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Abstract. Robust impedance estimation procedures are now
in standard use in magnetotelluric (MT) measurements and
research. These always yield impedance estimates which
are better than the conventional least square (LS) estimation
because the ’real’ MT data almost never satisfy the statisti-
cal assumptions of Gaussian distribution upon which normal
spectral analysis is based. The robust estimation procedures
are commonly based on M-estimators that have the ability to
reduce the influence of unusual data (outliers) in the response
(electric field) variables, but are often not sensitive to ex-
ceptional predictors (magnetic field) data, which are termed
leverage points.

This paper proposes an alternative procedure for making
reliably robust estimates of MT impedance functions, which
simultaneously provide protection from the influence of out-
liers in both response and input variables. The means for
accomplishing this is based on the bounded-influence re-
gression M-estimation and the Hilbert Transform operating
on the causal MT impedance functions. In the resulting re-
gression estimates, outlier contamination is removed and the
self consistency between the real and imaginary parts of the
impedance estimates is guaranteed. Using synthetic and real
MT data, it is shown that the method can produce improved
MT impedance functions even under conditions of severe
noise contamination.

1 Introduction

In the frequency domain, the equations governing the mag-
netotelluric (MT) relations between the signal components

Correspondence to:D. Sutarno
(sutarno@fi.itb.ac.id)

of electric and magnetic fields at the earth’s surface are given
by:

Ei = ZixHx + ZiyHy, i = x or y (1)

From the viewpoint of linear system theory, the tensor
impedancesZix andZiy are transfer functions of a dual in-
put, single output linear system through which the horizontal
magnetic field componentsHx andHy (input) are related de-
terministically to the horizontal electric field componentsEi

(output).
A variety of methods have been proposed for the numeri-

cal computation of impedance and its associated errors. Most
of these are based on classical least squares regression. It is
well known that the concept, as well as the computation, of
LS estimates is quite simple. Furthermore, with the Gaussian
error assumption, LS procedures are statistically optimal in a
precise sense. Unfortunately, the presence of outliers (abnor-
mal data) superimposed on a common Gaussian noise back-
ground which constitutes the normal ambient noise field, of-
ten makes such assumptions about error untenable and re-
sults in distortion of the estimates. One appealing approach
to dealing with outliers is to make the estimation procedure
robust, i.e. to modify it in such manner that it is resistant to
the effects of the outliers.

In MT context, robust procedures were introduced by
Chave and Thomson (1989), Sutarno and Vozoff (1989,
1991a, b), and Jones et al. (1989). More recently, Chave and
Thomson (2003, 2004), and Sutarno (2005) proposed and
discussed the application of a robust procedure which can
be classified as a bounded-influence M-estimator to the MT
data. This paper aims at further improving the performance
of the robust procedure. Our object is to obtain a reliable
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Table 1. Estimation results for apparent resistivity on noisy syn-
thetic MT data.

Maximum RMS Error
Noise Level LS Hybrid Bounded-influence

Estimator Estimator Estimator

10% 3% 3% 3%
20% 7% 4% 4%
50% 34% 13.5% 11%

impedance estimation procedure, which is robust to the over-
all influence of outlier contamination.

2 Robust impedance estimation

In the real situation, Eq. (1) does not hold exactly due to
presence of noise. Therefore, it is necessary to estimate the
impedance function from many noisy data, and the problem
becomes statistical. Supposen independent sets of values at
a given harmonic are available to estimateZij . Then the fol-
lowing equation, which represents a linear regression prob-
lem, can be formed

x = Uβ + r (2)

The vectorx consists of n observations of theith horizon-
tal electric field component. Then then×2 matrixU givesn

values of the dual horizontal magnetic field components, the
elements ofβ are impedance tensor elements (the unknown
parameters to be estimated), and the elements ofr are un-
known errors or residuals.

The M-estimator (or Maximum likelihood type estimator
of Huber, 1981) forβ in Eq. (2) is the value ofβ which
minimises

n∑
i=1

ρ(ri/s), (3)

whereρ(t) is a general function, called the loss function, and
s is a scale parameter. Many methods exist to solve this min-
imisation problem. However, it is easiest to write the cor-
responding normal equation as a weighted LS problem and
iterate to get a linear approximation.

