第 20 讲 正交投影

教学目的: 掌握正交投影算子和正交分解的基本性质。 讲解要点:

- 1 投影定理以及投影算子的初步性质。
- 2 投影算子的特征及其运算。
- 3 空间的正交分解。

定义 1 设 H 是内积空间, $E \subset H$ 是线性子空间, $x \in H$. 若存在分解 $x = x_1 + x_2$,其中 $x_1 \in E$, $x_2 \perp E$,则称 x_1 为 x 在 E 上的投影,记为 $P_E x = x_1$.

定理 1 设 H 是内积空间, $E \subset H$ 是线性子空间, $x \in H$, $x_1 \in E$,则以下诸条件等价:

(1) $P_E x = x_1$.

(2)
$$||x - x_1|| = \inf_{z \in E} ||x - z||,$$
 (4-2-1)

(3) $\forall z \in E$, 实变量函数 $f(\lambda) = ||x - x_1 + \lambda z||^2$ 在 $\lambda = 0$ 有最小值。

证明 $(1) \Rightarrow (2)$ x 有分解 $x = x_1 + x_2$, 其中 $x_1 \in E$, $x_2 \perp E$, 则 $\forall z \in E$, $x_1 - z \in E$, $x_2 \perp x_1 - z$, 于是

$$\begin{split} \left\|x-z\right\|^2 &= \left\|x_1-z+x_2\right\|^2 = \left\|x_1-z\right\|^2 + \left\|x_2\right\|^2 \geq \left\|x_2\right\|^2 = \left\|x-x_1\right\|^2 \\ & \text{ if } \exists \exists x_1 \in E \text{ , } \text{ if } \left\|x-x_1\right\| = \inf_{z \in E} \left\|x-z\right\| \text{ .} \end{split}$$

(2) ⇒ (3) 注意 $f(\lambda)$ 是 λ 的连续函数并且 $x_1 - \lambda z \in E$, $f(\lambda)$ 在 $\lambda = 0$ 的最小性即(4-2-1).

(3) ⇒ (1) $\forall z \in E$, 取 λ 为实变量,则

$$f'(0) = \lim_{\lambda \to 0} \frac{f(\lambda) - f(0)}{\lambda} = \lim_{\lambda \to 0} \frac{\|x - x_1 + \lambda z\|^2 - \|x - x_1\|^2}{\lambda}$$
$$= \lim_{\lambda \to 0} \left((x - x_1, z) + (z, x - x_1) + \lambda \|z\|^2 \right)$$
$$= 2 \operatorname{Re}(x - x_1, z). \tag{4-2-2}$$

 $f(\lambda)$ 在 $\lambda = 0$ 是可微的. 由于 $\lambda = 0$ 是最小值点, 故 Re $(x-x_1,z)=0$. 同样地,将 z 换为 iz 得出 Im $(x-x_1,z)=0$,从而 $(x-x_1,z)=0$. $z \in E$ 是任意的,最后得出 $x-x_1 \perp E$. 故 $P_E x = x_1$ 。

定理 2 (投影定理) 设 H 是 Hilbert 空间, $E \subset H$ 为是线性子空间,则 $\forall x \in H$, $P_E x$ 存在且唯一。

证明 若 $x \in E$,则 $P_E x = x$.若 $x \notin E$, 取 $x_n \in E$ 使得 $\|y - x_n\|$ $\rightarrow \rho(y, E) = d$,由于

$$||x_{m} - x_{n}||^{2} = ||(x - x_{n}) - (x - x_{m})||^{2}$$

$$= 2(||x - x_{n}||^{2} + ||x - x_{m}||^{2}) - 4||x - \frac{x_{n} + x_{m}}{2}||^{2}$$

$$\leq 2(||y - x_{n}||^{2} + ||y - x_{m}||^{2}) - 4d^{2} \to 0,$$

 $\{x_n\}$ 是 Cauchy 序列。不妨设 $x_n \to x_0$, E 闭,所以 $x_0 \in E$. 现在

$$||x-x_0|| = \lim_{n\to\infty} ||x-x_n|| = d = \inf_{z\in E} ||x-z||,$$

由定理 1, $P_E x = x_0$ 。

由于 Hilbert 空间是严格凸的, x_0 是唯一的最佳逼近元。

其实为了得到最佳逼近元,定理 2 中的集合 E 可以是任一闭凸子集, x_0 的存在唯一性结论及其证明都不改变。定理 2 和定理 1 还说明空间一点到闭子空间(闭凸集)的投影,恰恰是这一点关于闭子空间

