trace, which is
M−N−1 (recallG is anM × (M−(N+1)) matrix). Since
C is full rank, the rank of the total matrix in the ICF is
M−N−1. Therefore, the function ICF(N) has a chi-squared
distribution with M-N-1 degrees of freedom.
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