There are a great number of possible forms for the weight
function to be used in the iteratively reweighted LS algo-
rithm. The most widely used is a “standard hybrid” (Hu-
ber, 1981). However, the Huber weights fall slowly for
large residuals and provide inadequate protection again se-
vere residuals. Therefore, more severe types of weight func-
tion, such as the one proposed by Thomson (1977), need to
be applied for a few iterations after convergence with the Hu-
ber weights has been achieved. The scale parameters must
also be estimated robustly, for which the median absolute de-
viation (MAD) is one suitable choice.

The robust estimation procedures with the Huber and
Thomson weights have capability to reduce the influence of
unusual data (outliers) in the response (electric field) vari-
ables. However, they are often not sensitive to exceptional
predictors (magnetic field) data, which are termed leverage
points. Recall that for regression problem, the hat or predic-
tor matrix is given by Huber (1981)

H = U(UT U)−1UT . (4)

The above matrixH is a symmetricn×n projection matrix,
that is H2

=H, and hasp nonzero eigenvalues (the values
equal to 1) and (n−p) zero eigenvalues, wherep is the num-
ber of columns inU (usually 2 for MT). The rank of the ma-
trix is equal top, and its diagonal elements satisfy

0 ≤ hii ≤ 1 (5)

A largehii usually indicates that, in thep-dimensional space
defined by the vectors whose components are the carriers or
input variables, the stand linearly apart from otheru-vectors.
In this sense, theui is an outlier in the carrier space. Huber
(1981) referred to the points with large as the leverage points.
If one makes least squares robust by using Huber weights, for
instance, and if pointi happens to be a leverage point with
a high hii , thenxi can be grossly aberrant. However, the
scaled residuals (ri/s) will still remain at the constant part
of the weight function. This undesirable condition has led to
introduction of different robust estimation schemes for linear
regression with the basic purpose of bounding the influence
of outlying ui . On this basis, the undesirable condition can
be corrected by cutting down the overall influence of obser-
vation i as well as the scales, by a factor which depends on
hii (Sutarno, 2005). In effect this divides each residualri by
the modified scale factors

√
1−hii , so that the correspond-

ing weight can reduce larger residuals more rapidly at point
of higher leverage.

For the MT problem, in which the data are complex rather
than real [the vectors and matrices in Eq. (2) are complex],
the determination of the robust scale as well as iteratively
reweighting may be performed either in a real or a complex
framework. However, the use of complex framework, within
which the scale and weights are determined based on magni-
tude of residuals, is preferable because it is rotationally (i.e.
phase) invariant.

A performance test for the bounded-influence estimator
was carried out by using synthetic MT data developed by
Sutarno and Vozoff (1989). The synthetic data were gen-
erated to simulate MT data contaminated by non-Gaussian
noise that uniformly distributed. In this simulation the earth
is assumed to be homogeneous and isotropic, with a resistiv-
ity of 100�−m. Three sets of synthetic MT data with max-
imum noise percentages of 10%, 20% and 50% were used
in the test. The rms error of the apparent resistivities com-
puted by three different analyses (LS, hybrid, and bounded-
influence estimator), with respect to the assumed (100�−m)
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value, are shown in Table 1. It can be seen that for data with
10% maximum noise, the conventional LS estimation still
can easily deal with this noise level. However, as the noise
increases, the conventional estimation starts having some dif-
ficulties, and robust estimations evidently provide better re-
sults. It is clear that the superiority of the robust procedures
over the conventional method increase with increasing per-
centage error in the data. The test also shows that the best
result is given by the bounded-influence robust estimator.

3 Constrained robust impedance estimation

The superiority of the robust impedance estimation pro-
cedures over the conventional LS procedure was demon-
strated by Chave and Thomson (1989, 2003, 2004), Jones et
al. (1989), Sutarno and Vozoff (1989, 1991a, b), and Sutarno
(2005). Using real data they showed that the robust proce-
dures always yield impedance estimates which are better than
the conventional estimates. However, further improvements
are desirable to find more reliably robust estimates for MT
impedance functions. The improvement is based on physi-
cal constraints imposed on the impedance functions, such as
smoothness and consistency between the real and imaginary
parts of the impedance. The means for accomplishing this
is to incorporate the Hilbert transform (HT) operation on the
causal impedance functions, in the regression M-estimation
procedure, and to require that the real and imaginary part sat-
isfy HT relationships which must apply to causal systems.