(闭凸集)的最佳逼近元。不仅如此,在 Hilbert 空间上我们还可以定量地计算出一点到最佳逼近元的距离。

例 1 设 H 是 Hilbert 空间, $E \subset H$ 是线性子空间, $\dim E = n$, e_1, \dots, e_n 是 E 的一组规范正交基,则 $\forall x \in H$, $P_E x = \sum_{i=1}^n (x, e_i) e_i$ 并且 $d(x, E) = (\|x\|^2 - \sum_{i=1}^\infty |(x, e_i)|^2)^{1/2}. \tag{4-2-3}$

若 $\{e_n\}$ 是 H 中的规范正交集, $E = \overline{span}\{e_n\}$,则 $P_E x = \sum_{i=1}^{\infty} (x,e_i)e_i$ 并且

$$d(x,E) = (||x||^2 - \sum_{i=1}^{\infty} |(x,e_i)|^2)^{1/2}.$$
 (4-2-4)

实际上, 令 $x_1 = \sum_{i=1}^n (x,e_i)e_i$, $x_2 = x - x_1$,则 $x_1 \in E$, $\forall z \in E$,

 $z = \sum_{i=1}^{n} (z, e_i) e_i$, 实际计算得到

$$(x_2, z) = (x - x_1, z) = (x, z) - (x_1, z) = 0$$

故 $x_2 \perp E$, 从而 $P_E x = x_1 = \sum_{i=1}^n (x_i, e_i) e_i$. 由投影定理

$$d(x, E) = ||x - x_1|| = (||x||^2 - ||x_1||^2)^{\frac{1}{2}} = (||x||^2 - \sum_{i=1}^{n} |(x, e_i)|^2)^{\frac{1}{2}}.$$

思考题 若 e_1, e_2, \cdots 是 E 的规范正交基,证明类似的结论成立.

推论 1 设 H 是 Hilbert 空间, $E \subset H$ 是闭线性子空间,记从 H 到 E 的投影算子是 P,则

- (1) $P: H \to E$ 是线性算子.
- (2) $||P|| \le 1.$ $E = \{0\}, \ \, \text{!!} \ \, P = 0; \ \, \text{!!} \ \, E \neq \{0\}, \ \, \text{!!} \ \, ||P|| = 1.$
- (3) E = R(P) = N(I P), N(P) = R(I P).

称 $E \neq P$ 的投影子空间.

证明 1°设 $x = x_1 + x_2, y = y_1 + y_2$, 其中 $x_1, y_1 \in E$, $x_2, y_2 \perp E$,

则

$$\alpha x + \beta y = (\alpha x_1 + \beta y_1) + (\alpha x_2 + \beta y_2),$$

其中 $\alpha x_1 + \beta y_1 \in E$, 而 $\forall z \in E, (x_2, z) = 0, (y_2, z) = 0$, 故

$$(\alpha x_2 + \beta y_2, z) = \alpha(x_2, z) + \beta(y_2, z) = 0.$$

所以 $\alpha x_1 + \beta y_2 \perp E_1$ 于是

$$P(\alpha x + \beta y) = \alpha x_1 + \beta y_1 = \alpha P x + \beta P y.$$

P是线性的.

 2° $\forall x \in H$, 若 $x = x_1 + x_2$ 是正交分解,则 $\|x\|^2 = \|x_1\|^2 + \|x_2\|^2$. 从而

$$||Px||^2 = ||x_1||^2 \le ||x||^2$$
, $||Px|| \le ||x||$, $||P|| \le 1$.

若 $E = \{0\}$, 则 $\forall x \in H$, Px = 0, 故 P = 0.

若 $E \neq \{0\}$,则 有 $x_1 \in E$, $\|x_1\| = 1$ 使 得 $Px_1 = x_1$, $\|P\| \geq \|Px_1\| = \|x_1\| = 1$,从而 $\|P\| = 1$.

 3° 由于 $y \in R(P)$ 当且仅当 $y = x_1 + x_2$ 时 $x_2 = 0$,此即 y - Py = 0从而 $y \in N(I - P)$,反过来也一样,另一式子可同样证明.

定理 3 设 H 是 Hilbert 空间, $E \subset H$ 是线性子空间,记 $E^{\perp} = \{x \in H, x \perp E\}$,则

- (1) E^{\perp} 是 H 的闭线性子空间.
- (2) 若 E 是闭的、则 $E^{\perp \perp} = E$.
- (3) 若 E 是闭的,则 $H = E \oplus E^{\perp}$,即 $H = E + E^{\perp}, E \cap E^{\perp} = \{0\}.$ (4-2-5)
- (4) 若 E 是闭的, $P: H \to E$ 是投影算子,则 $E^{\perp} = N(P)$.

通常称 E^{\perp} 是 E 的正交补空间. 由于(4-2-5), 称 H 是 E 与 E^{\perp} 的

直和. 换句话说, (3) 表明 Hilbert 空间的每个闭子空间存在正交补空间.

证明 1° 若 $x, y \in E^{\perp}$,则 $\forall z \in E, x \perp z, y \perp z$,从而 $(\alpha x + \beta v, z) = \alpha(x, z) + \beta(v, z) = 0.$

故 $\alpha x + \beta v \in E^{\perp}$, E^{\perp} 是线性子空间.

若 $x_n \in E^{\perp}$, $x_n \to x$, 则 $\forall z \in E$, $(x_n, z) = 0$. 由内积关于变元的 连续性, $(x, z) = \lim_{n \to \infty} (x_n, z) = 0$, 故 $x \perp z$, $x \in E^{\perp}$, E^{\perp} 是闭的.

 2° 设 E 是闭的,则由 $E \perp E^{\perp}$ 知道 $E \subset E^{\perp \perp}$. 另一方面,若 $x \in E^{\perp \perp}$,则 $x \perp E^{\perp}$. 若 $x = x_1 + x_2$, $x_1 \in E$, $x_2 \perp E$,则 $x_2 \in E^{\perp}$,从 而 $(x, x_2) = 0$. 于是

$$(x_2, x_2) = (x_1 + x_2, x_2) = (x, x_2) = 0$$
,

故 $x_2 = 0$, $x = x_1 \in E$,即 $E^{\perp \perp} \subset E$.最后 $E = E^{\perp \perp}$.

 3° 由定理 2, $\forall x \in H$, $x = x_1 + x_2$, 其中 $x_1 \in E$, $x_2 \perp E$. 即 $x_2 \in E^{\perp}$ 从而 $H = E + E^{\perp}$. 另一方面 $E \cap E^{\perp} = \{0\}$. 故 $H = E \oplus E^{\perp}$.

 $4^{\circ} \ \forall x \in H \ , \ \ x = x_1 + x_2 \ \ 其中 \ x_1 \in E \ , x_2 \perp E \ . \ \ 故 \ x \in E^{\perp} 当且仅$ 当 $x_1 = 0$,即 Px = 0 或 $x \in N(P)$. 从而 $E^{\perp} = N(P)$.

思考题 若H是内积空间, $M,N \subset H$.

- (1) 若 $M \perp N$,则 $M \subset N^{\perp}$, $N \subset M^{\perp}$.
- (2) 若 $M \subset N$,则 $M^{\perp} \supset N^{\perp}$
- $(3) \quad M^{\perp} = (\overline{M})^{\perp}.$

定义 2 (1) 称线性算子 $T: X \to X$ 是幂等的、若 $T^2 = T$.

(2) 设H是内积空间,称 $T \in B(H)$ 是自伴算子,若

$$(Tx, y) = (x, Ty), \forall x, y \in H$$
. (4-2-6)

定理 4 设 H 是 Hilbert 空间, $P \in B(H)$, 则下列诸条件等价:

- (1) *P*是投影算子.
- (2) $P^2 = P$ 并且 P 是自伴的.
- (3) $P^2 = P \not \exists \exists N(P) \bot R(P)$.
- (4) 若 H 是复空间,以上条件还等价于

$$(Px, x) = ||Px||^2, \forall x \in H.$$
 (4-2-7)

证明 (1)⇒(2). 首先设 P 是从 H 到闭线性子空间 E 上的投影算子, $\forall x \in H$, $Px \in E$, 故 $P^2x = P(Px) = Px$. 于是 $P^2 = P$. 其次, $\forall x, y \in H$, $x = x_1 + x_2$, $y = y_1 + y_2$, $x_1, y_1 \in E$, $x_2, y_2 \perp E$,则

$$(Px, y) = (x_1, y_1 + y_2) = (x_1, y_1)$$

= $(x_1 + x_2, y_1) = (x, Py)$.

P自伴.