Let <Z(ω) and=Z(ω) be the real and imaginary parts of
a complex variableZ(ω) which represents a causal system
that has no poles in the right half of the complex plane. Thus
they are related as HT pair at radian frequencyω, as (Boehl
et al., 1977):

<Z(ω) =
1

π

∞∫
−∞

=Z(ω′)

ω − ω′
dω′ (6a)

and

=Z(ω) = −
1

π

∞∫
−∞

<Z(ω′)

ω − ω′
dω′. (6b)

The complex variableZ(ω) can be expressed in amplitude
and phase form as

Z(ω) = |(Z(ω)|ei8 (7)

By taking the natural logarithms ofZ(ω), then

ln Z(ω) = ln |(Z(ω)| + i8(ω). (8)

If the HT pair is to be applied to the real and imaginary parts
of ln Z(ω), then this variable must represent a real causal sys-
tem. Since both the poles and zeros ofZ(ω) become the poles
ln Z(ω), the requirement of causality for lnZ(ω) is equiva-
lent to Z(ω) not having any poles or zeros in the right half

of the complex plane. Therefore, if the HT is to be applied
to lnZ(ω), the complex variableZ(ω) must be a minimum
phase function (Boehl et al., 1977). In this case, the relation
is given by

ln |(Z(ω)| =
1

π

∞∫
−∞

8(ω′)

ω − ω′
dω′ (9a)

and

8(ω) =
1

π

∞∫
−∞

ln |Z(ω′)|

ω − ω′
dω. (9b)

Sutarno and Vozoff (1991a, b) proposed a phase-smoothed
robust M-estimation procedure that incorporates the above
phase-amplitude relationship in the regression M-estimation,
for MT data. Recently, this relationship has also been ap-
plied in a bounded-influence robust regression procedure for
MT impedance estimation (Sutarno, 2005). However, as ad-
dressed (Boehl et al., 1977; Jones, 1980), the minimum phase
condition is applicable for a one-dimensional (1-D) response
or a two-dimensional (2-D) MT response rotated to its prin-
cipal axes, but it is not valid for more general 2-D and three-
dimensional (3-D) earth system. It is well known that in a
multi-dimensional or an anisotropic earth model, the electric
and magnetic fields may no longer be orthogonal because of
the spatial and directional irregularities in resistivity distribu-
tion. This implies that the corresponding impedance function
can not be associated with a minimum phase system. On the
other hand, there is no doubt that the causality condition in
Eq. (6) is valid for a physical earth system. This is because
the condition is a general property that must be verified by
any physically realizable system (Yee and Paulson, 1988).
Hence, the MT impedance function can be considered to be
a causal transfer function. On that basis, it is then possible
to find a reliable impedance estimate by imposing this phys-
ically realistic constraint in the regression M-estimation. By
assuming that the true response is most likely to lie between
the one indicated by the real part and the other by the imag-
inary part, a compromise between these two extremes can
be sought to represent an idealized response. In order to ap-
ply the above constraint in the regression M-estimation, let
us recall the regression problem given by Eq. (2), but in the
presence ofl≤p linearly independent constraints

v = Cβ, (10)

wherev is l independent restriction on the elements ofβ.
For simplicity let us consider a real case first, from which its
complex analogue can be deduced.

The constrained M-estimate ofβ is the value ofβ which
minimises

n∑
i=1

ρ(ri/s) (11)
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subject to the restriction

Cβ − v = 0. (12)

Therefore we minimise

ς =

n∑
i=1

ρ(ri/s) +

l∑
k=1

λk

(
p∑

j=1

ckj − vk

)
(13)

with respect toβj andλk, whereλk are Lagrange multipliers.
Setting the derivative ofς with respect toβj equal to zero,
give for minimising valueβc

UT WUβc
− UT Wx − sCT 3 = 0, (14)

whence

βc
= (UT WU)−1UT Wx + s(UT WU)−1CT 3), (15)

or

βc
= βu

+ s(UT WU)−1CT 3), (16)

where βu
=(UT WU)−1UT x is the unconstrained M-

estimator,3 is an l×1 vector of Lagrange multipliers, and
W is a diagonal weight matrix. Premultiplying Eq. (16) by
C and imposing the restrictionCβ=v, gives

v = Cβc
= Cβu

+ sC(UT WU)−1CT 3, (17)

whence

3 =
1

s
(C(UT WU)−1CT )−1(v − Cβu). (18)