(2) ⇒ (3). 若 $x \in N(P)$, 则 Px = 0, 若 $y \in R(P)$ 则 $\exists x_1 \in H$, $y = Px_1$. 于是

$$(x, y) = (x, Px_1) = (Px, x_1) = 0$$

即 $N(P) \perp R(P)$.

(3) \Rightarrow (1). 令 E = N(I - P), $E \neq H$ 的闭线性子空间,现在验证 $P \neq M$ H 到 $E \perp$ 的投影算子.

首先证明 E=R(P) , 实际上 $\forall y \in R(P)$, $\exists x \in H$, $y=Px=P^2x$. 从 而 (I-P)(Px)=0 ,即 (I-P)y=0 , $y \in N(I-P)$. 反 之 $\forall y \in N(I-P)$ 则 (I-P)y=0 , $y=Py \in R(P)$,故 R(P)=N(I-P) .

 $\forall x \in H$, 记 x = Px + (x - Px) . 显 然 $Px \in R(P) = E$. 又 P(I - P)x = P(x - Px) = 0, 于是 $x - Px \in N(P)$. 由 $N(P) \perp R(P)$ 得到 $x - Px \perp R(P) = E$. 所以 P 是从 H 到 E 上的投影算子.

现在设H是复空间.

(2)
$$\Rightarrow$$
 (4). $||Px||^2 = (Px, Px) = (P^2x, x) = (Px, x)$.

(4) \Rightarrow (2). 对于H上的任一线性算子A,容易验证下面极化恒等式成立:

$$4(Ax,y) = (A(x+y), x+y) - (A(x-y), x-y)$$
$$+i(A(x+iy), x+iy) - i(A(x-iy), x-iy)$$
(4-2-8)

若 $\forall x \in H$, $(Px,x) = \|Px\|^2$, 则 (Px,x) 是实数. 令 A = P , 实际计算知道:

$$(Px, y) = \overline{(Py, x)} = (x, Py),$$

P是自伴的. 于是

$$(P^2x, x) = (Px, Px) = (Px, x), \quad \forall x \in H.$$

令 $A = P^2 - P$,则 (Ax, x) = 0 , $\forall x \in H$, 再利用极化恒等式得到 $(Ax, y) = 0 \, , \ \forall x, y \in H \, .$

于是A=0,即 $P^2=P$,P是幂等的,(2)成立.

整个定理得证.

若P是投影算子,则

$$(Px,x) = (P^2x,x) = (Px,Px) \ge 0$$
, $\forall x \in H$

利用这一点我们可以在投影算子之间建立一种半序关系: 若 P_E , P_M 分别是从H 到闭线性子空间E 和M 上的投影算子,并且

$$(P_E x, x) \ge (P_M x, x), \quad \forall x \in H$$
 (4-2-9)

则记为 $P_E \ge P_M$ (或 $P_M \le P_E$).

定理 5 设 P_E , P_M 分别是 Hilbert 空间中的投影算子。则以下诸条件等价:

- $(1) P_{\scriptscriptstyle M} \leq P_{\scriptscriptstyle E}.$
- (2) $||P_M x|| \le ||P_F x||, \forall x \in H$.
- (3) $M \subset E$.
- (4) $P_{E}P_{M} = P_{M}P_{E} = P_{M}$.

(5) $P_E - P_M$ 是投影算子.

证 明
$$(1) \Rightarrow (2)$$
 $\|P_M x\|^2 = (P_M x, x) \le (P_E x, x) = \|P_E x\|^2$. 故

 $||P_M x|| \le ||P_E x||, \quad \forall x \in H.$

$$(2) \Rightarrow (3)$$
 若 $x \in M$,则 $P_M x = x$,

$$||P_E x||^2 \ge ||P_M x||^2 = ||x||^2 = ||P_E x||^2 + ||x - P_E x||^2$$

故 $x - P_E x = 0$ 或 $P_E x = x$. 即 $x \in E$, 所以 $M \subset E$ 。

 $(3) \Rightarrow (4) \quad \forall x \in H \ , \ P_M x \in M \subset E \ , \quad \text{故} \ P_E P_M x = P_M x \ \text{或} \ P_E P_M$ $= P_M \ . \quad \ \, \mathcal{F} - \, \mathcal{F} \ \text{面} \ , \quad \text{设} \ x = P_E x + x_2 \ , \quad x_2 \perp E \ \, \text{从 m} \ \, x_2 \perp M \ . \quad \, \text{又 设}$ $x = P_M x + x_2' \ , \quad x_2' \perp M \ , \quad \text{to} \ x_2 - x_2' \perp M$

$$P_E x - P_M x = -(x_2 - x_2') \perp M$$
.

若记 $P_E x = P_M x + (P_E x - P_M x)$, 则此式为 $P_E x$ 关于线性子空间 M 的正交分解式, 从而 $P_M P_E x = P_M x$ 或 $P_M P_E = P_M$.

$$(4) \Rightarrow (5) \qquad 此 \quad \text{时} \quad (P_E - P_M)^2 = P_E^2 - P_E P_M - P_M P_E + P_M^2 = P_E - P_M - P_M + P_M = P_E - P_M, \quad P_E - P_M$$
 是幂等的。

由于 P_{E}, P_{M} 的自伴性, $\forall x, y \in H$

$$((P_E - P_M)x, y) = (P_E x, y) - (P_M x, y)$$
$$= (x, P_E y) - (x, P_E y) = (x, (P_E - P_M)y).$$

 $P_E - P_M$ 是自伴的,故 $P_E - P_M$ 是投影算子。

$$(P_E x, x) - (P_M x, x) = ((P_E - P_M)x, x) = ||(P_E - P_M)x||^2 \ge 0$$

得之.

定理 6 设 P_E , P_M 分别是 Hilbert 空间中的投影算子。则以下诸条件等价:

- (1) $E \perp M$.
- (2) $R(P_E) \perp R(P_M)$.
- (3) $P_E P_M = 0$ (称 $P_E \ni P_M$ 正交).
- (4) $P_E + P_M$ 是投影算子.

证明
$$(1) \Rightarrow (2)$$
 由 $R(P_E) = E$, $R(P_M) = M$ 得到
$$R(P_E) \perp R(P_M)$$
.

$$(2)\Rightarrow (3)\quad \forall x,y\in H\;,\; (x,P_EP_My)=(P_Ex,P_My)=0\;,\;\;$$
故 $P_EP_My=0\;$, 从而 $P_EP_M=0\;$.

(3) ⇒ (4)
$$\forall x \in H$$
, 由 $P_E P_M = 0$ 得 $P_E P_M P_E = 0$, 于是
$$\|P_M P_E x\|^2 = (P_M P_E x, P_M P_E x) = (P_E x, P_M^2 P_E x)$$
$$= (P_E x, P_M P_E x) = (x, P_E P_M P_E x) = 0.$$

故 $P_{\scriptscriptstyle M} P_{\scriptscriptstyle E} = 0$. 现在

$$(P_E + P_M)^2 = P_E^2 + P_E P_M + P_M P_E + P_M^2 = P_E + P_M.$$

 $\mathbb{X} \ \forall x, y \in H$,

$$((P_E + P_M)x, y) = (P_E x, y) + (P_M x, y)$$
$$= (x, P_E y) + (x, P_E y) = (x, (P_E + P_M)y).$$

所以 $P_E + P_M$ 是投影算子.

$$P_E + P_M = (P_E + P_M)^2 = P_E^2 + P_E P_M + P_M P_E + P_M^2 = P_E + P_E P_M + P_M P_E + P_M$$

知道

$$P_{E}P_{M} + P_{M}P_{E} = 0$$

(4-2-10)

左乘
$$P_E$$
,则 $P_E P_M + P_E P_M P_E = 0$.

右乘
$$P_E$$
,则 $P_E P_M P_E + P_M P_E = 0$.

于是
$$P_E P_M = P_M P_E$$
, 由式 (4-2-6), $P_E P_M = P_M P_E$.

 $\forall x \in M$, $P_M x = x$, $\text{th} \ 0 = P_E P_M x = P_E x$. $x \perp E \text{ fill } M \perp E$.

思考题 若 P_1, P_2 是投影算子,则 P_1P_2 是投影算子当且仅当 $P_1P_2 = P_2P_1$.

引理 设 H 是 Hilbert 空间, $\{P_n\}$ 是 H 上的一列投影算子并且 P_n 点点收敛于 P,即 $\forall x \in H$, $\|P_n x - P x\| \to 0$,则 P 是投影算子.

证明 $\forall x \in H$, $\lim_{n \to \infty} P_n x = Px$. 由 Banach-Steinhaus 定理, P 是 有界线性算子. 又 $\forall y \in H$,

$$(Px, y) = \lim_{n \to \infty} (P_n x, y) = \lim_{n \to \infty} (x, P_n y) = (x, Py)$$

P是自伴的. 另一方面

$$||(P^2 - P)x|| = ||(P^2 - P_nP + P_nP - P_n^2 + P_n - P)x||$$

$$\leq \|(P-P_n)(Px)\| + \|P_n\| \|(P-P_n)x\| + \|(P-P_n)x\| \to 0$$

故 $(P^2 - P)x = 0$, $\forall x \in H$, 即 $P^2 = P$. P 是幂等的...