Inserting this back into Eq. (16) gives

βc
=βu

+(UT WU)−1CT (C(UT WU)−1CT )−1(v−Cβu).(19)

It can be seen that the constrained M-estimatorβc differs
from the unconstrainedβu by a nonlinear function of the
quantity(v−Cβu), by which the unconstrained M-estimator
fails to satisfy the constraints. The complex analogue of
Eq. (19) given by

βc
= βu

+(U∗WU)−1C∗(C(U∗WU)−1C∗)−1(v−Cβu).(20)

The new robust method proposed here incorporates the HT
operation on the causal impedance function, in the regression
M-estimation procedure. The procedure is essentially an it-
eratively reweighted least-squares approach which is similar
to the one proposed by Sutarno and Vozoff (1991a, b). Like-
wise, the procedure uses a complex framework. The main
steps of the procedure are as follows:

(a) Use the LS estimator for the preliminary estimator
β(m)(m=0 and compute the diagonal elements of hat
matrixhii .

(b) Compute the predicted outputs

x̂
(m)
i = uijβ

(m)
j , i = 1, . . . , n

and residuals

r
(m)
i = xi − x̂

(m)
i , i = 1, . . . , n.

(c) Use the magnitude of residuals to obtain the modified
scale estimator

ŝ(m)
=

med
{∣∣∣|r(m)

i | − med(|r
(m)
i |)

∣∣∣}
0.44845

√
1 − hii .

(d) The Huber weights are computed using the scaled mag-
nitude of residuals and applied to matrixW of the
weighted normal equation given by

U∗WUβ = U∗Wx. (21)

(e) Equation (21) is solved and the entire process is re-
peated until convergence is achieved. The iteration for-
mula is given by

β(m+1)
= (U∗W(m)U)−1U∗W(m)x (22)

(f) Use the Thomson weights and a fixed scale estimate
derived from the above final iteration, again solving
Eq. (21) and terminating when convergence is achieved.

(g) Apply the HT operation to derive the real part of the
estimate from the imaginary part and vice versa.

(h) Compute the mean of the two estimates (the original es-
timate obtained from (f) and the transformed estimate
from (g)) at each frequency to obtain a compromise val-
ues of the two estimates, whilst the error estimate is cal-
culated from their difference.

(i) Use the compromise values of the most consistent esti-
mate to represent the idealized estimate, and again use
the HT technique to find its pair.

(j) Repeat step (b) to (f), but using the idealized estimateβ̆

as a constraint. More explicitly:

v = (β̆)

and

C =

{
(1 0) if β̆ = β1;

(0 1) if β̆ = β2.

}
The iteration formula is now given by

β(m+1)
= (U∗W(m)U)−1U∗W(m)x

+(U∗W(m)U)−1C∗(C(U∗W(m)U)−1C∗)−1

·{v − C(U∗W(m)U)−1U∗W(m)x} (23)

(k) Repeat steps (g) to (i), but only for the element that is
not used as the constraint in (j).
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Fig. 1. (a)A comparison of results for apparent resistivityρxy on
noisy MT data from the Columbia River Plateau, by three different
analyses: LS, unconstrained robust (Robust-1), and constrained ro-
bust (Robust-2).(b) The corresponding phases for panel (a). The
new robust analysis provides very smooth results.

Note that this robust regression procedure can be used with
the standard (4-channel) or the remote reference (6-channel)
data. To employ remote reference (RR) data, elements of
matrix U∗ in Eqs. (21), (22) and (23) should be replaced by
the remote reference field values. A preliminary performance
test for the new robust was carried out by using the same syn-
thetic MT data sets discussed in previous section. The rms
error of the apparent resistivities computed by this analysis
is, respectively, 2.1%, 2.3% and 5.7% for noise percentages
of 10%, 20% and 50%.