定理 7 设 H 为 Hilbert 空间.

- (1) 若 $\{Q_i\}$ 是一列两两正交 $(Q_iQ_j=0, i\neq j)$ 的投影算子,则存在投影算子P使得 $\sum_{i=1}^n Q_i x \to P x$ 点点成立.
- $E = \frac{(2) \ \text{若} \left\{ E_i \right\} \text{是一列单调上升} (E_i \subset E_j, i \leq j) 的 闭线性子空间并且}{E = \overline{\bigcup_{i=1}^{\infty} E_i}} \, , \, \, \text{则} \, P_{E_n} x \rightarrow P_E x \, \text{点点成立}.$

证明 1° 记 $P_n = \sum_{i=1}^n Q_i$,由定理 6,利用数学归纳法不难证明

 P_n

是投影算子. 由正交性

$$(Q_i x, Q_i x) = (Q_i Q_i x, x) = 0 \quad (i \neq j)$$

故

$$||x||^{2} \ge ||P_{n}x||^{2} = \left(\sum_{i=1}^{n} Q_{i}x, \sum_{j=1}^{n} Q_{j}x\right)$$
$$= \sum_{i,j=1}^{n} (Q_{i}x, Q_{j}x) = \sum_{i=1}^{n} ||Q_{i}x||^{2}.$$

所以 $\sum_{i=1}^{\infty} \|Q_i x\|^2 < \infty$. 又

$$\left\| \sum_{i=n+1}^{m} Q_{i} x \right\|^{2} = \sum_{i=n+1}^{m} \left\| Q_{i} x \right\|^{2} \to 0 \quad (n, m \to \infty),$$

所以 $\sum_{i=1}^n Q_i x$ 是 Cauchy 序列. H 完备,令 $Px = \lim_{n \to \infty} \sum_{i=1}^n Q_i x$,由引理,P 是投影算子.

$$2^{\circ}$$
 由定理 6 , $P_{E_{i+1}} - P_{E_i}$ 是投影算子并且 $P_{E_i}P_{E_j} = P_{E_i}$ $(i < j)$. 故
$$(P_{E_{i+1}} - P_{E_i}) (P_{E_{j+1}} - P_{E_j}) = P_{E_{i+1}} - P_{E_{i+1}} + P_{E_i} - P_{E_i} = 0.$$
 又 $P_{E_1} (P_{E_{i+1}} - P_{E_i}) = P_{E_1} - P_{E_1} = 0.$ 于是
$$P_{E_1} P_{E_2} - P_{E_3} P_{E_4} - P_{E_5} P_{E_5} - P_{E_5} P_{E_5} \cdots$$

是一列两两正交的投影算子序列. 由1°, $\forall x \in H$,

$$P_{E_n} x = P_{E_1} x + \sum_{i=1}^{n-1} (P_{E_{i+1}} - P_{E_i}) x \to Px$$
.

P为投影算子. 现在验证 $P = P_E$.

记 $P=P_L$. 我们证明 L=E. 实际上, $\forall n\geq 1, E_n\subseteq E$. 由定理 5, 对于每个 $x\in H$,

$$\left\|P_{E_n}x\right\| \leq \left\|P_E x\right\|.$$

$$\left\| P_L x \right\| = \lim_{n \to \infty} \left\| P_{E_n} x \right\| \le \left\| P_E x \right\|,$$

于是 $L \subset E$.

另一方面,当 $k \geq n$ 时 $x \in E_k$,故 P_{E_k} x = x. 令 $k \to \infty$,则

 $P_{\scriptscriptstyle L} x = \lim_{k o \infty} P_{\scriptscriptstyle E_k} \ x = x$. 所以 $x \in L$, 从而 $E_{\scriptscriptstyle n} \subset L$. n 是任意的并且 $E_{\scriptscriptstyle n}$ 单

调增加,于是
$$\bigcup_{n=1}^{\infty}E_{n}\subset L$$
 , L 闭,所以 $E=\overline{\bigcup_{n=1}^{\infty}E_{n}}\subset L$. 总之, $L=E$,故 $P=P_{L}=P_{E}$.