4 Application to real MT data

The real MT data set was taken in an extremely noisy area
in the Columbia River Plateau, by Phoenix Geophysics Inc.,
using remote reference MT system. The data are very highly
contaminated with common noise at the two locations. It was
indicated that a hydroelectric dam and aluminum refinery

Fig. 2. (a) As Fig. 1a, but forρyx . (b) The corresponding phases
for panel (a). Again, the new robust results are much smoother than
those of the unconstrained one.

which exist in this area were responsible for the noise (Su-
tarno and Vozoff, 1989). This preliminary study of the error
behaviour of the data showed that Gaussian error assumption
is violated. The error distribution has a typical long-tailed
behavior caused by outliers. The impedance function exam-
ple was computed for site 101 using site 102 horizontal mag-
netic fields as reference. The distance between the two sites
is about 3 miles. Preliminary processing of the data was con-
ducted using the standard MT analysis. The mean and linear
trend were subtracted from each segment of 32 points. The
segments were multiplied by a Hanning window and the 6th
and 8th discrete Fourier transform (DFT) coefficients were
calculated for each segment. To calculate the Fourier spec-
tra for the output frequencies of the low bands in the low
range, the cascade decimation procedure of Wight and Bo-
stick (1986) was used. The impedance and thus the appar-
ent resistivity and phase values were then computed using
the new robust method as well as by the conventional LS and
unconstrained robust method. Figures 1a and 2a show the ap-
parent resistivity computed by the new method along with the
results from the conventional LS and unconstrained robust,
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whereas the corresponding phases are shown in Fig. 1b and
Fig. 2b. Considering smoothness, slope and compatibility
of the resulting apparent resistivityρa and the phase8, it
can be seen from the figures that the conventional LS anal-
ysis yields impedance estimates that are very poor in these
qualities. The unconstrained robust substantially improves
the impedance estimates. However, the best improvement
is markedly given by the new constrained robust method.
As can be seen from the figures, in comparison to the un-
constrained robust, the new robust analysis provides much
smoother impedance estimates.

Comparisons between the above results may also be statis-
tically evaluated either self-consistently or comparatively. In
the first instance, by using the HT operation, it is possible to
measure a misfit error between the real part of the resulting
estimates and the real part predicted from the imaginary part,
or vice versa, at the end of each processing. On this basis,
it can be expected that the proposed robust procedure will
provide the best fit. This is because the procedure imposes
the causality requirement on its estimates. The comparative
evaluation can be done based on statistical properties of the
resulting estimates, such as confidence limits. However, for
this purpose, it is preferable not to use the parametric ap-
proach to describe this statistical property. This is because
the approach depends on the hypothesis about the probabil-
ity distribution. As is known, in the field of statistical infer-
ence the parametric approach has been displaced by newer
nonparametric types such as the jackknife, the bootstrap and
cross validation, which have better performance in compli-
cated situations. The most frequently applied nonparametric
method is the jackknife, due to its simplicity and reliability
with real data. The jackknife estimate of the regression co-
variance matrix is given by Chave and Thomson (1989)

cov(β̂) =
1

n(n − p)

n∑
i=1

(β̄ − pi)(β̄ − pi)
T , (24)

where

pi = {n − (1 − hii) + 1}β̂ − n(1 − hii)β̂−i, (25)

are the weighted pseudovalues, andβ̄ is the arithmetic aver-
age of the values

β̄ =
1

n

n∑
i=1

pi . (26)

In Eq. (25)β̂−i represents the estimate ofβ based on theith
subset, where theith row of and has been removed. Thus, es-
timation of the jackknife covariance matrix ofβ requires the
delete-one estimates ofβ. These can be derived for either
conventional or robust regression by deleting a row fromx

andU in turn and solving the problem. The diagonal terms of
Eq. (24) give the jackknife regression variances. Estimates of
standard errors on the regression coefficientsβ are given by
the square root of the variances, and may then converted to

confidence limits. An important property of jackknife vari-
ance is robustness in the presence of inhomogeneity of error
variance, in contrast to parametric estimators.

5 Conclusions

Bounded-influence regression M-estimation which is robust
to outlier contamination has been applied in the processing of
extremely noisy MT data to estimate the impedance tensors.
The bounded-influence estimator simultaneously cuts down
the overall influence of both outliers and leverage points, and
yields results that are comparable to the hybrid estimator, and
are even better. Since the impedance function is a causal
system, incorporating the HT operation in the regression M-
estimation guarantees the self consistency between the real
and imaginary parts and results in robust, reliable impedance
estimates.
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